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Perturbation theory for a Dirac particle in a central field
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%'e present a perturbation theory for an arbitrary bound state of a Dirac particle in a central 6eld by reducing the

Diasc equation to a Ricatti equation, following a method first introduced by Mt&&ailov and Polikanov. All

corrections to the energies and wave functions, including corrections to the positions of the nodes in excited states,

are expressed in quadrature in a hierarchical scheme, mthout the use of either the Green's function or the sum over

intermediate states.

I. INTRODUCTION

(2)

S ——S+(E —V-~}Q=O,r
where the prime indicates a differentiation with

respect to its argument r and k -=+( j+ I) for j
=ha &, E is the energy eigenvalue, m is the rest
mass of the Dirac particle, and V-=V(r) -=Vo(r)
+XV,(r} is the spherically symmetric potential
with XV, introduced as a perturbation to the poten-
tial Vo. In order that the bound-state wave func-
tions be normalizable and regular at the origin,
we impose the boundary conditions that g and 5
be 0 as r-0 and as r- ~. We also assume that
in the absence of the perturbation V» the solution
to the coupled differential equations (2) are known

Qo+ —
Qo —(Eo —Vo+ m) 50 ——Or

s'0 ——$0+ (Eo- Vo+ ~)QO =0;a
r

(2)

that is, the quantities g, 5, and E are known

exactly. Here we shall give the perturbative solu-
tion to g, g, and E as the perturbation V, is intro-

The relativistic bound-state wave function of a
Dirac particle in a central field can be written
as '

1 i Q(r) A~g (8, $) (I)4jim —
~ -gr Q~, , 8,

where P =2j-/, and 0» (8, P) is a spherical spinor
in the direction (e, Q). In natural units, 5= c= I,
the radial wave functions Q and 5 are determined

by the two coupled first-order differential equa-
tions

duced for an arbitrary bound state. This will be
achieved through the reduction of the coupled dif-
ferential equations (2) to a Ricatti equation.

In the case of the ground state, where the wave

function does not possess any node, the perturba-
tive solution has been given by Mikhailov and Pol-
ikanov. ' In Sec. II, we wouM like to discuss two

variants of the method of Mikhailov and Polikanov.
The first one, though less rapidly convergent,
seems more straightforward to use. The second
one is the first-order perturbation iteration method

(FOPIM), first introduced by HirschfeMer' in the

discussion on the Rayleigh-Schrodinger perturba-
tion theory, and recently applied to the Ricatti
equation by Au. ' This second method offers ac-
celerated convergence, if convergence exists.

In the case of excited bound states, where the
wave functions possess nodes, the method of
Mikhailov and Polikanov' must be modified. As
emphasized previously" in the case of the Schro-
dinger equation, the zeros need to be located and
factored out first. We shall then show that, simi-
lar to nonrelativistic problems reducible to one
dimension, ~ the energy shifts, the wave function
corrections, as well as the corrections to the posi-
tions of the nodes, to any order, are expressible
in quadrature in a hierarchical scheme. This will
be done in Sec. GI for the first excited state. In
Sec. IV we extend the technique to an arbitrary
bound excited state. Finally, in Sec. V, we make
some concluding remarks.

II. THE GROUND STATE OF A DIRAC PARTICLE
IN A CENTRAL FIELD

In this case, as noted earlier, the functions g
and have no node. As pointed out by Mikhailov

and Polikanov, ' by introducing a function 4 through

the set of differential equations (2}decouple into

4'- 4+&4 +8-2m=02k
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g'+ — 8e kg=0, (6)

where for j& 2,

where we have also set B-=E —V+~, following
Mikhailov and Polikanov. Equation (5) is an eigen-
value problem in the Ricatb form. Once solved,
it will enable Eq. (6) to be readily integrated, .

provided g has no zeros, as is the case for the
ground state. A perturbation theory on Eq. (5)
was given by Mikhailov and Polikanov. ' However,
in their treatment, 'the higher order corrections
are not explicitly given because of increasing com-
plexity. Here we discuss two variants of their
method, where we manage to retain relative sim-
plicity in treating the higher order corrections.

A. The naive method

The conventional perturbation theory on an eigen-
value problem is to expand both the eigenfunction
and the eigenvalue in power series of the coupling
constant X. We therefore write

js-.0

Ej—— Vj ~~+ Q~ dt' (15)

j.4,=—, (8, —V, )(l + 40)Bod@ .ge j (16)

For i= 1, our present result reduces to that of
Mikhailov and Polikanov. ' The reason for the
choice of the lower limit in the integration in Eq.
(16) has been given by these authors. ' We have
thus established that the corrections to the energy
E and the eigenfunction 4 are obtainable in a hier-
archical scheme to any arbitrary order. It canthen
be seen from Eq. (6) that once the corrections to
E and 4 are obtained to a, given order, the correc-
tions to the logarithm of g, and hence the correc-
tion to g, are obtained to the same order;

Equation (13) can be readily integrated. On using
the normalization and boundary conditions imposed
on Fo and go, we obtain

where

Bo=Eo- Vo+~ y

Bi=El- Vl~

Bj——Ej, j&2.
On substituting the expansions (7) and (6) into the
Ricatti equation (5), we obtain the following hier-
archy of equations to each order in X:

(10)

@'l+Blc'o+ 2Boc'o@l+ Bl=0
2k

and for g &~ 2y

2k
4$ @ + Bj@o+2@o B$ j@jr js:1

j j 1

+Q 8) ~Q 4q4~~+ 8q ——0, (12)

where the unperturbed solutions, 4o and Bo, and
hence go and 5o are known. One then observes,
through Eq. (6) to seroth order, that the square
of the wave function go, serves as an integrating
factor in this hierarchy:

lng = 84 -—~dr.

The lower limit of integration is an additive con-
stant to lng, and is hence a mulitplicative constant
to g which can be fixed by the normalization con-
dition

f (9'+ &'}dr= (1+4')9'dr= l.
0 0

8. Firstwrder perhubation iteration method (FOI'IM)

This method was first introduced by Hirsch-
felder4 in the discussion of Rayleigh-Schrodinger
perturbation theory and was recently applied to
the Ricatti equation by Au. ' Here we first follow
the naive method to find the first-order correc-
tions 4, and 8,. Next we seek a potential V'(~)-=V(r) —&V (r)= V~+ A.V, —&V' such that 4,+X4,
is an exact solution to the corresponding Rieatti
equation with an exact energy eigenvalue Eo+E„
that is,

+ (8,+ m, + d.V')(e, + Xe,}*

+ (8,+ M, + aV') 2~= 0. (19)

On using Eqs. (10}and (11},we readily find
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z p [Ep@i+&i(24'p@'i+ &@i)l p s

We next define

(2o)
4', =—,, (E, —V',)[1+(C',)'](g,')'dr. (32)gl p

One next defines

C'0 eo+Xe

E,I -=E, + ~Z„
V -=V +XV, -&V

Then

o=Eo- V0+~ ~

I I I~0 @080~

r
eo ——C r a exp 8~4~dr

0

(21)

(22)

(23)

(24)

(25)

(26)

@,II 4,I + y2@,I0 = 0 1$

EII E I ~ y&EI
0 — 0 1 t

v" =- v'+ ~'v'- ~v",0 0 1

gI I EII VII +0 0 0

Then

g"= C"r 'exp 8"4"dr
0

(33)

(34)

(35)

(36)

(37)

where the constant C is determined by the nor-
malization condition

gII 4,II gII
0 0 0

such that

(38)

(26)

where

y4 VII
1 7 (29)

I I I (3o)

El VI [(pl)2 y (gl)P]dr
0

(31)

[(g'o)'+ (6',)']d =1
0

8, and $0 are the normalized wave functions for
the Dirac particle in the central potential V- &V'.
Thus, from the knowledge of the exact solution
to the unperturbed Hamiltonian H0, where the per-
turbation is given by XV„we are able to construct
the exact solution to the "new unperturbed Ham-
iltonian" H0 =-H- ~V =Ho+ xV, —x'V, . Hence
as far as the original Hamiltonian H is concerned,
the perturbation is given by ~V' which is of order
A,', since H= H0 + A. V, and for this particular state
the exact solutions to H0 are known. Therefore
we have succeeded'in transforming a problem with
a perturbation of order X to one with a perturba-
tion of order A2. Definitely, this process can be
continued. On executing this procedure for a
second time, we can construct the exact solution
to the next in line new unperturbed Hamiltonian

such that the leading term in ~V
is of the order ~'. All one needs to do is to re-
place the set (Qp, Sp, 4p Epy Vpy Bp Vgy A. ) hy

ically,

gII 2+ Pg 2 d 1 ~

0
(39)

g0 and $0 are the normalized wave functions for
the next in line new unperturbed Hamiltonian H0 .
Obviously, at the end of the Qh step, we have the
exact solution to the "nth order unperturbed Ham-
iltonian H0 -=H —4V" which differs from the total
Hamiltonian H by ~V", a term of order &~. Hence,
we have the solution to order X"-" after n steps
in this iteration scheme. As Dalgarno and Stewart
have shown, ' using the usual perturbation theory,
we can estimate the energy to order 2(2"-1)+1
since we know the wave function to order 2"—1.
This method thus offers accelerated convergence,
if convergence exists, and is particularly attrac-
tive when the integrations in the naive method can-
not be done analytically.

IK THE FIRST EXCITED BOUND STATE OF A DIRAC
PARTICLE IN A CENTRAL FIELD

We now extend our technique to the excited bound
states where the wave functions have nodes. For
simplicity, we focus our attention on the first ex-
cited state where the wave function has only one
node, which is sufficient to illustrate the prin-
ciples involved. We shall see that in the present
approach, the corrections to the nodal positions
of the wave function of the excited states are ex-
pressible as quadratures. Owing to the accelerat-
ed convergence of the FOPIM, we will also limit
our discussion to this method for the excited
states.
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The wave functions g and 5 for the first excited
state have one node each. We write

one-node analog of Eq. (5):

g=(y —a)G (40)
4+(r —p)(2122 —g2k) ——(r- p)42+ (B—2m)(r- u)=0.r

(48)

6=(» P)F-, (41)

g, = (r —u, )G, (42)

where g and 5 do not possess any zeros. The un-
perturbed solutions are indicated by

Equation (48) can be rewritten in either one of the
more symmetric forms

(r —&)(r- )()(e'- e) -(&-B)B+BB'(r—2)'r
+ (B-2m)(y- u)'=0 (49)

&0= (y- P,)F() (43} or

On substituting Eqs. (40) and (41) into the coupled
differential Eq. (2), we obtain

G+ (r- a)G'+ —(y-u)G —B(y —p)F=Or (44}

Next we write

+(B—2m)
"

~

=o ~ (50)r-P]

F+ (y- p)F' ——(r- p}F+ (B-2m)(y- a)G=0,

(45)
where, as before, B=E—V+yn. In analogy to
Eq. (4), we introduce a function 4) which does not
contain any zeros except possibly at the origin and
infinity, through

a= g~'u„
jmQ

P= Qx'P, ,
jmQ

4= g~W„
j=Q

(51)

F= 64. (46)

On substituting Eq. (46) into Eqs. (44) and (45), we
obtain the logarithmic derivative of G,

u=--(1nG}'=—+ [1-B4)(y-P}], (47}k 1
r r-~

which is the one-node analog of Eq. (6), and the

B= QX'B2 .
j~Q

Since we confine ourselves to FOPIM, we only
need the zeroth- and first-order coefficients,
with respect to the coupling constant X, of Eq.
(49). We obtain

(r-n )(r- )(BB — 2) —(a '—())B +B B'(r —jl)'+ (B-2m (r-)n, )'=0
r (52}

(y-u. )(»- P.)( c'l- 4,
~

—[u,(y- P,)+ P,(r ,)]~ 4)'.-— 4..
~

—(,—P,)@0 (o- Po-)4)2
(, 2k ) i, 2k

We next observe

+ 2B02kB42(y —po) —2BO@BP,(r- po) —2(Bo —2m)(r-ao)a2+ B2[lko(y- po) + (r- ao) ]=0. (53}

-(u, —Po)4)2=[(r- u, )+(r- P()) —2(r- P())]4, ,

so= —+ [1—B,e,(r - P,)],1
r r- OtQ

0

-(BB-2m)(y-aB)GO=4+0 1 —(r- PB)~gg +—
~

+ (r- pa)00420,r )(.

(54)

(55)

(56)

W

r j
(57}
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Then Go again serves as an integrating factor to Eq. (53). We obtain the important result

Qn, (r- Po) P-,(r —no)]409O) + [(r- no)(r- P,)4,9',]' = B-,G,'[40(r -p'o)'+ (r- no)']

= -B)(90+ &(')) . (58)

Equation (58) enables us to express every interesting physical quantity in quadrature. On integrating both
sides from 0 to ~, the left-hand side vanishes because of the boundary conditions, and we have, upon using
the normalization condition

E,= V,(9,'+ r,'}dr,
0

which agrees with the conventional perturbation theory. On integrating both sides from 0 to the unperturbed
nodal positions, we obtain the first-order shifts in the nodes

»(a, - )))o,(u, )t)'(a, ) f()',=-z, )((l', +»;)rl»
0

(60)

p, (n, p,)4,(p, )G',(p,)= (V, -E,)(9',+ &,')dr.
0

On integrating both sides from 0 to r, we obtain the solution to 4„

t u,)(»() )»», t»)G', (»l=(t) (» —,) —u, (» —t) ))o(}G(»},+f'tv, —)t\(s +»',,)d»'.
0

(6l)

(62)

Equations (59)-(62) express the main results of this section.
In principle, one can follow the naive method to find E„n„P„and 4, to all orders. This will be very

similar to the nonrelativistic case discussed by Aharonov and Au. ' Because of the accelerated convergence
of the FOPIM, we shall limit our discussion to this method. As in the case of the ground state, we there-
fore seek a potential V'(r) —= V(r) —4V'(r) = V, + XV, —b V' such that n, + Xn„pa+ Xp„and 40+ X4, constitute
the exact solution to the Ricatti equation (49) with an exact energy eigenvalue E,+ M„ that is,

We then define

+(Bo+ XB,+ &V )(Co+ X4,) (r- po-Xp~) + (Bo+ XB,+&V —2m)(r- no —An, } =0. (63}

40——40+ X4~,

E,'=Z, + ~Z, ,

V0 ——V0+ XV~ —~V,
&0=&0- V0+ m,I I I

I
Qf0 —Q0+ ~~ ~

P.'=P, +)P, .
Then 4V -=& V~ is given by

l»&tl()'(- »l) ()+(»- l)' 'l )(»-)))+))(»-~.)I( +.-@l)+».(o"- o')

—(n~ —p, )4,+ P~Bo40+ (Bo+ t))B, —2m)n~ —2B~n~(r —no)

+ (B04~+ 2B,404~+ A4~B,)(r- po) -(B,40+ 2B04O4, )[2(r- po)p~ —Xp~]. (65)

We next observe

I',-=-(lnG,')'

=—+,fl -B.'4!(r- p.')], (66)

I

from which G~ can be obtained,

F
Ga= C r ~exp [B',4',(r- P,') - I]/(r- n~o)dr.

0

(67)
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Because of Eq. {44), the integral in Eq. (6V) is
singularity free at y= 0.,'. The integration con-
stant C' in Eq. (6V) can be determined by the nor-
malization condition

N

9= ' (»- a')G,

gr2+ pl 2 d~
0

&o= (» &o-}G'o

(68)

(68)

(7o)

On substituting Eqs. (71) and (72) into Eqs. (2),
we obtain

g ]][(»-a')G+, (»- n')G'+ —,,(» —c('}G
&~i

—B@G ] (»- P')=0, (73)

Thus, once again, we are able to construct the
exact solution to the new unperturbed Hamiltonian
II~0-=H, + XV, —X'V~I, and we have succeeded in
transforming a problem with a perturbation of
order X to one with a perturbation of order A,'.
This process can then be continued, as discussed
earlier for the case of the ground state, to obtain
the corrections to any desired order.

from which we get

u -=-(lnG)'

and from the second equation of (2):

IY. THE Nth EXCITED BOUND STATE

The only difference between this case and that
of the first excited state is in the number of nodes
in the wave function, Here, we have N nodes in-
stead of one. At first sight, the complexity seems
awesome, but the outcome is surprisingly simple
and elegant.

The multinode analogs of Eqs. (40) and (41) are

+(B-2m) [.j/', /=O. (75)

Equations (VS)-(V5) are the multinode analogs of
Eqs. (44), (4V), and (50}. We then repeat the pro-
cedure in Eqs. (51)-(58) and arrive at the follow-
ing elegant result:

QR @ g pg 8+ i ~ ~f 2 = B g2+ p8
~ 76

4

By integrating Eq. (V6) on both sides from 0 to ~, we get

E,= V, g,'+a~ d~ (VV)

in agreement with the conventional result. The first-order shifts in nodal positions are given by

o,' P[(o.'- o.'),[I(o.'- P.")@.(o.')G.'(~.') = (I', —E,)(9.'+ 6'.)« (78)

l)(11(()'.- l)) II (l).' ".)e.(()')(o(()'')=f (z.- )-;)(8.'+ 5'.)d .
The solution 4),(») is given by

(79)

(r) lo(r IIG(r )l)(r ()l) =
l Z ()' II(~- l) 11(()~--~)- + ~ill( — !)11(r-0!))e(r)&!(~)

+ ~x @x ~o+ +o d
(80)
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Thus we have expressed all physically interesting
quantities in quadrature. Now one can use FOPIM
as outlined in Eqs. (63)-(VO) to obtain the higher
corrections to any desired order.

V. CONCLUDING REMARKS

In this paper, we have succeeded in obtaining
higher corrections to the energies and wave func-
tions, including the positions of the nodes for ex-
cited states, of a Dirac particle in a central field,
to any arbitrary order in perturbation theory, with-
out the use of either the Green's function or a sum
over intermediate states. This was achieved by
the reduction of the coupled first-order differen-
tial equations on the large and small component
wave functions to the Ricatti equation, a technique
first suggested by Mikhailov and Polikanov. ' We
have extended the work of these authors to the ex-
cited states and have also given variants of their
method, which we believe to be simpler to use.

The results achieved in this paper are similar
to what has been done in the nonrelativistic case
of the Schrodinger equation, where a reduction to
the Ricatti equation is possible by the transforma-
tion to the logarithm of the wave function. '~ 9'
It seems appropriate to examine the connection be-
tween the present treatment on the Dirac equation
and that on the Schrodinger equation.

In the case of the Dirac equation, we deal with
two linear, first-order but coupled differential
equations. In the case of the Schrodinger equa-

tion, we deal with one linear second-order differ-
ential equation, It is well known that by labeling
the first derivative with a different function, the
second-order differential equation becomes two
coupled linear first-order differential equations.
In the present work on the Dirac equation, we see
that the introduction of 4 through

(4)

decouples the equation. In the nonrelativistic case
of the Schrodinger equation, if we have taken p to
be 9', then 4 will be the logarithmic derivative of
9. A perturbation expansion on 4 then is a log-
arithmic perturbation expansion. Thus the use of
the logarithmic derivative of the wave function in
the Schrodinger equation decouples the set of
linear first order differential equation derivable
from it.

The technique of logarithmic perturbation ex-
pansion also works in an eigenvalue problem of
the Sturm-Liouville type, an example of which is
the problem of the Stark effect in hydrogen in
parabolic coordinates. Some discussion on the
use of logarithmic perturbation expansion in the
Sturm-Liouville equation is planned to be reported
by one of the authors in a master thesis. "
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