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A coupledwhannel approach with complex rotated coordinates and boundary conditions identical to those urn@

for bound states is shown to lead to an accurate determination of the widths of resonances in the heavy particle
motion of molecular systems.

We describe in this paper how the merging of
two currently developing techniques makes it pos-
sible to study both the bound states and the reso-
nances of a molecular system on the same footing.
These techniques are as follows:

(i) The determination of bound levels in a multi-
channel situation" from the propagation of the
components of the wave function with the correct
boundary behavior in the interior and exterior
nonclassical regions, and matching of these com-
ponents and of their derivatives at some inter-
mediate point.

(ii) The introduction of a complex rotated cor-
ordinate re' for the interfragment distance, which
transforms the otherwise divergent Siegert corn-
ponents of the wave function of a resonance into
localized functions. "

I. DESCRIPTION OF THE METHOD

Our own approach' to the calculation of bound-
state energies in a coupled-channel situation pro-
ceeds from the Fox-Goodwin propagator, as pres-
ented by Norcross and Seaton. If a matrix of
A-independent solutions U is considered, instead
of actually propagating' one may consider the
matrix g, such that

where m and m+1 are the indices of two adjacent
points on a grid. - The matrix may be propagated
with the equation

where a g, andy are three matrices charac-
teristic of the multichannel Numerov procedure. "
The matching condition can be shown to be

det( a, (g —2++~ „st (
= 0,

a relation which is reminiscent of that met in
Cooley's method' for the one-channel problem,
or equlvalen'tly

a relation which is reminiscent of that met in
Johnson s renormalized Numerov approach to the
bound-state coupled-channel. problem. ' In (3)
and (4), (g andtLI result, respectively, from the
outward and inward propagations. A noteworthy
feature of such calculations is that the initial val-
ues ofn in the interior and exterior regions can
be chosen somewhat arbitrarily: The memory of
these initial. values is I apidly lost as one prog-
resses toward the classical region. It is in fact
possible to choose simply g =-0 as the boundary
condition.

The next stage in order to deal with resonances
instead of bound states is the introduction of both
closed and open channels, with an initialization of
N for the open channels in the exterior region
suggested by the Siegert form of the components.
We take the open part of to be diagonal. with

+« ~ exp(ih, h),

where h is the propagation step and k, the wave
number in the ith open channel. The iterative
matching procedure based on (3) and (4) converges
now to a complex energy of the form E=E„-iF,
this being due to the fact that such boundary con-
ditions can only be fulfilled with complex wave

numbers. The initial values given to the matrix
elements of 6t for the inward propagation [Eq.
(5)] are modified iteratively through the relation
linking each k, to K

The final stage is to transform r into re" into
the coupled equations. We have observed that one

may either maintain the Siegert initialization in

the open channels, or even start, for 8 large
enough, from a zero initialization. Just as for
the bound-state case, the correct (R matrix is
progressively built in as a result of the inward
calculation. With a program following the latter
prescription, bound states and resonances are
treated exactly on the same footing, the matching
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procedure converging either to a real energy
(within the accuracy of the calculation) in the
former case or to a complex energy in the latter
case

II. ILLUSTRATIVE CALCULATIONS

As a first example, we consider the Fesbach
resonances of a two-channel situation with an
harmonic potential (the closed channel) inter-
sected by a linear potential (the open channel).
Analytic expressions for the widths and shifts of
the resanances are available' in the limit of small
interchannel coupling. In order to give some
meaning to a Siegert initialization in the open
channel, the linear potential is smoothly joined
onto a decreasing exponential outside the inter-
action range. Table I gives the results for the
three lowest resonances with the present tech-
nique, with the following variants:

(a) real coordinate, Siegert initialization,
(b) complex coordinate (8=0.5 rad), Siegert

initialization,
(c) complex coordinate (8=0.5 rad}, zero

initialization.

A very satisfactory agreement with the analytical
results (d) is observed in all eases, with, how-

ever, a somewhat better performance for the cal-
culations with a complex rotation. We interpret
this as meaning that with a real coordinate. the
initial 0 matrix reduced to its open part given
by Eq. (5) is mly an approximate guess, while with
rotation the initial S matrix does not matter any-
more. The inward S matrices at the matching
point in cases (b) and (c) are practically identical
so that results of (b) and (c) are the same within
the number of figures shown in the table. As
another alternative, we let the potential of the
open channel be linear for arbitrary r. With 8
= 0.5 rad and zero initialization the same results
are obtained. It is also possible to perform a cal-
culatian (e) with no interehannel coupling, a com-
plex coordinate, and zero initializatim. This

calculation performed under the same conditions
as (c) leads to the bound energies of the harmonic
potential, with spurious widths and shifts which
are six orders of magn, itude smaller than the
widths and shifts of (c}.

As a second example which is closer to the dy-
namics of a real molecular system, we have re-
considered the calculation of the photodissociation
rate for a model linear triatomic molecule. '"
The initial state is represented by two coupled
oscillators, while the various channels for dis-
sociation correspond to the various eigenstates
of one of these oscillators and the atom-diatom
motion. These eigenstates can serve as a basis
for expanding the wave functions of both the in-
itial and the final states. With parameters ap-
propriate for the ICN molecule it is observed"
that an accurate value for the zero-point energy
of the initial state can be obtained with four closed
channel. s. The main channel for dissociation cor-
responds to the final-state oscillator in its zero-
point level. The associated rates can be obtained
from the phase shift in the open channel. "

Since this is a problem with two coordinates,
say x and y, with the coupled equations deter-
mining a set of functions of x, the atom-diatom
distance, we are faced in fact with two alternatives:
(a) changing g and y into x = xe' and y = ye" in the
starting Hamiltonian X(z,y) and deriving from this
transformed Hamiltonian a set of coupled equa-
tions in the variable i and (b) changing x into x
in the set of coupled equations obtained from
'tc(x, y). In alternative (a} the energy of the bound
initial state can only be real after convergence
has been attained. For instance the calculation
restricted to one closed channel is necessarily
yielding a y-dependent complex energy, this being
due to the presence of some matrix elements
depending on operators built from y. Results in

Table II are to be read as follows: The column
labeled (z, y) correspands to alternative (a), with

p = 8 = 0.01 rad that labeled (g, y) to (b), with 8
=0.01 rad. The column (s, y) gives results ob-
tained from the phase shift. The initial bound

TABLE I. Shifts (&) and widths (I') in cm of the three lowest resoninces (y= 0, 1,2) of a harmonic potential intersect-
ed at the equilibrium distance by a linear. potential of slope 65 000 cm /A. The zero-point energy is 1000 cm, the re-
duced mass 7.5 astons, and the interch~~~el coupling 10 cm: (a) Coupled-channel approach with a real coordinate;
(b) and (c) with a complex rotated coordinate; (d) analytical results; and (e) with no interchannel coupling. The numbers
in parentheses are powers of ten.

(a) (b) or (c)
r

(d) (e)

0 0.470 97(-2) 5.405 26(-2) 0.468 30(-2) 5.456 89(-2)
1 -2.585 12(-2) 3.570 86(-2) -2.60153(-2) 3.596 1V(-2}
2 -3.304 82(-2) 2.61645(-2) -3.31845(-2) 2.629 10(-2)

0.468 35(-2) 5.456 77(-2) 0.4226(-8) 0.8408(-8)
-2.60134(-2) 3.596 27(-2) 0.1590(-7) 0.265V(-7)
-3.31832(-2) 2.629 33(-2) 0.3813(-7) 0.7265(-7)
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TABLE II. Calculations for a model for the linear ICN molecule, with parameters given in

Ref. 11, except for the interstate coupling which is ten times larger. All energies are in units

of the zero-point energy of the final oscillator. n is the number of channels: n 4, closed
channels only; n =5: four closed channels and one open channel. Q, y) and Q, y): &o variants
of the complex coordinate method with zero initialization in the open channel. 8 is 0.01 rad.
(x,y): conventional phase shift analysis, the bound-state energies being obtained by extrapo-
lation to zero coupling with an artificial open channel. The numbers in parentheses are pow-

ers of ten.

(x,y) (x,y) (x,y)

S.87Ã - i0.7258(-4)
5.8060- i0.1392(-2)
5.8003- i0.1950(-3)
5.8000- i0.1368(-4)
5.8012- i0.1723(-2)
5.4009- i0.2142(-2)
5.0003- i0.2441(-2)
4.5996- i0.2513(-2)

5.8735 —i0.1638(-9)
5.8061- i0.1193(-7)
5.8003- i0.1859(-7)
5.8000- i0.1922(-7)
5.8012- i0.1716(-2)
5.4009- i0.2139(-2)
5.0003 —i0.2442(-2)
4.5996- i0.2516(-2)

5.8735
5.8061
5.8003
5.8000
5;8011- i0.1687(-2)
5.4008- i0.2118(-2)
5.0003- i0.2440(-2)
4.5995- i0.2520(-2)

state is studied with up to four channels, the two
potential surfaces being placed in such a way that
its energy should be 5;8 in units of the zero-point
energy of the final oscillator. With n =4, the
spurious widths of methods (x, y) and g, y) are of
the same order as the error on the real part of
the energy. The fifth channels is the main dis-
sociation channel. The resceance energies ob-
tained with the three methods and n = 5 are in very
close agreement. The widths are now several
orders of magnitude larger than the spurious
widths. The lowest three lines give the reso-
nance energies for three other excitationenergies,
the unshifted initial energy being now 5.4, 5.0,
or 4.6. The same close agreement is observed.
A full account of this two-coordinate problem,
with a description of the coupled equations solved
in the various alternatives, will be published else-
where.

As a word of conclusion we may say that the
promise of the complex rotated coordinate meth-
od, which is to transf'orm the wave function of
rescnances into localizable ones, opens not only
the route to the use of linear expansions in bases
of integrable functions" but also the route to a
coupled- channel approach with bound- state bound-

ary conditions. In such a procedure, the depen-
dence of the energy versus the rotation angle is for
a wide variation of this angle only due to possible
inaccuracies in the computer code used to integrate
the coupled equations. There is, therefore, no
counterpart to the "trajectory study" of the linear

expansible

procedure. " Furthermore, the ini-
tialization problem in the exterior region is.com-
pletely solved, while with a real coordinate there
is only approximate knowledge of the initial form
to be given to the matrix to be propagated.
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