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A radiatively assisted inelastic collision (RAIC) is one in which two atoms collide in the presence of a radiation

field to produce a reaction of the form A»+8+ AQ~A +8». In this paper, a general theory of RAIC is

developed with special attention given to the final-state coherences produced by RAIC. These final-state coherences

can be monitored by standard experimental techniques (polarization of fluorescence, quantum beats), enabling one

to use such studies to gain information on the interatomic potentials that are relevant to the RAIC under

consideration.

I. INTRODUCTION

There has been considerable recent interest in

reactions of the form

A, +A'. +5'0 A +A'.

in which two atoms (A and A') undergo a collision
while simultaneously absorbing a photon of energy
I0 from an external radiation field to take the
atoms from some initial state A, A,' to a final state

In many cases, the direct transition A,
+A&. AI +A& is energetically forbidden; ~nse-
quently, the transition can take place only in the
presence pf the radiation field, with the photon

providing the energy mismatch (Ez+EI ) —(E,
+E,.).' Such processes have been referred to as
radiative collisions (HC), laser-induced colli-
sional energy transfer (I ICET), or radiatively
assisted inelastic collisions4 (RAIC} and have been
the subject of a large number of theoretical and a
lesser number of experimental" 8 investigations.
By studying the HAIC cross section as a function
of frequency 0, one can gain important informa-
tion about the initial- and final-state AA' inter-
atomic potentials.

Typically, the HAIC cross section can be mea-
sured by monitoring the fluorescence from one of
the final states (Az. , for example} since the total
RAIC cross section can be simply related to the
total fluorescence rate. It is apparent, however,
that additional information is contained in the
polarization of the fluorescence, i.e., in the co-
herence properties of the final states. R is the
purpose of this paper to present a general theory
of RAIC which allows one to caIculate the final-
state coherence properties as well as the total
RAIC cross section. Experimentally, the final-
state coherence can be probed by standard methods
(absorption, emission, or quantum beats origi-
nating from one of the final states).

A few calculations~'8 have already appeared

which include magnetic degeneracy effects in HAIC

and in the related problem of collisionally assisted
radiative excitation (CARE). However, these cal-
culations were restricted to specific J values for
the various levels and to specific forms fox the
interatomic potentials; mox cover, only total cross
sections were obtained.

A more global picture of the collisional process
is achieved if levels of arbitrary J and interatomic
potentials of a quite general nature are considered.
The calculations, including an averaging over dif-
ferent colhsion orientations, are conveniently
carried out using techniques involving irreducible
tensor operators. The final-state coherence re-
sulting from RAIC can then be interpreted in terms
of the symmetry properties of the interatomic po-
'telltlR1 Rlld tile cllRrRct8ristlc properties (polarxsa-
tion, frequency, intensity) of the external light
field participating in the RAIC reaction.

A general formalism for RAIC is given in this
paper. The physical system is described in Sec.
II, the equations of motion are given in Sec. IG
(and derived in Appendix A), and a formal. solution
is obtained in Sec. IV. A discussion of the results
is given in Sec. V. In. Appendix B, I present a
diagrammatic interpretation of the operators that
appear in the equations of motion.

Solutions of the RAIC equations in the limit
where the external field is weak and the collision-
induced level shifts of the atomic energy levels
can be neglected wi11 be presented in a following
paper. In future work, solutions of the RAIC equa-
tions wiQ be sought that are valid for arbitrary
field strengths and include level-shifting effects.

II. PHYSICAL SYSTEM

The physical system consists of a low density
(s several hundred Torr} atomic vapor containing
two types of atoms, A and A', to which a light
pulse is applied. The itomic energy levels for
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atoms A and A' are shown in Pig. 1. Levels of
atom A are designated by unprimed variables and
those of atom A' by primed ones. It is assumed
that the levels of each atom can be separated into
subgroups of levels (see Fig. 1), with the energy
separation between sublevels in a given group
having some upper bound Ifs)~ (to be established
below). Specifically, the sublevels within a group
are generally different fine structure, hyperfine
structure, or Zeeman sublevels of a given elec-
tronic state. The atoms are prepared in a linear
superposition of states (fi'), where i and i' repre-
sent any of the sublevels in the i and i' groups, re-
spectively.

The light pulse is taken to be of the form

E(H f) = -'[R(R f)~ '"'+S(H f) e'"'] (2)

where the envelope function
~
S(H, &)

~
is character-

ized by a duration T and a maximum amplitude

( So ~
(Fig. 2). It is assumed that the pulse envelope

varies very slowly in an optics, l period (QT» 1)
and that the frequency A is very far detuned from
any transition' frequency in atom A or in atom A'.
On the other hand, the field is assumed to be in
near resonance with the transition in the comPosite
AA' system from some initial state ~if') to a final
state (~. In other words

where E is the energy of a given level 0'..
Thus, the field can induce transitions only in

the composite system AA', implying that excita-
tion can occur only if there is an A-A' collision
during the on-time of the light pulse. Let us sup-
pose that such a collision occurs, centered at time
t= t„position B=H„and is characterized by a
collision duration T, =b/v, where b is the impact

FIG. l. Energy levels for the atoms & and A' under
consideration. The groups of levels represented by a
single letter are degenerate or near degenerate, with a
maximum frequency separation ~g such that coE~, «1
(&,=duration of a collision). The field frequency & is
such that SQ =E&+ E&. (8&+ E&.).

FIG. 2. Field-pulse envelope as a function of-time. A
collision occurs, centered in tbne at t= t„arith a dura-
tion & «T.

parameter and v, the relative atomic speed as-
sociated with the collision. Collision durations
are on the order of 10 '~ sec so that it is rea-
sonable to assume that

since pulse durations T &1.0 nsec are typical.
Thus, excitation occurs on the time scale w„. on
this time scale, the field amplitude S(R, f) ig es-
sentially constant and may be evaluated as S(R„f,)
(Fig. 2). In calculating excitation probabilities,
it is generally necessary to average over all pos-
sible t, and H, during the light pulse and to aver-
age ovex all collision impact parameters, orienta-
tions, and relative speeds. The average over 8,
is equivalent to an average over the spatial pro-
file of the light pulse.

The following assumptions are adopted: (1)
CoQisional excitation exchange behveen atoms A
and A' does not occur in the absence of the light
field (i.e., all such exchange processes are as-
sumed to be nonresonant). (2) The frequency &os

is chosen such that

QPgT «1
y

ensuring that all sublevels in a given group are,
in effect, degenerate during a collision. (8) There
is no population decay or buildup of Doppler phase
during a collision; that is,

yr «1, kuv «1,
where y is a decay rate associated with the initial
or final states, k is a wave vector associated with
the field, and u is an atomic speed. (4) Each atom

I

undergoes, at most, one collision, on average,
during the pulse time T, enabling one to ignore
multiple- collision effects [valid for densities
«10 atoms/cm T (nsec)]. (5) The collision
trajectory is treated classically, which implies
that the change in kinetic energy resulting from
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RAIC is small, i.e., that

Iruz, +&oz. , —QI, KI,
where

(O~g —td~ —(dg q GPN —E~/A, (»)

frame, a collision is characterized by an impact
parameter b, relative speed v, = Iv —v'

I (v and v'

being, respectively, the velocities of atoms A and
A'), and orientation e relative to the fixed frame.
The Hamiltonian for the RAIC can be written

If condition (7) were not satisfied, one could not
assign a unique classical trajectory to the colli-
sion.

To summarize, I am considering the radiatively
assisted collisional reaction

A]+A~). +SQ -Af +Ay

from initial states Iii') to final states Iff'), in
which the photon is provided by an electromag-
netic pulse. Several assumptions relating to the
time scales in the problem have been made which
are valid for many systems of practical interest.
All information on final-state coherence is con-
tained in the density matrix following the RAIC.
The final-state density matrix for one of the atoms
can be obtained by taking the trace of the final-state
density matrix for the composite system over the
final-state variables of the other atom. Experi-
mentally, it is generally such a single-particle
density matrix that is monitored (e.g. , by fluo-
rescence from the final state of one of the atoms).

III. EQUATIONS OF MOTION

By assumption, the collision trajectory is treated
classically. That is, relative to a fixed laboratory

H(t; b, v„, 8, R„t,) =Ho (r) +Ho(r')

——'(p +p') ~
,[$(R,t,)e '" +c.c l

+u(r, r', R(t)), (8)

where Ho and Ho are the free-atom Hamiltonians
for atoms, A and A', respectively, p. and p,

' are
the dipole-moment operators for atoms A and A',
respectively (the atom-field interaction is treated
in the dipole approximation), and 'a is the A-A
interaction Hamiltonian. The collision is centered
in time at t = t, and R, is the position of the center
of mass of the atoms when t= t,. All effects of
atomic motion are contained implicitly in the inter-
atomic separation R(t}, calculated for a classical
trajectory. In writing the approximate Hamiltonian
(8), conditions (4), (6), and (7) were used.

According to the assumptions of Sec. II, states
I
ii') can be coupled only to states Ii,i,) (i, is

another state in the i group) or to states Iff'). The
corresponding equations of motion for the probabil-
ity amplitudes a«. (t},a&& (t) (in the interaction
representation), as derived in Appendix A starting
from the Schrodinger equation with the Hamiltonian
(8), are given by

iaa]]. —— ii' Sii';t, b, v„,e, R, t i)i) a] ).

+ ii' T,ii';t, b, v„,e, R„t, ' e'~a»'
~

ff
(8a)

ihaff. — ' S ';t, b, v„,e, R„t, & & af f.

+ ' Tii', ';t bveR„t, ii' e ' 'aff. , (8b)

where the detuning & is defined by

(10)

(11a)

A = 0 —
(QJgg +

(dyin g ),
and the operators 8 and T are defined below.

The operator 8 (nn'; t, b, v„,e, R„t ) is an operator that acts only in the nn' subspace (nn' =ii' or ff ');
it shifts and couples levels within that subspace. Explicitly (see Appendix A},

S(n n'; t, b, v„e,R„t,) = Si + S„
u ' g{R t } I t't} )&N}' I ~ ~ ~(R., t.} + ~ ~ ~ {R., t.}I ~t} )& t}l~'

I ~ ~ h (R

g g-i &(R(t)}I Pt}')&W' I'a(R(t)}
7

(dye + (dy~ o~
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where

(13)

and represents the combined effect of the (field+ collision) in producing the transition from initial to final
states. The corresponding transition operator which couples states Iff') to Iii & is given by~

It 4 I pp'&&pp'lu(II(t)) +'k(II(t)) I pp'&&pp'lu &I. g ~
~sr+ ~e'r' ~sg + ~s'c' (14)

Pp=P+P (12)

The operator S may appear to be complicated, but it has a well-known physical interpretation. The term
S~ involves only field variables and gives rise to the shifting (light shifts) and coupling of an levels pro-
duced by an off reso-nant external'electromagnetic field. The summation over intermediate states pp
represents the virtual excitation of these levels by the field. The term S, [Eq. (lib}] involves only colli-
sion variables and gives rise to collisionally induced shifting and coupling of levels in the no. ' group. The
shift of the levels is the origin of the pressure broadening and shifting of spectral lines, while the coupling
within the O. a group leads to collisionally induced relaxation of any alignment, orientation, etc. , that may
be present in that group of levels. Again one finds a summation over an infinite number of virtual excita-
tions

I
pp'&.

The transition operator T that couples groups of states Iii') to ~ff & is given by (see Appendix A)

~t&R(t))l ppg&pp li, ,t, l ppo&pp I~A(t)) .;-,
Bf 'f' Sg 8'&' &» 0

Note that the matrix elements of T appearing in
Eq. (9) are related by

&it'
I T(ff', ii'; t) Iff'& = (ff'

I
T(ii', ff', t) Iti' &' .

(16)

A diagrammatic interpretation of S and 7.' is given
in Appendix B.

To obtain the RAIC excitation probability, one
must solve Eqs. (9) for a&&. (t,') subject to the ini-
tial conditions

a (. (t )»0, a~~. (t )=0, (16)

(17)Mv»1,
where ~ is any of the frequency denominators ap-
pearing in the operators T and S, and if Eqs, (3)-
(7) are satisfied, then Eqs. (9) are valid over a
wide range of field strengths. '~ Condition (17)
ensures that the intermediate states act only as
virtual levels in the RAIC problem. The virtual
excitations are represented by the summations
over P and P' in the N and T operators, and the
problem is reduced to an effective two groups of
levels problem for the states

I
ii') and I ff'). It

should be noted that Eqs. (9) reduce to the corre-
sponding equations derived by other authors in
various limiting cases. 5

where t, (t,') are times before (after) the collision.
Since r, «T [Eq. (4) or Fig. 2], the times t' can
be set equal to a~ when integrating Eqs. (9) with-
out introducing significant error.

The validity conditions for Eqs. (9) are discussed
in detail in Appendix A. If

IV. FORMAL SOLUTION

9G t t'i1 e ' ' =S(K, t)Gz(t, t'), (20a}

Ge(t, t) =1, K=I, F (20b)

and the symbols I and F represent the entire ii'
and ff' subspaces, respectively. Substituting Eqs.
(19) and (20) into Eqs. (18) and making use of the
relations

(Ge(t t')) =Gr(t' t)

Ge(t& t))Ge(t(& tm) =Ge(t& t~) &

(21)

which follow directly from Eqs. (19) and (20), one
obtains

ig A, =G,(t, , t)(T(IF, t))'Gr(t, t, )e'~'Ar, (22a)

It is useful to make use of Eq. (15) and to re-
write Eqs. (9) in matrix form as

ig a, = S(I, t)a, + [ T(IF, t)]~ e'~'ar, (18a)

ittar = S(F, t)ar+ T(IF, t)e '~'a, , (18b)

a,(t;)» 0, a,(t;)=0, (18c)

where az (a~) is a vector containing all possible
states Iii') (If f'&) .in the initial (final) group of
levels and S(I, t), S(F, t), and T(IF, t) are matrix
representations of the corresponding operators ap-
pearing in Eqs. (9). A solution of the form

ae(t) = Ge(t, t, )As(t), K=I, F (19)

is sought, where the matrix GE(t,,t') is chosen to
satisfy the equations
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iKAr=Gr(t, , t)T(IF, t)Gr(t, t, )e r~'Ar, (22b)

Ar(t, ) =ar(t, ), Ar(t, )=0. (22c)

In this form, all effects of shifting and coupling
within the ii' and ff' subspaces are contained in
the matrices G,(t, t') and Gr(t, t'), respectively

Once a solution to Eqs. (22) is found, final-state
density matrix elements of the form

pff ff (t+'b v e R t)
aff'( )~ f f'(

=
~ Gr('e' '»r('o')~ff ~ Gr('e' 'o)Ar('o'~~irfr

(23)

may be constructed (the tilde is a reminder that
results are expressed in the interaction representa-
tion). The (complex) rate at which RAIC create
density matrix elements pff fr fl (t;;v„ t,) at time
t, during the light pulse for atoms A and A' having
relative speed v„starting from an initial density
matrix element p« ...,.(t, ) is given by

es

Frr) (v t ) 3t st v 2rrbdb (8rr ) 'de dREi ~ye (24)

where St is the rr-atom density (assumed to be
independent of position) and the shorthand notation

I=ii', F=ff', I&
—iri~&, Fr f&f&', — (25)

etc. , has been adopted. The integral over R, in
Eq. (24) is limited to the interaction region of the
atoms and light field; it is essentially an integra-
tion over the spatial profile of the light beam.

Thus, during the light Pulse, the density matrix
evolves as

e' e'
8 vv't

C i
+ [X(t,)p(v, v', t,)]», (26)

where v„=v- v'. The assumption that an atom
undergoes at most one collision during the light
pulse is contained implicitly in Eq. (26), other-
wise, terms such as

Z
~V'3
Epi pE2E3

would be present, The term with X(t,) represents
changes produced by processes other than RAIC
(i.e., level decay, other external fields, etc.)."
It is an equation of the form (26) Plrrs a corre-
sponding equation for times when the light pulse is
rrff which must be solved in order to make connec-
tion with a given experimental situation (of course,
there are no RAIC terms in the equations with the
field off). For example, if the pulse time T is
short enough so that the bracketed term in Eq.
(26) may be neglected, then the final-state density
matrix following the light pulse is simply

T+

v (v, ', T ') = (' ' (v„(.)a,)

where T (T') indicates a time just before (after)
the pulse. One can then monitor the final-state
density matrix via absorption or emission experi-
ments to obtain values for the various rates I'~~'.

i
For longer pulse times T, it may be necessary to
integrate Eq. (26) to obtain the net effect of the
light pulse.

To be consistent with other authors, I define a
RAIC transfer rate per pulse from some initial
state described by p» to a final state described"1
by pgg as

(28)

and a RAIC transfer cross section per pulse by

(29)

I'(,) =II I'" (,)
I

(30a)

a(v, ) =— v»(v, ),
I

(30b)

where N~ is the number of initial states. Equation
(30b) defines a quantity that has been typically
referred to as the RAIC cross section. 5

V. DISCUSSION

rrrr (v,) = I'rr (v,)
~

3t„st„.v, dR,rrr rr~

where the R, integration is over the interaction
volume. " The rate and cross section for transfer
of population from some initial state ~I) to a final
state )F) is obtained by setting Ir ——I, Fr=F in
Eqs. (28) and (29). Finally, one can define an
average RAIC rate and cross section by

pll (vvv v
T ) v (2V)

In general, it is difficult to obtain solutions to
Eqs. (22) and perform the necessary averaging
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over coQision orientations. However, certain gen-
eral features of the solutions may be understood by
examining some of the limiting forms of these
equations.

be integrated directly after setting Az(t) =az{f,).
Using Eqs. (22), {19),and (21), one may obtain

t+

a» (f
'

) = (ig) G» {f', t') T(IF, f')

p'(t)=J (S(E,()—S(l, ))d((
t4f

(32)

and I and I are nondegenerate states. The phase

y, (t) contains the effects of the level shifts pro-
duced by the off-resonant light field and the colli-
sional interaction. Equations (31) have been
studied by many authors using a variety of ana-
lytical and numerical techniques. s'3 The resulting
BAIC profile exhibits a marked asymmetry for
large l& l, resulting from the action of the level-
shifting term. For one sign of &, the I-E transi-
tion can be brought into instantaneous resonance
with the field during a collision, leading to en-
hanced excitation; for the other sign of &, no such
instantaneous resonance is possible. Equations
(81) also contains saturation effects which can ap-
pear for large field strengths or small impact pa-
rameters.

A. Nondelenerate levels

In this limit, the matrices S and T in Eqs. (18)
become scalars. Equation (20) is easily integrated
and one finds that Eqs. (22) take the form

ill T(IF, f}——~ exp[i[hi - p (t)]]A», (31a)

iNA» = T(IF, f) exp[ i[-d, t y, (t)]-IA~, (3lb)

xG~(t', t, )e ' ' a»(t, )dt'.

(84)

To be consistent with the perturbation-theory
limit, , the contributions to G~ and GI arising from
the light-shift opexator should be neglected. Equa-
tion (84) may be given a simple interpretation.
Starting in the state represented by a,(t, ), one has
a mixing and shifting of the initial levels from time
f=f, to time f=f' [represented by G,(f', &,}],a
transition from initial to final state at time t= t'
[represented by T{IF,t')] and a mixing and shifting
of final-state levels from time t= t' to time t = t,'
[represented by G»(t,', t')]; an integration over all
possible t' is included. Thus, it appears that re-
orientation effects in the initial and final states
are correlated with both the shifting of these
levels and the changes that occur in the I-E tran-
sition. In particular, if there are times at which

instantaneous resonances oeeux' for a given de-
tuning I+lr, +I, the T matrix can be evaluated at
such times and the integral (84) evaluated by a
stationary-phase method. This condition can help
to simplify the calculations, although the average
over collision orientations can still pose con-
siderable problems. Experimentally, one should

expect to find a variation-of final-state coherence
as a function of detuning.

$. Perturbation-theory ljlnit

By neglecting the level-shifting terms in Eqs.
(22) and taking & =0, one can estimate that a
perturbation solution is valid provided

l~(f=f.}I .}~ „,
where 'LL(f = f,) is the interatomic potential at the
time of closest approach, r, =b/c„ is the collision
time, y is a Rabi frequency (e.g. , x=(P'l)L'$'}l(gl/
25), and 9 Ls some characteristic frequency de-
nominator appearing in the transition operator T
[Eq. (13)]. For nonzero rh, Eq. (88) is replaced
by a less severe condition. Since l'LL(t= f,) l &,/I
~l in the range of impact parameters that con-
tributes to excitation, ' the perturbation theory
fails for field strengths g & w. Regardless of fieM
strength, inequality (83) always fails to hold for
sufficiently small impact parameters ['LL(f = f,)
varies typically as b "];this domain can be
treated by using a cutoff px ocedure. s

In the perturbation-theory limit, Eq. (22b) can

C. Perturbation theory nellectml level shifts

Additional slmpilfxcations of Eq. (34) are pos-
sible for a range of impact parameters if one
limits the detuning to the impact core of the HAIC

profile ( l
&

l ~, «1). If l
&

l v, «1, the effects of
instantaneous resonances are not important, since
the phase factor exp(iiL, f) is slowly varying; all
times f' in the range (f, , to'} contribute to the in-
tegral in Eq. (34). Since the matrix 8 is quadratic
in the collision interaction potential while the T
matrix is linear in it, there exists a range of
impact parameters where one ean neglect the
eollisional contributions to S. Contributions to S
from the light fieM have already been neglected
owing to the perturbation-theory limit. Thus, in
this limit where all level shifting and mixing in
the initial and final states are ignored, 8(I, f)
= 8(F, f) =0 and, G,(t, f'}=G»(t, f') =1. Equation
(84) reduces to
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This expression is evaluated explicitly in the
following paper, where the appropriate averaging
over collision orientations and impact parameters
is carried out. Since the interatomic potential
appears linearly in Eq. (35) and, consequently,
bilinearly in Eqs. (23) and (24), the averaging over
collision orientations is easily performed using
techniques involving irreducible tensor operators.
One can show that the collsion produces the same
type of final-state coherence properties that would
be produced by replacing the collision by an un-
polarized field having the same multipolar proper-
ties as the collision operator (e.g., a dipole colli-
sion operator is replaced by an unpolarized elec-
tric field). This result is not difficult to under-
stand. Excitation is produced in a single collision;
when averaged over all collision orientations, the
net effect is similar to that produced by an un-
polarized field of the corresponding multipolarity.

It is relatively easy in this case to predict the
final-state coherence properties for various polar-
izations of the external field. The final-state co-
herence may be observed by monitoring the po-
larization of fluorescence or the quantum beats
originating from one of the final states.

D. General case

If perturbation theory fails (power densities
a 10'0 W/cm ), the solutions of Eqs. (22) exhibit
saturation effec ts. Unless a way can be found to
perform the averaging over collision orientations
and beam intensity profiles, one is faced with the
costly task of integrating Eqs. (22) numerically as
a function of collision orientation 6 and field am-
plitude S(R„t,). There has been Illimited work in
this area, although a few related calculations have
appeared.

A general formalism for calculating the final-
state coherences produced by radiatively-assisted
inelastic collisions has been given. In the following
paper, the RAIC transfer cross section is cal-
culated in the perturbation- theory limit, neglecting
level-shifting effects. In future work, it is hoped
that the more general problem will be addressed.
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APPENDIX A

In this appendix, starting from the Hamiltonian
(8) and using the assumptions of Sec. II, I derive
Eqs. (9). The wave vector is written as

l4(t)) =p a„(t)e '" elM&, (Al)

where

lM) = lmm') =
l m) lm') ',

~~=~e+~~' y

and (&0 and (d„.) and (lm) and lm'&') are eigen-
frequencies and eigenkets of free atoms A and A',
respectively [i.e., eigenfrequencies and eigenkets
of the Hamiltonians Ho(r) and Jf(')(r'), respectively,
appearing in Eq. (8)]. I adopt the notation that a
captial Roman letter represents a composite state
of the AA' system [e g , lf.& .= lit'), &e», =&dz, +(df, ,
etc.]. Using Schrodinger's equation with the
Hamiltonian (8), one can derive the following equa-
tion for the probability amplitude (in the interac-
tion representation) a„(t):

i)Ia„=[- k&MlprlB& ~ [Se '"'+g"e-'"']

+&M l~(t) IB))e'"ee'ae, (A2)

where p, ~= p, + p, ', ~„~=ar„—co~, and the summa-
tion convention is used.

According to the assumptions of Sec. II, the
only states that are significnatly coupled are
l I) and

l F). However, this coupling does not yet
appear directly in Eq. (A2) since the 1 Fcoupling-
is via virtual intermediate states. To see the
coupling directly, one writes Eq. (A2) for a», re-
placing the a~ which appears on the right-hand side
of this equation by the value obtained by formally
integrating Eq. (A2) for ae. In this way, one finds

ea»=e'"»" [- —,'&Flt rlB& ~ (Se &"'+S'ei"-')+&Fl~(t) lB&]
t

&~ a ((, )+(&))) ' d('e'" 'I — &))Iv„l))&) ~ (« '"'+»~' ')+&))(&((')l~))o„((')).
tc

(A3)

The term proportional to ae(t, ) can be neglected
using the assumption that the field and collision
must act simultaneously to produce a transition.
The validity conditions for the neglect of this term

are

(A4)Q)gg )& $y Q) T

where ~, and ~, are some appropriate frequency
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mismatches for the atom-field and atom-atom in-
teractions, respectively. "

The integral term in Eq. (A3) is treated as fol-
lows: (1) The only terms a„(t') of importance are
assumed to be a~, (t') and az(t'), where )F,) is in
the final-state group of levels. This assumption is
equivalent to asserting that there is negligible
population in all states outside the I and F groups
(i.e., that there are only virtual excitations of the
intermediate states). For this approximation to
be valid one must again require conditions (A4) to
hold. In addition, one must require that the cross
section for transfer within a given atom from
either its initial or final state to some intermedi-
ate state be negligible. This cross section is pre-
cisely that associated with collisionally-aided
radiative excitation (CARE). For &u, r, » 1 and

y «~„CARE is unimportant. However, CARE
may become significant in the strong-field regime
X =~„- in that case, one would have to expand the

(d 7 )&i (a) T )&1, (AS)

There is a supplementary condition which must
also be satisfied related to the time variation of
az(t') (see below). (4) Frequency diff erences
», &,I are neglected with respect to ~, or ~,
and factors such as exp(ko», t) or exp(ie», t) are
set equal to unity. These approximations are
valid owing to Eqs. (5) and (A5).

With these assumptions, one can easily carry
out the integration in Eq. (A3) and obtain

basis to include those states coupled to either
~I) or ~F) by CARE. (2) Antiresonance terms in
Eq. (A3) varying as exp[+i(&o~z +A)t] or
exp(a 2iQt) are neglected. (3) The functions
(B ~'n(t') ) M) and a„(t') are assumed to be slowly
varying with respect to the exponential factors and
are evaluated at time t'=t. For this assumption
to be valid, one must have

(A6)

1 &Flit. IB) &'&BlurlF&) @ &Flu. l» «B.lt rlF). &'& 1&FI~(t)l»&BI~(t)IF)'

& u'lil~)&~I~, WII) &+I~«)l&)&&I~.I )) -c.
as Q7 ~~ —6

where there is no sum onF and 6 is defined by
Eq. (10). The quantity & appearing in the fre-
quency denominator can be neglected in compari-
son with +» and it should be dropped for con-
sistency (see below). Equation (A6) is then identi-
cal to Eqs. (Qb), (ll), and (13), using the notation
I=ii', F=ff', B=PP', and F& f,f', . Similar——ly,
Eq. (9a) can be verified.

Finally, one can check to see if az(t) is slowly
varying compared with exp(i&et) as has been as-
sumed (or=+, or &u,). By examining Eqs. (9), one
can deduce that ~az/

~

ais given by the largest
of either ~& ~, &u, =l r„or I'n(t=t, )y/&d, where

X is a Rabi frequency in the problem. Thus, in
order to neglect all but the groups I and F, one
must have

&o/
~
4 )» 1, &dr» 1,

(m(t=t. ) (r. )( 1
I eu ., QY,

(A7)

Note that one may retain a consistent solution even
in the strong-field limit, I '~'tt(t=tp) vp/& + 1~

provided that cov,
' is large enough to assure the

validity of the last inequality in conditions (A7).

APPENDIX B

A simple diagrammatic interpretation of the
operators T and S appearing in Eqs. (9) can be
given. The interaction between the field and the
atoms is represented by

A B aa' a/' aa' Pa'

in which the field acts on each atom separately.
The collisional interaction is represented by

A B
(B2)

taking the atoms from states A to B.
With these definitions, it is relatively easy to

draw the diagrams corresponding to the operators
C~, S, and T(IF) appearing in Eqs. (11) and (13),
and these are shown in Fig. 3. Figure 3(a) corre-
sponds to the light-shift operator S~(Q which acts

A B

The field takes the atom from the composite state
A = na' to B= PJ8'. Actually this diagram may be
thought of as the sum of two diagrams,
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(b)

(c)

F)

(4) For a vertex of the form (Bl) assign an energydenominators�(&ye~
a A), with the (+) sign used if

g appears in the B A-matrix element and the (-)
sign if 8" appears in the B Am-atrix element. For
a vertex of the form (B2) assign an energy de-
nominator S~». Energy denominators are as-
signed for all hect the last vertex in any diagram.

(5) Sum over all intermediate states.
As an example, I calculate Fig. 3(a) and the

second diagram in Fig. 3(c). Following rules (1)
and (2) for Fig. 3(a) gives

x(FI pr ~ (Se '"'+g~e'"')IB) .

FIG. 3. Diagrammatic interpretation of the operators
(a) S~(Q, (b) S,(&), and (c) &(I+. In each diagram a
wavy-line vertex refers to an atom-Geld interaction and
a straight-line vertex to a collisional interaction.

in the final-state subspace [a similar diagram can
be drawn for S~(»]. The field excites either of the
atoms to some intermediate virtual state and then
de-excites the atom back to the final-state mani-
fold. Figure 3(b) corresponds to the collisional
operator 8,(F); the collision excites the atoms to
some intermediate state B= PP' and then de-ex-
cites them to the final-state manifold. Finally,
Fig. 3(c) corresponds to the operator T(IF). The
field and collision combine to excite the atoms from
initial state I to final state F via the virtual inter-
mediate state B. These diagrams immediately il-
lustrate the nature of the operators appearing in
the RAIC equations (i.e., S~ varies as IS I', 0,
as 'u&, and T asti@).

It is also possible to directly construct the
operators from the diagrams. More precisely, the
following rules enable one to calculate the matrix
representation of the operators in the interaction
representation.

(1) Assign a factor (-1)" ' (N= number of ver-
tices) and a factor e'"Ce' (G =final state, H = initial
state) to each diagram.

(2) Each vertex of the form (Bl) is assigned the
value —(B ly, r ~ E(f) IA), where E(f) is given by
Eq. (2). Each vertex of the form (B2) is assigned
the value (B I'u (i) I A).

(3) In the resulting expression, reject all rapidly
varying terms (e.g., terms varying as exp(a 2iA t)
or exp[a i (A +~»)I]).

Keeping only the slowly varying terms [rule (3)]
yields

--'e "'l&FI~'if'IB&&BI~r 8 IF&&

+&Flur fflB&&Blir &'IFi&]

(B3)

An energy denominator is assigned only to the
first vertex and is g(tosz —A) for the first term
in (83) (since 8 appears in the B F, matri-x ele-
ment) and is g(tuaz+ A) for the second term in

(B3) (since 8 appears in the B-F& matrix element).
Therefore,

&FIS, IF,&= e'-"«—[
4a

Fp, g B Bp.gF,
&Bg —0

&F I i & IB&&B I ~ @' IF &l

(der + A
i

in agreement with the first two terms of Eq. (A6)
[recall that I set exp(ku« f) = 1 and a&ar ~ ~a+ in

i BE BE)
that equation].

Similarly, applying rules (1) and (2) to the second
diagram of Fig. 3(c) yields

—;"""'&Blir (ie «"'+~"'"') l»&FI&IB&

Keeping the slowly varying term which varies as
8 exp[i(&o» A)t] =S-e ' ' and applying rules (3)-
(5) givesI. .., &FI&IB&&BI~..it I»28' BS

which agrees with the last term of Eq. (A6) since
Bi A=4OB
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