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The correct treatment of strongly bound electrons is grafted smoothly onto the Thomas-Fermi computation of the
total binding energy of neutral atoms. This provides a clearcut demonstration of the leading correction of relative
order Z '" which, with effects of relative order Z "', gives an accurate account of the binding energy over a
wide range of Z values. There is a brief discussion of relativistic corrections, with results that are somewhat at
variance with previous numerical estimates.

INTRODUCTION

The Thomas-Fermi (TF) model was one of the
topics I selected for an undergraduate course in
quantum mechanics. My level of knowledge of its
applications was that of textbooks of the 1950's,
along with the monograph cited in Ref. 1; I had no
reason to suspect that the particular subject of the
binding energies of neutral atoms had attracted any
more recent attention. Once again I was struck by
the qualitative agreement of the model with em-
pirically estimated total binding energies, for a
wide range of Z. The slowly varying nature of the
quantitative discrepancy suggested that a simple
leading correction could be found. A qualitative
argument indicated that it would vary as Z "', and
the proper numerical factor was obtained by an
elementary physical derivation. . The resulting re-
markable agreement with experiment seemed to
merit a small publication. The referee of that
paper kindly drew my attention to a communica-
tion by Scott' in which the same result appeared,
identified as a "boundary effect." Of course, the
underlying physical ideas are the same —the error
of the TF model in giving the electrons an infinite
density at the nucleus had always been recognized.
But, as to the reliability of the quantitative state-
ment, as derived by Scott (1 quote from another
reference' supplied by the referee), "it seems dif-
ficult to give a completely clearcut demonstration
of the case." Accordingly, I feel justified in re-
submitting my "c1earcut demonstration. " It will
be followed by a discussion of the different ap-
proaches, and then by a partial treatment of rela;
tivistic effects, which topic does not appear to have
received its definitive study (again, there may be
publications more recent than the citations of Ref.
3).

QUALITATIVE ARGUMENT

The virial theorem, which equates the total
binding energy -E to the total kinetic energy,

In the latter form, a symbolizes the radial scale
of distance,

with

a 1 (Sm'I "'
=0.8858, ao = if '/gee',

and f(x) is the ratio between the potential energy
of an electron and its Coulomb energy with the
nucleus,

(4)v(r) = (ze'/r)-f (x)

The function f(x) obeys the differential equation

d'f(x) [f(x)]3~'
dx' x"' (5)

subject to the boundary conditions

f(o)=1, f(")=o.
An important parameter is the magnitude of the
initial slope

numerical integration yields

8 = 1.011(s/2) = 1.588 .
The integral appearing in the second version of

(1) is evaluated as

l [f(x)]"' 5
dx

0 x

Accordingly, the TF value of the total binding en-

supplies the following semiclassical phase-space
integral over occupied cells:

Z 2
(tfr)(dp) P
(2va)'
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ergy is

-E = —BZ'e'/a =0.7887 Z' 'e'/a, ,
where

e'/a, = 2(13.61)

expressed in eV. Another way of presenting the
energy;

QUANTITATIVE DERIVATION

We begin by removing from the semiclassical
phase-space integral the incorrectly described
contribution of strongly bound electrons, those
with energies

p'/2m + V(r}&-e,

E s BZ7/3e2/aZl/s

leads to the differential relation

(12)
where the characteristic distance Ze'/e is small
compared with the TF length a, Z "', but large on
the scale of the hydrogenic Bohr radius a, Z '.

BE Ze
BZe a (13)

This quantity is identified4 ad the average elec-
trostatic potential, produced by the electrons, at
the position of the nucleus. The interaction energy,
of a single electron near the nucleus with all other
electrons, is therefore given by

s

~, =B(Ze'/a) . (14)

The same quantity is also evident in the form of
the potential energy (4) at small distances, r«a,
x«1.

Ze'/a, Z "'«e«ze'/a, Z '. (23)

p /2m&Ze'/r —d, d=e+e, =—e,
and the contribution to be removed is

J 4' dy 4g ( Ze
(2 I)' 10m I, r )

(24)

Z2e 2

n', (25}

In this domain x«1 and the Coulombic potential
(15) applies. Then the momentum restriction (22)
reads

V(r) —=-(Ze'/r)(1 —B//) =-(Ze'/r) + e, . (15) where

The validity of the semiclassical evaluation in (1}
requires that the particle wavelength be small
compared to the radial distance r,

z2e2 ~~1~n'-
2aoE' )

is limited by

(26)

ff/p«r. (16)
1« gf «Z~13. (27)

(p'/2m) + V(r) =0,

that condition becomes

(Zr/a, )f(x)»1.
At small distances (x«1) the restriction is

(17)

(18)

On using the TF identification of the maximum mo-
mentum at a point,

The correct quantum replacement for the de-
leted semiclassical contribution is clearly the
trace of the operator p'/2m, over all single-
particle states of energy less than -~. Inasmuch
as those states refer to the Coulombic potential
(15}, the desired trace is just

(28}

or

r»ao/Z, (19)

(20)

extended over all n such that

Z2e 2

2a n'
—+E &-E

0

or
This suggests that the x integration in (1) should be
stopped at a lower limit -Z ' ', so that

m& n'.
Then the required summation (28) equals

(30)

1.
dX $12x

= —;B(1-cZ-'/'),

with e a constant of order unity.

[f(.)]"'
(3/5)(Z'e'/a} g-2/$ x' '

-z-213
-=- -J

0

{21}

Z2e 2

[n'],
a0

(31)

where [n'] indicates the. largest integer contained
in n'.

To compare this with {25},we need an asymptotic
replacement for the discontinuous function [n'],
which is of staircase form. The continuous, func-
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tion n' touches the tops of all the stairs; the func-
tion n'- 1 touches the bottoms. The desired inter-
polating curve is, evidently, n'- &. Accordingly,
the replacement of (25) with (31) leaves the residue

-F.=(e'/2a }Z"'[1+-,'(1-Z "')'] . (41)

version stems from the numerical replacement
0.7687 ~s, namely,

-Z'e'/2a„

and now

-E =0 V68V Z"'e'/a, ——,Z'e'/a,

=O.V68VZ'/3(1 —0.6504Z "')e'/a„.

(82)

(83)

(As a memory aide, note that it produces the cor-
rect value for Z =1.) We have another example of
what has been calledS "the principle of unreason-
able utility of asymptotic estimates. "

DISCUSSION

this correction is of the anticipated form (21}. I
emphasize the seamless way in which the correct
treatment of strongly bound electrons has been
grafted onto the TF model. Any value of n' obeying
(2V} is acceptable, or, inasmuch as the basic pa-
rameter Z'~' is supposed to be very large, n' can
be chosen as any large Z-independent number.

An estimate of the total binding energy for Hg
(Z =80, Z"'=4.31) is quoted' as (e'/a, units)

p z d+ +I/2 + 3/2 (42)

All the above refers to energy; there is no overt
reference to particle number. Now, in order to
make contact with the treatment of Scott, we con-
sider particle number explicitly. The TF model
identifies the number of electrons as the phase
space integral

-@empt = 18.13x 10';

the TF value is

Em =21.20~ 10

an excess of 1V%. The formula (33) gives

(84)

(35)

where, according to the differential equation (5),
the latter integral is

d' x " d d x

=f(0)=1. (43)

-E~ =18.00&& 10',

which is agreement to a fraction of a percent.
The smooth variation of the discrepancy, from

one element to another, invites an extension to
smaller Z values. For Z =12 (Z"'=2.29), the in-
itial discrepancy of 2V% is overcompensated by
10% on applying (33). But here one must also in-
clude the next level of correction, of relative order
Z '~'. Exchange effects, omitted in the simple TF
model, contribute to this, as does a small residue
of the leading correction. That is discussed in Ref.
3, and we here accept without comment the recom-
mended additional energy term:

-0.266Z~'(e'/a, ) .
The modified Eq. (38) now reads

-8 =0 V68'I Z"'.Fe'/a, ,

where the correction factor P is

Again, we proceed to remove the incorrectly de-
scribed contribution of strongly bound electrons,
those obeying (22). This is

(44)

where n' is given by (26) and qualified by (2V}. The
quantum replacement of (44} is the summation

(45)

for all n& n', which equals

—,'([n']+-,'}[n'] ([n']+1)= —,'([n']+-,')'- —,
' ([n']+ -', ) .

(46)

We have already remarked on the asymptotic re-
placement for the discontinuous function [n'],
namely, n'- —,. Its introduction in (46) gives

y =1-0.6504 Z-~'+0.346 Z-'~'. (89)

The experimental results for Z =26 down to Z =6
are reproduced with an error not exceeding 1%.

A simplified formula, in the nature of a mnemon-
ic, emerges from the small numerical modifica-
tions 0.6504» 0.346 —', . They give

s ngs 1

F 2 + 1{1 Z-1/8)2

which reproduces all the data from Z =80 down to
Z = 6, at the 2% level. Another, somewhat cruder

the first term of which agrees with (44). Deleting
(44) and substituting (4V) therefore has the residue
--,' n'; this graft leaves a scar, but it is not one
that need concern us. The immediate implication
is that the number of electrons with energy above
-e must be increased, by the ill-determined
amount s n'. But the consequent change in energy
is of relative order Z ', one level beyond the two
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leading corrections of relative orders Z ' ' and
Z-8's

In arriving at the continuous function (47), we
mserted the appropriate continuous curve for the
discontinuous function [n'], which is not neces-
sarily the right thing to do for the' cubic structure
of (46). Indeed, the equally weighted average be-
tween the two bounding continuous functions n' and
n'- 1 gives

3
-'n" + -'n'

S (4s)

changing the sign and magnitude of the residual
term. In this version the number of electrons with
energy greater than -e must be decreased by —',n'.
The proper procedure cannot be clear in the ab-
sence of an improved treatment that permits the
modification to be performed smoothly, at the Z '
level of accuracy.

Finally to Scott; in place of the (within limits}
arbitrary parameter ~ or n', he chooses the latter
to make the TF computation of the number of
strongly bound electrons, (44}, agree with the
correct value (46),

n'= ((2 [n'] + 1)-', [n'] ([n']+ I)]"'
=—[n']+ 2 ——,', 1/([n']+ —,'), (49)

where the indicated asymptotic expansion already
yields two-significant-figure accuracy for the
value of n'- [n'], at [n'] =1. He then turns to
energy (he actually considered aE/sze, but no

matter) and observes that the replacement of (25)
with (31) alters the energy by

(Z'e'/a, )(n'- [n'] ) (5o}

RELATIVISTIC CORRECTIONS

The excellent agreement found for Z =80 might
be surprising. Surely relativistic effects are of
some importance at large-Z values' Perhaps,
but the question is not really pertinent; the cited
"experimental" value uses semiempirical formu-
las that have no reference to relativistic effects.
But the question still merits an answer, one that
is not forthcoming in the literature (apart from
rough numerical estimates by Scott) but can be
supplied, in part at least, by the methods of this
paper.

For electrons of energy greater than -e, we
consider only the leading relativistic correction
to kinetic energy

which, according to (49}, for large enough [n'] be-
comes Z'e'/2a, . But the explicit reliance on par-
ticle number, with its special choices of the energy
parameter e, is irrelevant, which perhaps under-
lies the uneasiness conveyed in the quotation cited
in the introductory paragraph. Yet the answer is
correct; what has been supplied here is the reas-
surance that the Scott leading correction to the TF
atomic binding energy calculation is right.

5E(&-e}= 2
' p, ( &

(2vk)' 2mc' (2m &

drr'([-2m'V(r)]'I'-(-2m V-2m')'I'}
0

1

14m' g 5' ~ g 2/, .
1 1 ~ /'

14~ c21'm'

Ze2 ) 7/2
drr'~2m f(x)

~j
( Ze2 ) 7/2 2~Z~2 ) v/2

drr' 12m —2me -2m"
)r 0] r (51)

The fractional error involved in omitting &0 in the
second integral of the last form,

n I 2/Zap' (52}

is below the level to which we aspire, Z ' '. The
evaluation of that second integral, combined with
a partial integration of the first one, then yields

5 Zee'
5E(&-e) =—, (Z&}'4n' ao

4 ('
v i, O.SS53)

x dsx "'[f(x)]~'
~

— ~, (53)
o k d+ j

d'f (~) df (x) )~

dx dh

/ df (&)
I= ~B'- & dx~-

o I, dx ]
= 1.04, (54)

I

where a =e'/ac.
The differential equation obeyed by f (x) is used

to convert the last integral into
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according to a rough numerical integration that
produced 0.43V as the value of the integral of
(-df/dx)'.

We illustrate the relativistic treatment of the
strongly bound electrons moving in the Coulombic

potential (15) by retaining only the (Za)' fine-
structure term implied by the Dirac equation;
additiona1 refinements can be added as needed.
This gives

[n') n-
6E(&-~) = g g (2j+I)m~ — (Z///}' —,

2a, n' j+1/2 4 n &

(55)

where

ns=2y j& n —2,
The j summation is

1m~=1, j=n —2. (56)

1 1 3 1

4= V2
(2j+1)m~ ~ .

n j+12 4 n'

1 3 1= —r 2(2n —1}———,2n'
n 4 n4

5 1 1
2 n' n' (5V)

and the subsequent n summations are evaluated,
for our purposes, as

1 n' 1 m' 1
n' 6 („)+,n2 6 n' '

—,=—l'(3) = 1.202.
1

n'

(58)

Accordingly, we have

( —)=- (Z }'
24

Z2g2
2 5, 5 l

(59)

which joins smoothly with (53}to produce

Z2g 2

6E =-0.854 (Za} (1-2.33Z ' }.
ao

(60}

Applied to Z =80, this formula predicts a rela-
tivistic correction to the binding energy of (e'/a,
units) 0.86x 10', which is an increase of slightly
less than 5%.

It is interesting that the ratio

(1 2 33Z x/s)/ZB2 (61)

has a maximum value of 0.052 at a little below
Z =60, and deviates from that value by less than
4%%uo in the interval from Z =40 to 90. This pro-
vides an approximate replacement for (61), as

2.4x 10 Z / e /s (62)

which makes contact with the numerical estimates'
of Scott. His version has the same form as (62),
but with the numerical coefficient 2.4 replaced by

4. Perhaps the number 2.33 in (60} is wrong'P Re-
placing it by unity would increase the correction
by a factor close to -', for Z =80. But, then the
equivalent fractional power of Z for 1-Z ~' would
be about —,', rather than ~ . (We also note that
1-0.65Z ' ' is well represented over a wide range
of Z by the —,', power of Z.) Inasmuch as Scott
speaks of "or8er of magnitude" and "rough esti-
mates, " it is not clear whether a significant dis-
crepancy exists, and we leave the question there.

Notes added in Proof. I am indebted to
I . DeRaad and D. Clark for independent computer
calculations that replace my rough number cited
after Eq. (54) by 0.353. The rapid variation of the
integrand near the origin was not well represented
in the simple integration rule I used. That alters
the numerical value given in Eq. (54) to 1.084. As
a consequence the number 2.33 in Eq. (60) is re-
placed by 2.43. The appropriately modified dis-
cussion of Eq. (61) now produces Eq. (62) with the
coeff icient 2.3.

Additional clarification is needed on several
points. Reassurance canbe giventhatthe bulkof the
electrons do not contribute to the correction of
relative order Z-'~'; the paper ascribes that en-
tirely to the strongly bound electrons. Here is a
qualitative argument. Improvements in the semi-
classical treatment of the kinetic energy should
introduce modifications that are roughly measured
by 8'/r', as compared with p'. That is the con-
tent of Eq. (16), with the added remark that it is
not p, but p2, that is significant here. A measure
of the fractional change in energy is just the in-
verse of the left side of Eq. (18}. And, for the
bulk of the electrons, with r aoZ '/', -f(x) I, -
this is -Z~ '.

Then, it could be questioned whether the dis-
crepancy -n between the exact and TF calculated
numbers of stroagly bound electrons implies an
energy shift of order n'&, which would be larger
than the shift of relative order Z ' suggested in
the paper. But this effect is already included in
the energy calculation of the paper. That is em-
phasized by writing n c= (Z'e'/2a, )(1/n ); it is a
small part (n'» 1) of the Z' term in the energy,
the correction of relative order Z-' '.
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Finally the question is raised: Why, in dis-
cussing relativistic corrections are spin effects
ignored for energies &- gV Explicit spin-orbit
coupling averages to zero, of course. But there

is the s-wave effect proportional to V'V. How-
ever, the same sort of qualitative argument used
before shows this to be -Z ' ' relative to the
leading term.
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