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Theory of coherences yrodnced by radiatively assisted inelastic collisions:
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A theoretical calculation of the 6nal-state coherences produced by a radiatively assisted inelastic collision (RAIC)
is presented. Two atoms, A and A', collide in the presence of an external radiation field to produce the RAIC
geagtion g, +g,+So~+&+g& whege (/j ) is )he mithd ggge ( ff ) js the fjaai suue aug Q is )he fgequency of
the external 6eld. It is assumed that the final states consist of a number of nearly degenerate levels and the
coherences produced in these levels by the RAIC reaction is calculated. These final-state coherences can be
monitored by standard techniques (polarization of fluorescence, quantum beats) enabling one to use the final-state

coherences as a probe of the RAIC reaction. The calculation is limited to the weak-6eld (perturbation-theory) limit
and is valid only in the impact core of the RAIC profile.

I. INTRODUCTION

In a previous paper' (to be referred to as RAIC
I), a general theory or radiatively assisted inelas-
tic collisions (RAIC) was developed. These colli-
s1ons repx'esent px'oeesses of the form

A +A'+SQ A~+Ay

in which two atoms (A and A') are excited from
initial states fl to final sta tes ff 'by the com-
bined action of the collision and the absorption of a
photon from an external pulsed radiation field.
Whereas most previous theories of RAIC consid-
ered only one possible excitation channel (from
non degenerate state ii' to nondegenerate state
ff'), the theory presented in RAIC I allowed for
the more general RAIC excitation from a group of
initial levels characterized by some appropriate
density matxix to a group of final levels. An ex-
pression was obtained for the final-state density
matrix which completely described both the popu-
lation and coherence properties of the excitation
process. The final-state coherences can be mon-
itored by standard experimental techniques (e.g. ,
measurement of the polarization of fluorescence
or quantum beats originating from the final states
of one of the atoms); alternatively, one can moni-
tor the final-state populations (e.g. , by measuring
the total Quoreseence rate from one of the final
states). It turns out, however, that measurements
of final-state coherenees provide a more sensi-
tive probe of the RAIC interatomic potentials than
do measurements of final-state populations. Thus,
it appears useful to develop a theory of RAIC
which permits one to calculate the induced-final-
state coherences.

In this paper, a perturbative solution of the
RAIC equations is obtained which is valid provided

(I) the external field is sufficiently weak and (2)
the detunings are restricted to the impact coze
of the RAIC profile. Starting with some arbitrary
initial density matrix and assuming interatomic
potentials and external-field polarizations of a
quite arbitrary nature, the final-state density
matrix fox the system is calculated. The most
general case leads to rather lengthy express'ions
which are presented in the Appendices. Specific
results are given in the body of the paper for the
reduced density matrix of atom A' in the limits
of (I) dipole-dipole interatomic potential, (2)
straight-line collisional trajectory, (3) linearly
polarized external field, (4) central tuning, (5)
unpolarized initial state, (6) final states of a given
atom characterized by the same J quantum num-
ber, and (7) a summation over intermediate vir-
tual states that reduces to one term, owing to a
nearly satisfied resonance condition. It is shown
that the Quoreseence emitted from the final states
of one of the atoms directly reflects the nature of
the interatomic potential. Thus, in contrast with
normal RAIC experiments whex'e one must record
an entire RAIC yrofQe as a function of detuning to
test interatomic potentialmodels, a polarization
measurement at central tuning (where the signal
is largest) serves to probe the interatomic p«en-
tial.

It may seem strange that collisions tedNce co-
herence, since it is generally thought that colli-
sions Best«p coherence. In fact, it will be seen
that the collisional interaction may be viewed as
two unpolarized (but possibly correlated) "fields"
incident on the atoms from all directions. The
fields are chosen to have the same multipolar
px'oyerties as the collisional intex actions they
represent (e.g., a dipole operator is replaced by
a dipole field). In this way the final-state coher-
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ence can be understood as the combined action of
three fields; two unpolarized fields plus the ex-
ternal field. It is the external field which may be
polarized and possesses a mell-defined direction-
ality in any case, that is the origin of the final-
state coherence. The coQisional interaction re-
sponsible for the RAIC reaction will, in general,
modify the final-state coherence.

In Sec. II, the physical system is described and
an expression for the final-state amplitude given.
An outline of the calculation is presented in Sec.
III, with the details given in the Appendices. The
final-state density matrix is given in Sec. IV
for the case outlined above. In Sec. V the RAIC
excitation cross sections and the polarization of
the Quoresence emitted from the final state of
atom A' are calculated using a cutoff procedure
to treat collisions with small impact parameters.
A discussion and physical interpretation of the
results are given in Sec. VI.

It should be noted that this paper is essentially
self-contained. However, the reader is referred
to RAIC I for a general overview of the problem,
for a detailed dexivation of the RAIC equations in-
cluding validity conditions, and for references to
previous work

H. PHYSICAL SYSTEM AND TRANSITION
AMPLITUDE

The physical system consists of two atoms,
A and A', undergoing a collision in the presence
of a pulsed radiation field. The time of closest
approach during the collision is t = t, and the
center-of-mass position of the atoms at this time
is R=R, . The amplitude of the pulsed field is as-
sumed to vary slowly during the collision and is
evaluated at (R, t, ); the field is taken to be of
the form

E(t; R, , t, ) =-' [Z '"'+ g,*e' ],o

where g, ~
is the field amplitude at (8, , t, ).

The energy levels of atoms A and A' are shown

in Fig. 1. Each label in the figure represents a
group of levels having a maximum frequency sep-
aration ao, «v, ', where v, is the duration of a
collision. Since

etc., is adopted, where tu =E„lg and Z„ is the
energy associated with state e.

Before the collision, the atoms are in an ar-
bitrary linear superposition of the states [ I )
=( ti') =(i) [i'), wherei and i' represent any of
the levels in the i and ' groups, respectively.
The field is assumed to be nearly resonant with

the I-I' transition in the composite system,
i.e., 9=~~ -+I. More precisely, the detuning 6,

defined by

6 =0 —QPgI

Ct)gg = QPg ~ Q)1

(4)

(4a)

is limited, in this work, to the impact core of the
RAIC profile

All, other atom-atom or atom-field interactions
are assumed to be nonresonant; in other words,
all levels outside the I and J' groups enter the
problem only as virtue/ levels. The contribution
of these virtual levels can be included in effective
operators that act in the IE subspace only. The
problem is to determine the final-state density
matrix following the collision since it provides a
complete description of the final-state coherences
and populations produced by RAIC.

The RAIC can be characterized by three opera-
tors which have been discussed in RAIC I. First,
there is the "light-shUt" operator S~ which cou-
ples and shifts the levels sojtk&g both the initial
and final groups of levels. This light-shift opera-
tor represents the virtual excitation and de-ex-
citation of either of the atoms by the external field.
The effects produced by S~, which are second or-
der in the field, are neglected in this work, since
the field is treated in a perturbation-theory limit.

levels within a given group may be considered as
degenerate during the RAIC. The levels associated
with atom A. are represented by lower-case un-
primed variables and those associated with atom
A' by primed ones. A capital letter refers to a
state of the composite system (I =i i', E = e e',
I"q =f&f&, etc.) and the convention

40~ =4')+4C)ge y Q)~ = QPg + QPIe

FIG. 1. Energy-level diagram of atoms A and A'.
Each group of levels labeled by a single letter is nearly
degenerate with a maximum frequency spacing between
levels within a-group less than an inverse collision time.
The external-field frequency 9 is such that O'Q~ (EI
+ g~) —(g)+ g]p,
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Second, there is the collisional operator S,
which also couples and shifts the levels ceithin the
initial and final groups of levels. This operator
is second order in the collisional interaction,
representing the collision-induced virtual excita-
tion and de-excitation of the composite AA' sys-
tem in either its initial or final state. The opera-
tor S, is the origin of the pressure broadening
and shifting of spectral profiles. The relative im-
portance of S, is dependent on (i) the detuning d
and (ii} the impact parameter associated with a
given collision. .Owing to condition (5), the colli-
sion possesses sufficient frequency components
to effectively compensate for the detuning 4.
Thus, in contrast to the case lb, l v, &1, where
collisional shifts can significantly enhance excita-
tion cross sections by bringing the atomic transi-
tion frequency into instantaneous resonance with
the field, all effects produced by the operator S,
related to the detuning may be neglected. The
dependence of S, on the impact parameter is dis-
'cussed following the description of the transition
operator.

The transition operator l(IF) represents the
combined action of the (field+ collision) in coupling
the initial state lI ) to final state l F ) via a virtual
excitation of intermediate states. This operator
can be represented diagrammatically by the four
terms shown in either Fig. 2 or Fig. 3. In Figs.
2(a) and 3(a), the collision (represented by non-

wavy lines) acts to virtually excite the atoms from
state lii') to state l ef') and the field (represented

by wavy lines} then acts on atom A to complete
the excitation to the final state l ff '). In Figs.
2(b} and 3(b) the collision excites the virtual state
l fe') and the field acts on atom A' to complete
the excitation. In Figs. 2(c) and 3(c) the field acts
on atom A to excite the virtual state l

ei ') and the
collision completes the excitation to the final
state l ff'). Finally, in Figs. 2(d) and 3(d), the
field acts on atom A' to excite the virtual state
l
ie') and the collision completes the excitation.
It may be seen from Fig. 2 that the transition

operator is linear in both the field and collisional
interaction. Explicitly, ' one finds matrix ele-
ments of T(IF) to be

, (&IMH(»&i&'&&»li l») &i.
~sr

where t is the time during the collision; b, v„,

e'

(a)
A i.

(b)
Pe' f'f '

(c)
4 A e i.' (d) i

(Ei)

4, e
FIG. 2. Diagrams representing matrix elements of the

transition operation from initial state lg'l to final state
[ff'). A straight-line vertex corresponds to a collision
interaction and wavy-line vertex to an atom-field inter-
action. The states e and e' represent some arbitrary
intermediate Qirtual) states in atoms A and A', respec-
tively.

FIG. 3. A schematic representation of the contribu-
tions to the final-state RAIC amplitude complementary
to that shown in Fig. 2. Each diagram corresponds to
the similarly labeled diagram in Fig. 2. Solid lines with
arrows represent the collisional interaction and wavy
lines represent the atom-field interaction. States e and
e'- are virtual states excited in the RAIC reaction. Each
level actually corresponds to a group of nearly degen-
erate levels.
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and 6 are the impact parameter, relative speed,
and collision orientation, respectively, associated
with the collision

0 g=P+P (7)

where p, and p' are the electric-dipole operators
for atomsA and A', respectively; and'g( R(t)} is
the collision interaction Hamiltonian calculated
assuming a classical interatomic collision tra-
jectory R(t). In writing Eq. (6), I have used the
fact that (e, «(ee, , (e» (recall that (e, is the
maximum frequency separation within a group of
levels) and have adopted a summation convention
in which any repeated state label (sot including
its appearance in a phase factor or frequency de-
nominator) is summed over (e.g. , in Eq. (6),
there is a sum over E but not over I or F).'
Since p, & is the sum of two terms, one can readily
identify Eq. (6) with the four figures of Fig. 2.
An analogous calculation for the operator T(FI)
yields

&I iT(FI; t)i F) =&Fi T(IF;f)l I)*. (8)

Since T(IF) varies linearly in'u and S, varies
as ('L) ', and since g varies typically as b "
(s &0), one can conclude that, for collisions with
"large" impact parameters, the effects produced
by 8, may be neglected in comparison with those
produced by T(IF}.For "smaller" impact parame-
ters, the contribution of S, can no longer be ignored.
For the present, Iconsider only those collisions with» b„where b, is the minimum impact parameter
for which the contribution from ~, can be neglect-

ed. In Sec. V a simple model is developed for
treating collisions with b& b,.

Thus, during collisions with b & b„ the proba-
bility amplitudes (in the interaction representa-
tion) for the initial and final states obey the
equations of motion

ikaz =(F ( T(IF, t)[1)e '~'az,

I@a,=(F~T(IF, t ) ~
I ) +e~~'az,

(9a)

(9b)

where it has been assumed that changes in a, or
a~ resulting from level decay and atomic motion
(Doppler effect) are negligible on the time scale
of a collision. Furthermore, it is now assumed
that the field strength is weak enough so that Eqs.
(9) can be solved by perturbation theory with init-
ial conditions az(t, )e 0, az(t, }=0, where t, is a
time just before the collision. Integrating Eqs.
(9) in the perturbation-theory limit, one finds a
final-state amplitude at time t,' just following the
collision given by

a ( '))=( )()&' f (&'I&('&z, t)I))e ' 'c)(a, (t). ,)
(10)

perturbation theory is valid provided that ~az(t }('
«1 for all t during a collision having & = &,. Un-
der typical experimental conditions, perturbation
theory is valid for power densities 6 10"W/cm'.

It remains to carry out the integration in Eq.
(10), to form final-state density-matrix elements,
and to average over all appropriate collision
parameters.

III. OUTLINE OF CALCULATION

Forming final-state density-matrix elements from the amplitude (10) and carrying out the average over
collision orientations 0, one obtains'

p»(f:;b, „R., f. )=R" (, „R., t. )p„(f;), (lla)

where
g+ g+

R ) (b, v„Rt, ) = a'(8»') ' d6 &F[ T(IF& t)~ I) e '~'dt &F,[ T(IF, t&)[I~)+e'~' dt'. (111)
1 tc

The dependence of T on (b, v, , 6, R, , t, ) has been
suppressed in Eqs. (10) and (ll). In this section,
a method for evaluating Eqs. (11) is outlined; de-
tails of the calculation are given in the Appendices.
The averaging over b and R, is deferred to Sec.
g 4

The matrix elements of T needed in Eq. (11b)
may be calculated using Eq. (6) once the inter-
atomic potential 'u and the field F, are specified.
An arbitrary potential can be written in the form

&(t —t, , b, v„,6) =A~& (t —t, , b, v„,6)T, T,'& &

(12)

where T~ and T,'~. are components of irreducible
tensor operators of r~ b and b' (assumed inte-
gral}, respectively, which act on states of atoms
A and A', respectively. In the form (12), the po-
tential can be viewed as the sum of correlated
multipolar fields acting on each of the atoms, the
correlation provided by the coupling constants
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A,. . The average over all collision orientations
needed in Eq. (11b) is equivalent to including all
possible directions of incidence and polarizations
for these multipolar fields. In some sense,
therefore, the collisions can be viewed as produc-
ing the same effect as a sum of unpolarized, but
correlated, multipolar fields acting on atoms A
and A'. This picture of the coQisional process
can be useful in understanding the coherences
produced by RAIC and is used in Sec. VI to help
explain the results obtained for the various RAIC
cross sections.

In order to carry out the average over 8, it is
convenient to rewrite Eq. (12) in the form

~(t t. ; b-, v„e)="'A~e(g g„b,v„,e)»'y»,

where & is a complex polarization vector. One
then finds

t & &. =(-1)'(t r)'."~ .@. , (1$)

where

Et = -(E„+tf a)/W2 s

t='(6a -tea)H2

It remains to specify the atom-field interaction
p,~.h, . The field amplitude may be written

I, =~ h„ I~I =1

where

kk yK ~k ~ck'
0 ~ ~I g a e' (14a)

(ttr),"'= -[(gtr}.+t(p r},]f~&,
(20)

(tt &)",' = [(tt r). t(tt &-),1 &~& , (tt,)."'= (u ,). .

(14b)Nt E aa'Ao=,
@

Aa s,
and the quantity in brackets is a Clebsch-Gordon
coefficient. Since the V~& transform as the com-
ponents of an irreducible tensor operator under
rotation, the expansion coefficients A transform
as

tst AE(g g
. b v 8)

~$'o~o's (8) A~gs(t —t, ; b, v„0), (15)

ere the @.'a~o'. are matrix el:events of the irre
ducible representation of order (K) of the rotation
group and 6 =,0 is some arbitrary collision geo-
metry. The 8 dependence is now contained totally
in the N'z~~, enabling one to easily perform the
8 integration required in Eq. (11b) (see below).
In anticipation of the time integrals also required
in Eq. (lib}, I define the quantities

Aaa' (b, v, , e;h) =(v,lb) Aaa'(v, b, v„e)
Xe tk(tata l ttg (16a}

which are also related via Eq. (14b). Equation (15)
remains valid for ~ Are(b, v„e;gs).

and
te

~ ~*,(s,.„e;~)=(v,is)f ' -'~;(r, s, u„e)
t~ -t~

tel(tat ) d~ (1 6b)

The quantities (p, r)',"are the components of an
irreducible tensor operator of rank 1.

Since all the operators appearing in Eq. (6) have
now been expressed in terms of the components of
irreducible tensor operators, the matrix elements
appearing in Eq. (6) are easily calculated using the
Wigner-Eckart theorem' (see Appendix A). The
resulting expressions for (E~ T(IE, t)[I) and

(E,[T(II",t)[I,) a are then inserted into Eq. (11b)
and the integration over 8 is performed using the
fact that'

(s ') ' J sea (8)(a—.(8)S'

—(2K+ 1) b~ttbeebe. o. (21)

to arrive at a value for Ittttt, t (b, v„,R„t, ) [Eq.
(lib)] and p (t,', b, v„,5, , t, ) [Eq. (11a)]. The
final expressions are rather lengthy and are given
in Appendix A along with the details of the calcu-
lation.

Experimentally, one often observes the final-
state properties of only one of the atoms. Imag-
ine, for example, that one monitors the final-
state coherence of atom A'. Mathematically, this
coherence is described by the reduced density
matrix obtained by tracing p» over the final-l.state variables of atom A. Explicitly, these re-
duced density-matrix elements pz I, are given by
setting Ii =ff ', E, =ff,' and summing over f, i.e.,
p ~ I (t,+; b, v„,R, t, ) = p ~~ ,.Ig (ta; b, v„,R, t, ) .

(22)



A calculation of these reduced matrix elements,
those of atom A, and the connection between the
two is also given in Appendix A.

The coherence properties of a system are con-
veniently expressed in terms of the irreducible
tensor components of the density 'matrix. The
transformation between matrix elements is given
by

J, , Z
g'f&pt r ( I)Eye ss& -i

0

(23a)

along with the inverse transform

'«fp'» (23b)

where it has been assumed that a state
~ a& may

be labeled by [ a& tN g and that states within a
given group of levels differ only in their 4 and
m~ quantum numbers. ' The p ~ are matrix ele-
ments of the density matrixexpandedinanirreduc-
ible tensor basis. When expressed in this fashion,
one can see directly if there is any final-state
coherence. The quantity po is given by

levels enters in the summation over intermediate
virtual states. In this limit, the reduced density
matrix for atom A, ' is calculated. Since the final
state of atom A' is characterized by a single 4
value JI.=J&r, the calculation of ~ ~ p ~ is es-1.
sentially one in which the Zeeman coherences of
level f' are determined.

In order for condition (3) to be satisfied one of
the virtual levels shown in Fig. 3 must be nearly
coincident with a real atomic level. This condi-
tion can be achieved with any of the level schemes
shown in Fig. 4. For example, if the level
scheme is as shown in Fig. 4(a), then the domi-
nant contribution to the final-state amplitude
comes from the diagram of Fig. 2(a) with the sum
over intermediate states e restricted to the single
group of states e =t'; contributions from states
et~ as well as from the other diagrams of Figs.
2(b)-2(d) are relatively unimportant in this case
in comparison with this nearly resonant contri-
bution. Similarl, y, if the level scheme is as
shown in Figs. 4(b)-4(d), the dominant contribu-
tion comes from the diagrams of Figs. 2(b)-2(d)
with the summation over intermediate states re-
stricted to 8=~ or F .

and is proportional to the total final-state poPulc-
tion. Any nonzero value of p~ for K&0 indicates
that final-state coherence exists, since a totally
unpolarized final state. leads to p'~=0 for EWO.

In Appendix A, general expressions for p&~& ~

and pg are obtained, assumlllg an arbitrary in-
itial state. These expx essions are evaluated in
detail in Appendix 8 for the case of an unpolarized
initial state. In the following section, certain
limiting cases of these calculations are discussed.

In order to iOustrate the physical principles in-
volved in the RAIC process, I consider a limiting
case of the general results presented in Append-
ices A and B. The following model is adopted: (l)
Each group of levels a can be represented by a
single angular momentum quantum numbex J
(valid for fine structure spl-ittings & v, '). (2) The
initial state is unpolarized. (3) Owing to a nearly
satisfied resonance condition, only one group of

A

FIG. 4. Four different cases of energy-level schemes
that lead to a single term dominating the sum over inter-
mediate virtual states. Each level corresponds to a
group of nearly degenerate levels.
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&o =~r+~g'-~S y (25a)

Q~ = coy+ 40~t Q)g (25b)

+~= ld~+40gi (Og y (25c}

&a =+~++r'-~Z y (25d)

The frequency mismatches associated with Figs.
4(a)-4(d) are

respectively. Although these frequencies are
small in comparison with those associated with
other virtual states, they still are assumed to
satisfy ( a „~ r, » 1 (a = a —&t) to ensure that states
~ or + still act as virtual states in the RAIC pro-
cess. Experimentally, one often seeks level
schemes similar to those shown in Fig. 4 in order
to enhance excitation probabilities.

For the level scheme of Fig. 4(a), the final-state
reduced density matrix for atom A' is obtained
from Eqs. (83), (84), and (25a) as

f f p'q» (t +; b, v„,R„t~ ), = (bb, /avr )2Hz ' A»q, (b, v„, 0; k )[~ Ai»q(b, v, , 0; t))]*

k p K k' p'K' k' p'K'i

J, J„jq p k K'
~

Jfi Jf) Jqi
(26)

where N~ is the number of initial states,

1
P»q =(-1) 'e,e, (2Va)

(II ''')[) is a reduced matrix element, [ }is
a 6~ symbol, and

Qg
—-1, Q ) ——-1, Qo ——0 (27b}

as defined in Eq. (A17).
Equation (26) has a simple interpretation in

terms of Fig. 4(a). The collision excites the
atoms from state i i ' to virtual state rf'; this

process is represented by the product of.the
»~ A»q [~~ A»q i ]* factor and the reduced matrix
elements of the collision operators T', T~, T~,
T' . The field then acts on atom 1 to excite the
system from state rf' to state ff; this
process is represented by the factor
P„q [ (f((y, ")[[r)[', with P»q containing the polari-
zation properties of the field. The 6-J and
Clebsch-Gordon coefficients which appear are
geometrical factors which arise when the various
8 levels are coupled by either the collisional in-
teraction or the field.

For the level scheme shown in Fig. 4(b), the
result is given by Eqs. (83), (86), and (25b) as

f f pq»(t;; b, v„Q t,)~=6(k, O', P, P', K, K', Q; )a)a~ (—1)»' f''~'r'[(2 J„,+1)(2k+1)(2k'+1)]6~)6~),

x ((f'll p"" Ilr')('f(f II&"'Ill&/'/(r'Ill"''lit')/*

$) 1 KII

Iz, . J,. z„.
l&

where

(26)

(2S)6 (k, k', p, p', K K', Q; )a) = (b8,/Pjtf ) Nf' ~~ A»q (b, v„0; a) [~~ A q (b, v„, 0; a)]~ P» q .
This result is interpreted in terms of Fig. 4(b) as a collisional excitation from ii' to fr' followed by a field
exciation of atom A' to the final state ff'.

For the level scheme of Fig. 4(c), one obtains from Eqs. (83), (811), and (25c),
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&'&'pkr (tk b v R t ) =g(k kk p pk K Kk Q d)b ( I)-~f -~i' ~f'k' 'k«'«'-'~~ ~f'r'

x l&r II t« II'&I &fll T II &&f II & llr&*&f' ll T" Ili'&

x&f'IIT" «'ll'&~ 1 1 K k' p' K k p K k p K

IIX, i, i, ipi~ i) I«'k'K'Z, i, i] (so)

In terms of Fig. 4(c), one interprets this result as afield excitation from ii' to ri' followed by a collisional
excitation- to ff'.

Finally, for the level scheme of Fig. 4(d), one finds from Eqs. (83), (813), and (25d)

f p'o (t'b&v„, R„t,) =«e(k, k', p pk' KkKk', Q;&)4 (-1) k'+ ~" f' «'[(2k+1)(2k'+I)]

x 6„5« o I &
'

ll t«' '
ll "&

I I &f II
T"'

ll i & I 1&f' ll
&'"'

ll «'&
I

(31)

In terms of Fig. 4(d), this result corresponds to
a field excitation from ii' to ir' followed by a col-
lisional excitation to state ff'.

Equations (26)-(31) characterize the final-state
coherence of atom A' for the level schemes of
Fig. 4. This coherence can be monitored by mea-
suring the polari2;ation of the fluorescence emitted
by atom A' from state f' (see Sec. V).

I

quencies

y', =«&c II t«"'IIP&&./tt,

x" =-'&~' ll
u'"' Ilti'&@ «

and a characteristic length 5 ~~ defined by

b~«' = l2&~ II t« lit}&&a' ll u' llti'&/ I

(32a}

(ssb)

(ss)
A. DipolMipole interaction

As a somewhat more specific example, I now

consider the case where the collisional inter-
action is of a dipole-dipole nature. For such an
interaction, %=0'=p=p'=1, T p, , and T.'= p, '.
The corresponding "Acr(b, v„o; t«) are calculated
in Appendix C, assuming straight-line collision
trajectories.

The results for the dipole-dipole limit are con-
veniently expressed in terms of the Rabi fre-

Dr(t«b/v„)=b' QI "8 (b v„,-o; a)l
Q

For the level scheme of Fig. 4(a), the dipole-
dipole limit of Eq. (26} is

(34)

The quantity b ~~ is a radius that typically appears
in theories of resonance broadening ("Weisskopf
radius" for resonant broadening) and. usually has
a value in the 10 to 40 A range. Moreover, it is
useful to define the dimensionless quantity

'
'p'q (t;; b, v„, R„t,),=N&'(-I)" Ixq„/&, I'(b'„, ' /b)'&, (&b/v„)

(S5a)

where

y =Jy —Jy, —J —J, .
For the level scheme of Fig. 4(b), the dipole-dipole limit of Eq. (28) is

"pok (t;; b, v„, R,; t,),=N, '(-I)'« I
x~".../&«

I
'(b~(' /b) [9(2z,. + 1)]

x&r (ab/v, )(-» I'ro
1 1

llz, . z,. z„.

(35b)

(36a)
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where

yq=Jf, +J„, .
For the level scheme of Fig. 4(c), the dipole-dipole limit of Eq. (30) is

Po (I'„' b, v„, R„f,),=N~'( I)"-~)('„,/&,
~
'(b~„' /b} D». (d b/e„)

(36h)

where

p =-J —J, —J~, -2J —Jy.

1 1 K 1 1 Ki 1 1 K 1 1 K
»Cl

iJ, J, 8, Jq. J~, J(, 1 1 K' J„J,
(37a)

(37h)

For the level scheme of Fig. 4(d), the dipole-dipole limit of Eq. (31) is
~ ~ p~q~(f;; b, v„, R„t,}»= —,

' N~'( I)'» ~-g,'., /a»
~

(by(" /b)'D». (&b/v„)

J~, J~, K)l 1 1 K)l

J„. JY 1 J» J„. J,
where

p& =J., + 2J„,+ J&, + 1.

(38a}

(38b)

Equations (35)-(38) characterize the final-state coherence of atom A for collisions having impact pa-
rameters b & b„assuming a dipole-dipole collisional interaction.

V. CROSS SECTIONS AND FINAI STATE COHERENCES
FOR A DIPOLE-DIPOLE COLLISIONAL INTERACTION

This section is divided into two parts. In the
first part, the RAIC cross sections are calculated
for the limiting cases represented in Fig. 4 and

discussed in the previous section. In the second
part, the polarization of the fluorescence emitted
from state f' of atom A' is evaluated.

A. Cross sections

The RAIC cross section is a function of t„
reflecting the fact that a collision can occur at
any time during the on time of the radiation pulse.
However, one can define an average cross section
per pulse for RAIC excitation of ~ ~i p'»o(v„) in
atom A' as

f'fI o P» (~ g)

2»f,"b db fr dt, f dR, f'r'p/J. "(f,; b, v„, R„f,)
(T' —T)J dR,

(39)

where T (T') represent times just before (after)
the radiation pulse and the H, integration is over
the atom-field interaction volume. In order to
evaluate Eq. (39), an integration over all impact
parameters is required. However, the calculation
« I pf(t;;b, e„,%„t,) presented in Sec. IV is
valid only for b & bo, where bo is the impact pa-

rameter at which the collisional level-shifting
operator S, becomes important (see discussion of
Sec. II). Thus, some type of cutoff procedure is
needed to account for collisions with b & b,.

In this paper, the region b &b, is treated in an
extremely simplified fashion; basically, the con-
tribution from b &bp is ignored. This overly sim-
plified procedure is, nevertheless, somewhat
justified. The parameter b, is essentially the
Weisskoyf radius associated with the level-shifting
operator, i.e., that radius at which

S,(bo, t)dt=l,1

00

(40)

where S, represents the expectation value of 0,
in the final-state manifold (typically, 5 &bo &15 A).
For b & b, the operator 0, strongly couples all final-
state magnetic sublevels; it is therefore reasonable
to assume that final-state coherences cannot be
created for collisions with b & b,. Consequently,
the b integral for o'o»(K&0) can be evaluated from
bo to Moreover, collisions with b & bo can be
estimated to contribute less than 20% to the RAIC
excitation of final-state populations. ' Thus, the
b integral for a'0 can also be cut off for b &b„
although the RAIC cross section evaluated in this
manner underestimates by 10 to 29%%uo the cor-
responding cross section calculated without using
a cutoff.

In summary, the cutoff procedure adopted is
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one in which the lower limit of the b integral in
Eq. (39) is replaced by b, T. his procedure under-
estimates o", by 10 to 20% and provides a good
aPProximation for o'ro (K&0). The Perturbation
theory results are valid if ' ~ p', (t;, b„v„,R„t)
«1 (i.e., the final-state population is much less
than unity). From Eqs. (32)-(38), and (C14), one
can derive the validity condition

le/n. I'(b./b. )'«1, (41)

where y' is a Rabi frequency defined by Eq. (32),

b„ is one of the characteristic resonant Weisskopf
radii defined by Eq. (33), and & is a frequency
mismatch defined by Eq. (25). Since b„/b, &4
and I& I

»10"sec ', Eq. (41) is easily satisfied
for a large range of field strengths.

The RAIC excitation cross sections may now be
easily obtained for the limiting cases of Fig. 4.
For the case of central tuning, the BAIC cross
section in the dipole-dipole limit for the level
scheme corresponding to Fig. 4(a} may be obtained
from Eqs. (39), (35a), and (C14) as

~ ~'o o"(v„0},= 8vN~'(-1)'~((
I y~„ I

')/e, ,')(b„", /b, )'(-1) ~eg e,
1 1 K

Qg-Q, Q

1 1 K 1 1 Kll 1 1 K 1 1 K
X (b'"')',

J„J~!J,J, J, 1 1 2 IIJq,

where

and

(43)

(B'.) — . . Id R,f dt IB.( t..)Hl dR, . (44)

Similarly, for the level scheme of Fig. 4(b), from Eqs. (39), (36a), and (C14) one may obtain

o+o (v„, 0)~=8vN~'(-1)"~[9(2J„.+1)] '((Iyy'. „. I }/b )~(bq, '/b )

where

x (-1)o~ e, e,
Qg -Q, Q

( 1)r 'l (br' I')2

Jy, J~, J~
(45)

(Iy.".I'}= Ix."g I'(&!)/@.*. (46}

For the level scheme of Fig. 4(c), the RAIC cross section calculated from Eqs. (39), (3Va), and (C14) is

"'o'o (~„,0),=«Ng'(-1)" ((Ix'„I')/~,')(by„'/b, )'(-1) '&~ &.

1 1 K 1 1 K 1 1 K 1 1 K 1 1 K

Q) -Q, Q !J„J„J,
I
Jq, Jq. J', . !ll 1 2

l
J„J„Jy

Finally, for the level scheme of Fig. 4(d), one may use Eqs. (39), (38a), and (C14) to obtain

(47)

I'~'o' r(v„, 0),

l, 1 KJ, J, KI 1 1Kl= a vN '(-1)'~((I " I'}/a')(bf'. "'/b }'(-1)o~e e f' '
I I (bt'"')' (48)

Q, -Q, Q !IJ„J„.1 ~IJ„, J„, J,,

Equations (42), (45), (4V), and (48) give the
RAIC excitation cross sections for level schemes
corresponding to Fig. 4 in the limit of a dipole-
dipole collisional interaction. It should be recalled
that these are the RAIC cross sections for excita-
tion from an unPolamzed initial state; the quantit-

I

ies c~ (j =1,0, -1) specify the polarization of the
external field. As defined by Eqs. (33) and (40),
the characteristic radii b~~' and bo are functions
of v„', b ~~' 'is proportional to v„' ' and bo is pro-
portional to v'„' ' "for a level-shifting operator
which varies as R " (n &3).
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c'=I+((IX'l'&/&')(& /&.)*b', (49)

The physical significance of the various RAIC
cross sections is discussed in Sec. VI. It may be
noted at this point, however, that the RAIC cross
sections vary as

(I f pi»(V „))= cg V„f f'Vi»(V )

x [N,(T' T )/y-~, ], (53)

where X„is the A-atom density and N~ is the num-
ber of pulses per second, each of duration
(T'- T ). Thus, from Eqs. (52) and (53), one finds

where 4 is a constant of order unity. Combining
Eqs. (41) and (49), one finds that, if the pertur-
bation theory is valid, then

S~(-I)o ~;~„(-I)
Q. -0] 0

o'&c b' (50)

Since b, =10 A, the maximum RAIC cross sections
obtainable with fields satisfying the perturbation-
theory requirement (41}are of the order of 100
A'. For larger field strengths, where Eq. (41)
no longer holds, a strong-field (nonperturbative)
theory is needed.

Corresponding results for noncentral tuning
(ne0) may be obtained from Eqs. (39), (35)-(38),
and (C13)

f'f'g K ~ (54)

'Eg 0& c~ 6 ~ y &0 Oy (55a)

a signal S, characterized by

For an external field polarized according to (51),
it is convenient to measure the fluorescence also
propagating in the y direction and polarized in
either the x or» direction (Fig. 5). That is, one
measures a signal S„characterized by

B. Fluorescence ~c y &~i y ~0 (55b)

The final-state coherence of atom A' is conven-
iently monitored by measuring the polarization or
quantum beats in the fluorescence emitted from
state f'. In this paper, the polarization of the
fluorescence is calculated assuming that the ex-
ternal field participating in the RAIC excitation
is linearly polarized in the z direction,

and forms the ratio

P =(S,—S,)/(S, +S,) . (56)

Before explicitly calculating this ratio, it is
useful to note that the general expression for
p'z and, consequently, for v'z~ is proportional
to

g„=.0, f0=1 y (51) &»c=gk, (-l)os 1 1

and propagates in the y direction.
The fluorescence signal emitted from state f'

to some lower state g' (characterized by an angu-
lar momentum quantum number J', ) in atom A' is
given by'

1 1 K
S~ (-1}o&fg„(-1)»

Q. -0] 0

Qg -Q, Q

(57)

so that, for the excitation scheme of Eq. (51) with
the Q, defined by Eq. (27b), one has

&«=-(I/~ 5~5~+(2««~5~-
Thus only cr'0 and o", enter the summation in Eq.
(54). Using this fact and Eqs. (54)-(56), one can
derive a polarization ratio

1 1 K
X &"p'o»(~„)&,

J~, J~, J,
(52)

where the c, (i = -1,0, 1) specify the polarization
of the fluorescence according to Eq. (19) (replac-
ing the external-field polarization vector e by the
vacuum-field polarization vector e) and (~'~'p'u"}

is the average value of the reduced density-matrix
element ~'~'p'z~ of atom A'I. Adopting a simple mo-
del, I assume that the lifetimes of the various
~~'p'o», once created by RAIC, are determined only
by the natural decay rate y&, of level f' (i.e., the
natural decay rate is much greater than the col-
lision rate and the frequency separation of the fin-
al states}. In that limit

FIG. 5. Excitation-detection scheme. The external
field is linearly polarized in the z direction and is inci-
dent in the y direction. The Quorescence from the f'

g' transition of atom A', propagating in the y direction
and polarized in either the x direction ($~) or z direction
(S~), is monitored.
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(58)

Within the confines of the adopted model, the ratio P depends only on relative RAIC cross sections and not
on absolute cross sections. Consequently, it is a useful parameter in comparing theory with experiment.

The ratio P is now calculated for the level schemes of Fig. 4. For the level scheme of Fig. 4(a), it fol-
lows from Eqs. (58), (42), and (51) that, for central tuning, 6=0,

P,(0) =3 (59)

For the specific case,

J =J =j =J =0 J, =J =1 P(0}=+ (60)

while, for higher J values, P, (0) is smaller. For the level scheme of Fig. 4(b), one may derive from Eqs.
(58), (45), and (51),

(61}

Some specific cases are

J,=J„.=l, Jq. =2, P,(0)=~47

j~ =J„=O, J~, =1, P,(0) =1.
For the level scheme of Fig. 4(c), it follows from Eqs. (58), (4V), and (51) that

(62a)

(62b)

(63)P =P, .
This result is unique to the dipole-dipole interaction. For the level scheme of Fig. 4(d), one may derive
from Eqs. (58), (48), and (51) that

(64)

Some specific cases are

J,, =0, J,=J, =1, J~, =2, P~(0)= 47

JI, =j/. = 1, j,=JR=0, PI(0) =0 .
The physical. significance of these results is discussed in the following section.

(65a}

(65b)

VI. DISCUSSION

A RAIC is one of the most basic forms of photo-
chemistry. It is, therefore, of fundamental inter-
est to understand the collisional interactions tak-
ing part in these reactions. The nature of the col-
lisional interaction is reflected in (1) the total
RAIC cross sections, (2) the dependence of RAIC
cross sections on detuning n, and (3) the final-
state coherences produced by RAIC. Total cross-

section measurements are not very useful in dis-
tinguishing between various collisional interac-
tions since accurate theoretical expressions are
not available for comparison with experiment (i.e.,
there do not exist theoretical calculations in which
matrix elements are accurately calculated along
with a proper treatment of small-impact-para-
meter collisions). The dependence of RAIC total
cross sections on 4 does provide a signature for
the collisional interaction, provided one uses de-
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tunings outside the impact core of the line
~

6
~
r,

&1. A limited number of experiments of this type
have been performed, '~ but no definite conclusion on

the interaction potential was reached. It should be
noted that, for

~
a~7, &1, the RAIC excitation cross

sections are relatively small. The study of final-
state coherences produced by RAIC offers an ad-
ditional method for probing the collisional interac-
tion. In many cases (see below), measurements
of RAIC-induced final-state coherences at central
tuning 6 =0 (where signal is the largest} are suf-
ficient to provide information concerning the col.-
lisional interaction.

Perhaps the most important aspect connected
with the study of HAIC-induced coherences is the
additional insight one can gain into the RAIC pro-
cess. The calculation of final-state coherences
introduces features into the problem that need not

be considered when one calculates total RAIC cross
sections. A particularly interesting. feature can
be already seen in the calculation presented in this
paper, valid in the impact core of the RAIC profile
and in the perturbation-theory limit. The collis-
ional interaction can be viewed as the interaction
of two unpolarized multipolar fields with atoms A
and A'; the fields are incident from all directions
and lead to the simultaneous (virtual} excitation of
atoms A and A, '. Although the fields are unpolar-
ized, they are, in general, correlated to one an-
other by the coupling coefficients of the collisional
interaction [see the discussion of Fig. 4(a) below].

The unpolarized nature of the fields arises from
the average over all possible collision orientations.
This result may be seen mathematically in Eqs.
(A20} s~d (B2}. In Eq. (A20), starting from initial
density matrix elements p~z, one excites final-
state density-matrix elements pro with ~K-K'~
& 2. This type of selection rule is precisely that
produced by the external field acting alon'e. In
other words, the averaged collisional interaction
does not modify the selection rule determined by

the external field alone —an average collision acts
as a scalar, i.e., as an unpolarized field. Simil-
arly, in Eq. (B2}, one sees that, starting from an
unpolarized initial state, one excites reduced den-
sity-matrix elements p'+~with K~ 2; the selection
rule is that associated with the external field only.
In contrast to these results, one finds that, for a
collision with a sPecific orientation, one could ex-
cite density-matrix elements p+ from initial den-
sity-matrix elements p~z such that ~K-K'~&2. It
is only the averaged collisional interaction that
acts as a scalar.

Thus the total RAIC reaction can be viewed as
two unpolarized (but correlated) multipolar fields
plus the external radiation field acting on atoms
A. and A' to produce the ii' -ff' transition. To

simulate the collisional interaction, the unpo-
larized fields are taken to act simultaneously on

atomsA andA'; one field acts only on atomA while
the other acts only on atom A' (in analogy with the
fact that the collision operators act on either atom
A or A', but not both}. The external field acts on

either atom A or A, . Using this model it is rela-
tively easy to give a physical interpretation to the
results obtained in Secs. IV and V for the level
schemes of Fig. 4.

Figure 4(5). For the level scheme of Fig. 4(b),
the collision first acts to produce the virtual state

~
fr'). If the collision is now replaced by two un-

polarized multipolar fields incident from all direc-
tions, the coherence properties of this intermed-
iate state are immediately determined. Since the
initial state was unpolarized and the average col-
lision operator now acts as a scalar, the inter-
mediate state must also be unpolarized. Thus,
when the external field compl. etes the RAIC reac-
tion by acting on atom A, ', the coherence proper-
ties of the final state f' of atom A' are the same
as those produced by a radiation fiel,d exciting the
r'-f' transition in atom A' for an initially unpo-

larized state ~'. The factor

1 1 K 1 1 Kii
&~a (-l)os

Q;-Q, Q

appearing in Eq. (45) for the excitation cross sec-
tion is precisely that associated with the one-pho-
ton r'-s' transition, assuming state r' to be un-

polarized.
The collisional interaction affects the magnitude

of the RAIC cross sections through a multiplicative
factor. Consequently, the polarization ratio P,(0)
discussed in Sec. V B is independent of the col-
lisional interaction; it depends only on the values

J„„J&„J,, reflecting the field excitation from x'
-f' followed by spontaneous emissio'n from f' to
g'. Thus, the level scheme [Fig. 4(b)) is not par-
ticularly well suited for probing the collisional
interaction via polarization studies at line center;
RAIC cross sections as a function of frequency are
needed.

Figure 4(d). For the level scheme of Fig. 4(d),
the field produces a polarized virtual state ~ir')
and the two unpolarized fields (collision) complete
the transition to state ~ff'). The final-state coher-
ence of atom A' can then be thought to be produced
by the external field acting on the i'-r' transition
and an unpolarized multipolar field incident from
all directions acting on the transition ~'-f'. The
transition amplitude for the r'-f' transition de-
pends on the multipolarity of the collision interac-
tion; this dependence is given by the weighting fac-
tor
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J~, KI
~lz, . J,, 0'(

appearing in Eg. (48). Since this weighting factor
couples X and 0', the final-state coherence and the
polarization ratio I'~ can be used to distinguish
different collisional interactions.

For the dipole-dipole interaction, k'=1, and the
collision interaction on atom A' can be replaced
by an unpolarized e1ectric field incident from all
directions producing the r'-f' transition. Thus
the coherence properties of state f' of atom A'
are the same as those produced by tsoo-photon
exeQation of atom A', the first photon provided
by the external field producing the transition i'
-~' and the second by an unpolarized electric
field incident from all directions producing the

transition r'-f'. The polarization ratio P~(0) for
the excitation-detection scheme of Fig. 5 is then
easily calculated to be the simple function of
J', „J„„J&„Zzgiven by Eq. (64).

Eigure 4(a). For the level scheme of Fig. 4(a),
the two unpolarized multipolar fields incident
from al1; directions first excite the virtual state
~rf'& and the external fieM acts on atom A to com-
plete the transition to state

~
ff'). One might think

that the final. state f' of atom A' wouM be unpolar-
ized since it was produced by an unpolarized field
incident from all directions. However, this con-
clusion need not be true owing to conelution ef-
fects between the unpolarized fields. This effect
is best illustrated by the case of J, =J&=0, 4,=1,
and an external field polarized linearly in the z
direction. In order for the overall dun =0 selec-
tion rule to be satisfied, only that part of the un-
polarized field producing a dun =0 transition is
utilized. Thus, only a pg& of the unpolarized field
acting on atom A is used. Owing to the coupling
coefficients A, ,'&~' in the collisional interaction, this
result implies that, correspondingly, only a Part
of the unpolarized multipo1. ar fie}d acting on atom
Q' contributes in the f'- f' excitation. This result,
in turn, implies that state f' can be polarized.
For the conditions of Eg. (60), a polarization ratio
P,(0) = ~7 was found. Since the polarization ratio
for case Fig. 4(a) is a function of the multipolarity
of the co1.1isional interaction, it can be used to pro-
vide an indication of the collisional processes par-
ticipating in HAIC.

Eiguxe 4(c). The analysis of the level scheme of
Fig. 4(c) is similar to that for Fig. 4(a), except
that the field acts on atom A, ' rather than on atom
A. For the dipole-dipole intexaction, in which the
external field and the collisional operators have
the same multipolarity (k =k' =p =P' =1), the RAIC
cross sections for cases Figs. 4(a) and 4(d) are

proportional to one another; for other collisional
interactions, this proportionality is lost.

ln order to have a more complete picture of the
final-state coherences produced by RAIC, it is
desirable to extend the theory to include the cases
of large detuning ( ~

4
~
r, & l) and large field

strengths (nonperturbative solution). Such exten-
sions may pose some interesting probl. ems in the
average over collision orientations, since the col-
lision interaction no longer enters linearly in the
final-state amplitude. Owing to this nonlinearity,
the analog between an average collision and an un-

polarized field may no longer be useful.
In summary, I have presented a calcu1.ation of

the final-state coherences produced by RAIC in the
weak-field limit that is valid in the impact core
of the RAIQ excitation profile. The resulting final-
state coherences can be monitored by standard
techniques (polarization of fluorescence, quantum
beats) and may provide information on the collis-
ional interactions occurring in the RAIC reaction.
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Appendix A is divided into three party. In part
A, some notation is introduced and the re1.ation-
shiy between the direct product and irreducible-
tensor subspaces is established. In part 8, the
relationship between the two-particle and single-
particle (reduced) density-matrix elements is
given. Finally, in part C, the final-state density-
matrix for RAIC is calculated.

A. Relationship be@veen bases

A state of the composite AA' system is repre-
sented by a capital letter, e.g.,

where it has been assumed that the angular mo-
mentum of a level can be represented by a J quan-
tum number. The angular momenta appearing in
the direct product basis (Al) can be coupled in the
standard fashion,
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i 7& =-
[ff ' jfjf.J~ m~&

J~ Jy JF
I fjfmf &Lf

' jf.mf. & ', (A2)

~y Slyt @SF

J- J- K-
F F1"V'= (-1)"

Q 1 1

x&7J,m,-(p-( F,j, m-; &,
1 1

(A3b)

where the bar indicates this coupled basis. As in
the main text, I use a summation convention in
which all repeated indices (not including their ap-
pearance in phase factors or frequency denomina-
tors) are summed over. '

Matrix elements of the density-matrix operator
in the barred basis are related to those in an ir-
reducible tensor basis, FF1p~Q, via the transfor-
m ations

P FF = PFF ~II 1
II 1 (A4a)

or

where the total J and m~ values of the barred
basis are explicitly written in the right-hand side
of Eq. (A3b).

The time rate of change of density-matrix ele-
ments produced by RAIC can be expressed as4

p,—,,=&&lpl &,&=(-1)',
J— KF F

FF g
Q y

&&gpss —I'r.'o'(p p I r)ffx pr' (A4b)

mF -mF Q
1

(A3a)
The relationship between the I"s may be obtained
from Eqs. (Al)-(A4) as

J-F

~y Pgly I mP ~y my I SlF
1 1

J-F
Fm

J-
F1

-m F

K J, J, JI J& J&s

m]. mI- m]

J-
E1 E

K'I
-m- q'I1

x I' & (mf, mf i, mf, mf i, m )i, m (,m ), m g )II
1 1 1

along with the corresponding inverse transformation.

B. Reduced density-matrix elements

The reduced density-matrix elements for atom A' are defined by

Pf f, =(ff'IPIff,'& ~

(As)

(A6)

In terms of the matrix elements of irreducible-tensor operators defined by Eq. (23a), one can use Eqs.
(Al)-(A3) and some elementary properties of the Clebsch-Gordon coefficient to derive

J- J- K il

ip' =(-1)f( y''ff [(2J-+1)(2J- +1)] f &pr(ff'J J ~ J .ff'J J .J- )-(F ~j i J J o f f f' & f fi f'g
fl fg f

Equation (AV), in which the( j represent's a 6-J' symbol, . enables one to calculate the reduced density-
matrix elements of atom A' from the two-particle density-matrix elements. Similarly, reduced matrix
elements of atom A are given by

Pff (ff '
I p If,f '& (A8)

J- J- KF F1f &pr = (-1)f ' r|'ff" r [(2J-+1)(2J- +1)]' '
Q

' F',F1 f f f'IJ J "~PQ (ff' fJf j if,f' f, f g, ) ~ (A9)
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C. Calculation of ~p&

Starting from Eq. (10), I now derive an expression for ~p~&(t,'; b, v„,R, , t, ). Equation (10) may be

written

s, (t,') =(F I T II &&I (t, ), (A10a)

where

{A10b)

Equation (A10a) could equally well be given in the coupled (barred) basis as

s-(t. ) =(FIT II &sy(t. ),
so that the final-state density matrix is

p», (t.', b, v„,e, R„t,)=(7!Tli&(7,!TIT,)*p-«(t, ) .

The matrix elements of T are expanded as

(A11)

(A12}

(&I T I
T&=(-1)'& "I (A13)

Equation (A3a) is used, and some identities involving the angular momentum coupling coefficients are em-

ployed to transform equation (A12) into

&p~q(t~& b, v~~ R„t )=( 1) ~r+ + ~T+s ( 1)++ [(2G+1)(2G +1)(2K+1)(2K +1}]

K K' X G G' X TF, KIx, , T T, K' H(F, T„T,T„G,G', g, g')" &prq. (t, ),
(A14)

where

(A15}

and the quantity in large curly brackets is a 9-J symbol. The quantities r~ T~~ may be calculated by (i)
using Eqs. (A13), (A10b), (6), (13), (18); (ii) expanding all intermediate states appearing in Eq. {6)in

terms of the barred basis; and (iii) using the Wigner-Eckart theorem to evaluate matrix elements of (pr),
and V~. One obtains

EI Tc ( 1)34T) +XI 2Mg+E+ (p)II (p )(1)
II E & (E II

llA y(E')
ll T) (q) ) 1

K1GK1G

+(-1)""y"(FII" y"'II&&(&ll (P )"'III) (~s~) '

6, K 1 G K 1 GI
x (iI ) ~ —~~

Arq (b, v, , 8; i(), )cq~ (A16)

where ~Aq(b, v, , e;A) is defined by Eq. (16b), (II ~ II) is a reduced matrix element, e& is defined by

Eqs. (17}-(19),and
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g, =1, g, =-i, g, =o. (A17)

Equation {A16) and its complex conjugate are now inserted into Eq. (A15), and Eqs. (15) aud (21}are
used to arrive at

2

II(F,F„T,T„G,G', g, g')= '
I

(2K+1) 'ztz» Act (b, v„O;b)[ Ao. (b, v, , O;4)]»
Vri

K 1 G K 1 G'
CP', T, G, b, b', K) [C(F„T„G',P, P', K)]*,

0 Qg g 0 Q.

where

(F-,I,G, b, k, K)=( I)- r" x""(~ )-&Fll(t ) "lls&(EII-'I""Ilia
K 1 GI

IJ~ J; Js

K 1 G~+(-1)'-' '( „)-'(FII"'&' 'll &&(Ell (t,)"'llI&
IIJ~ Jp Js

(A18)

(A19)

The quantity C is easily identified with the four diagrams of Figs. 2 and 8.
Combining Eqs. (A18) and (A19) and carrying out the summations over magnetic quantum numbers, one

obtains
b8 ~'

PEzpz(t+. b v R I ) —( I )z~t+z&y+c+z'+g+x( 1)o"at~~»
r

z z' x
x zQ, [(2G +1)(2G' +1)(2K+1)(2K' +1)]'

Q -Q' m„

1 X
X

q, -q, m,

F
1 1 X

»'~&(b, v„O;a)[ 'Aq(b, v„,0; &}]»
I G

I I,
G O'X

(A20)x C(F&T, G, k, k', K)[C(F„I„G',P, P', K)]* 'Po. (t,) .
It is clear from this equation that lK Kl &2, i.e.,-that the collision acts in some way as a sca» op-
erator (see Sec. yl}. Reduced density-matrix elements may be obtained from Eq. (A20} by use of Eqs.
(Ap) and (A9). Density-matrix elements in the magnetic sublevel basis are related to those m

reducible tensor basis by Eqs. (A3} and (A2) or, for reduced density-matrix. elements, by Eq. (22b).

APPENDIX B
Unpolarized initial state

(Bl)

Qg -Q, Q

G G' KI
C(F,I,G, k, O', K')

J- J- Zy J~. Z). J]

In Appendix B, the reduced density-matrix elements for atom A' are calculated fox an unpolarized in-

itial state. An unpolarized initial state corresponds to

where Nz is the total number of initial states. Using Eqs. (AV), (A20}, and (Bl), one may obtain after a
little algebra' the reduced density-matrix elements for atom A',

2
t tfp'zo(t;;b, v„R„t ) = Q (-1)~t"~t'z'» + ' ' (2G+1)(2G'+1)

r

x [(2' +1)(2' 1+)]'~[NI(2K' +1)] '» A~~(b, v„O; A)

1
x &&Azo. (b, v„, O; A)]»z&& ~ (-1)o»

x (C(F„I,G', p, p', K')]» . (B2)
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The product of the C s can be calculated( explicitly and the final expression simplified using identities in-
volving the angular momenta coupling coefficients. '

One obtains 16 terms corresponding to the square of the four terms contx'ibuting to the amplitude in Fig.
2. The result may be m'itten in the form

~ ~ p «z(t;;p, u„R„( ) =( '
) Bp~ Ai { pv„o; )p[~A~&( pu„o; )p] c)p(-()~

!~ &d'll T'""ll e&~
!IJj. Jj.1

—[(+ ++ & )(~ ++ ~ )]-1( 1)j~p j{~ pj's-jzpR'prpjjPPA'p+P'pj's
I & i' Z 1

x s~(k, O', P,P', E,K',f',f,'),
CCt ~C

where S s represents the contribution from diagrmn o and the complex conjugate of diagram p in Fig. 2.
Explicitly,

-[(~ +~ ~ )((g +~ ~ )]-&( 1)jp j{{-j)p'pjj j{-j{+pr'pp'pk'

x &f II
~"'

I I s& &f I I
~"' Ild&*&c I I

T'"'I
l f&«ll 7'"

I I
f&'&f'I

l

2'""
I

l~'& &f 'I I
T'"'I

I
~'&'

K!I PP K!I y P' K!Itl, P K

J, Jj Zj!Jj J, J', !p k K'!Jj. JI. J;.

s —[(& +~ & )(& +& ~ )]-1( 1p-2 jzp jg~p jI-jg-j&~p{p'py'

&&f II~"'lie&&f'Il~""Ild'&'&ell2'"'llf&&f II2'"llf&'&f'IIT""'ll~'&&I'll2'"'lid'&'

X
1 1 K k p 1 k p E'!! kp p' 1!! (a

p

S~~
= [((p)j+{p) . (({pj)((p)-+({p~, -(yj)] '(-1)r'jj"je'[(2I,.+1)(2k+1)(2k'+1)] '

~ ~j.j ~a.&a &f'll ~'"
ll "&&f'll ~'"lid'&'I &&I!I'"'Ill&l*&" II2'""ll~'&

x~
(B

1 1 E

X J~ Jj P
tip p ((](tie,. z,. z,.
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x [(»+1)(»'+1)]'(}~~,a &f' ll
~'"

ll s'&«' ll
~'" lli'&*

JP' 'll' 'T'
I
J$' j,, 1

y~ e

—[(& +& & )(& ++ & )]-&( 1)-zg-g~ ~ -zy +%+A'rP+P'-1g-1&-1g+r'
cc e - j' y' d i' P

x &ell ~"'lli&«ll ~'" Ili&'&f II &"'ll e&&f II
1'"lid&'&f 'll 1"""Ili'&&f 'll 1""'lli'&'

1 1 K k' P' KI k P K k P
X

J, Jq Jq J~. JIr J]. ' P' E' J~ J J]
1

g [(~ ~ ~ )(~ + ~ ~ )]-1( 1)zg+zg +kg +E+r' +0+0+4 '+zy+2zgg

(Blo)

(B11)

x«IIV"'Ili&&d'll u'"'ll i''&'(fll 1""'ll e&&fll 2'"'lli&*&f'll I'"' 'lli'&&f,'ll &'" 'll d'&"

J~i K J~i

P~ &I Kl J& Je Jy

(B12}

8~=[(&u&+&oe —u&z)(&u&+ &o&i —~z)] ~ (- l)~& +2~ '+0(+~ [(2k+1}(2k'+1)]

&~~p3a p &s'll v'"'ll i'&&d'll v'"'lli''&*l&fllT'"'!!i&l'&f'll 1"'""lie'&

x &f,' ll
T'"'

ll
d'&*

eT ~ cT i K 1 1 K

J ~ CT~z k !!J+t cT~ cT~

(B13)

Iles(k, k', p, p', K,K', f', f~)=(-1) I~ 1'[88„(p,p', k, k', K,K', f~, f')]* . (B14)

Some of these terms may vanish owing to the selection rules appropriate to the level-coupling scheme and

interatomic potential under consideration.

APPENDIX C

Dipole4ipole interaction

In Appendix C, the quantities A,"~i and " A+ are evaluated, assuming a dipole-dipole collisional interac-
tion between atom A (dipole-moment operator }7) and atom A' (dipole-moment operator p. ') of the form

'll = (j j' R' —3j.R p,
' ~ R)/R', (Cl)

where R is the separation between the atoms. For a give@. collision geometry, R is a function of v = t —t,
(the collision is centered in time at t= t, ), b, v„, and 6.

Writing iT. and GATI in the form of Eq. (20) and defining

(R iR„} R
-R +iR„

1 1 0 g (C2)

one may rewrite Eq. (C1) as

~ =A,", (~, b, „v)ue', (u'),' (C3)
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A",, i (y, b, v„8)=[R'(6„6,s, —6„5,~, —5, ,5,~~,) 3—R,R,i ]/R' .
Equation (C3) has exactly the same form as Eq. (12) since p, ', and (p, '),' are components of irreducible
tensors of rank 1.

The quantities of interest in evaluating RAIC cross sections are the Fourier transform of the A.~«' de-
fined by Eq. (16a). Using Eqs. (C3), (C4), and (16a}, one finds

t+-t,
(b v„, 8;6)=(v, /b)e '~~ A,", (v, b, v„8)e ' 'dv,

t -t
where

A,",(~, b, v„6)= [A", ,(v, b, v„,6)]*=-3(R2-R'„-3iR,R„)/2R',

A,",(v, b, v„,8) A",,(~, b, v„6)= —[A". „(v,b, v „8)]+
= -[A,",(v, b, v „6)]=3R,(R, iR, )/-WRR', (C6b)

A",,(v, b, v, , 8) = (R'-3R,')/R',

The corresponding equations for the "Az defined by Eq. (14b) are

t~ t
"A" (b, v, , 6 b, )=(v, /b}e '~'& '~Ar (r b, v„8)e '~'d~,

t~ tc
(cv)

"A, (v, b, v„8)=0, (Csa)

"A~o(v, b, v, , 6) =0 (@=1,0, —1) .,

"A',(v, b, v„,8) = [ "A2, (v, b, v„,6)]*=-3(R', -R'„-» R,R, )/&R5, (CBc)

"A,'(v, b, v„8)=-["A',(v, b, v„8)]+=6R,(R, iR„)/R', -

"A',(~, b, v„,8) = 3(R'-3R:)/6"'R' .
It should be noted that the RAIC cross sections depend only on the quantity

P'.A, . (b, v, ;b) ="'A . (b, v„,6;b)["'A, (b, v„,8;~)]* .

(Cge)

The fact that Ar is independent of 6 follows directly from Eq. (15) and the orthogonality properties of the

rotation matrices; from a physical viewpoint, this result is to be expected since the calculated cross sec-
tions cannot depend on the choice of the reference geometry 8=0.

Straight-Ine trajectories

Under the assumption of straight-line collision
trajectories, the various A's are easily calcula-
ted. Taking as a reference geometry B, =a&,
R„=O, R, =b, and'letting (t ~ -t, )-a~ in Eqs.

(C5) and (CV}, one obtains

(b v 0'g)= —e eb

x[ aK,(a)- Ka, ( )a], (Cloa}

A"(b, v, , 0 n. ) =-Wge '~'~b 'a'Z (a), (C10b)
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A '(b, v, 0;d) = —2e 'n'~b '

x [I»'K,(a)- aK, (a)], (C10c)

snd K, (a) is a modified Bessel function. The
dimensionless quantity

D»(a) = b'gi»A»(b, v, h)i'

"A,'(b, v, , 0;6)=A,",(b, v„,O;&), (C11a) iS giVen by

"A,'(b, v„,o; b.) = WRA,", (b, v „,0;&), (Cllh)
D»(a) =( 2[aKi(a) —a Ko(a)] + 8a [K|(a)]

»A2(b, v„O;4)=3A,",(b, v, , O;b, )IW6, (Cllc)

where

+ 6 [a'K,(a) —aK,(a)]'] 6». ~

For centra& tuning, a =0, Eq. (C13) reduces
to

(C13)

a =b, b/v, (C12) D»(0) =8()», . (C14)
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