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The approxi~~tion method introduced by Keldysh is revised and extended. The technique is applicable to the

photodetachment by a plane-wave field of an electron bound by a short-range potential. The approximation is to

neglect the effect of the binding potential as compared to the field effects on the final state of the detached electron.

By choice of a diffex~at gauge t-»~~ that used by Keldysh, the format»sm becomes very simple and tractable. A

general basis for the formalism is developed, and it is then applied to find transition probabihties for any order of

interaction for both linearly and circularly polarized plane-wave fields. The low-intensity, 6rstwrder limit and the

high-intensity, highwrder»trttt yield the correct results. Two intensity paremeters are identified. The fundamental

one is z =e'e'/4nuu, where a is the magnitude of the vector potential (in radiation gauge) of the 6eld of circular

frequency m. The second pariameter is z, 2'/E, where E~ is binding energy, and it becomes important only

in the asymptotic case. With the assumption that the field leaves the neutral atomic core relatively unaffected,

the formalism is applied to the example of the negative hydrogen ion irradiated by circularly or linearly polarized

10.6-p, m radiation. Photodetachment angular distributions and total transition probabilities are ex~mined for

explicit intensity effects. It is found that total transition probability 8' is not sensitive to intensity since Agog W)/d

fog z}retw'es low-intensity straight-line behavior up to quite high values of z. An important intensity e6ect is the

major significance of higher-than-lowestwrder terms when z is large, especially for circular polarization. A sensitive

indicator of intensity is the ratio of photodetachment probabilities in circularly and linearly polarized fields, which

increases sharply with intensity. An investigation of the convergence of perturbation expansions gives the upper hmit

z & [E~ /m) —E /u, ~here the square bracket means "smallest integer containing" the quantity in brackets. This

»lit is z g0.59 for H in 10.6-pm r 4'~tion. The failure of perturbation theory is not necessarily manifest in

qualitative ways. For example, it is not apparent in total photoelectron yield as a function of intensity.

I. INTRODUCTION

The physical problem treated here is the action
of an external plane-wave electromagnetic field
on an electron bound by a finite-range potential.
The applied field may be very intense, although
there are practical limits to the intensity which
can be considered. The approach is entirely ana-
lytical. The technique is based on a combination

. of solutions for the electron in the applied field
alone, without the binding potential, and on solu-
tions for the electron in the binding potential
alone, without the applied field. An important
aspect of the work is the availability of closed-
form analytical solutions within the context of as-
sumptions on the finite range of the binding poten-
tial and the absence of intermediate-state reso-
nances.

The work reported here is closely related to that
of Keldysh. An essential difference between the
present work and the Keldysh work is in the choice
of gauge in which the extex nal electromagnetic
field is expressed. Keldysh used electric field
gauge, where the interaction Hamiltonian is -eF r
(where F is the electric fieM vector); whereas
radiation gauge is used below, with an interaction
Hamiltonian -m eX '(-iV)+(2m) ~a~A~ (where
X is the vector potential of the applied field).
Throughout this paper, the convention S=c=& is

used. The analytical advantages attached to the
use of r adiation gauge are major. For instance,
Keldysh is forced to resort to a low field-frequen-
cy (or large photon-order) approximation early in
his work, so that the low-order perturbation the-
ory limit is not accessible from his results.
The simplicity attendant upon the use of radiation
gauge permits the development of a general ana-
lytical expression which contains the proper high-
and low-order limits, and also makes available
other general results with far-reaching implica-
tions. Radiation gauge was used by Jones and
Reiss' to calculate multiphoton interband transi-
tions in solids induced by circularly polarized
radiation. The correct perturbation limit is ob-
tained by them. A general discussion of the ad-
vantages of radiation gauge for intense-field prob-'

lems is given in Ref. 6.
In Sec. II, the KeldJJsh approximation for the 8

matrix is presented. This approximation re-
places the complete interacting state for the photo-
detached particle by a state in which field effects
are retained in full, but binding effects are neg-
lected. A qualitative discussion is given to show
that this approximation can be viewed as- arising
from an expansion in the binding potential, and
should be much superior to a conventional pertur-
bation expansion in the external field when field
intensity is high and the range of the binding poten-
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tial is short.
The-8 matrix derived in Sec. II is used in Sec.

IO. for the ealeulation of a general differential
transition probability per unit time, and total tran-
sition probability per unit time for photodetach-
ment of an electron bound by a fbQte-range poten-
tial. Both circular and linear polarization of the
applied field are considered. The exyressions
are found to depend on a general intensity param-
eter z =eV/4m~, where a is the amplitude of the
radiation-gauge vector potential of the applied
plane-wave field of circular frequency w. The
results are in closed analytical form, and, within
the approximations inherent in the S matrix em-
yloyed, are valid for all multiyhoton orders and
all intensities. In practical application, inten-
sities will be limited to values sufficiently lour that
significant depletion will not occur in the irradi-
ated sample. Also, it is generally presumed that
the intensity is not so high that photodetachment
occurs before asymptotic-time behavior of the ex-
pression for transition probability per unit time
can develop. This last restriction is not particu-
larly limitmg, as is discussed in detail in a later
section.

The low-intensity limit of the transition proba-
bility per unit time is found in Sec. IV. For tran-
sitions which are first order in the applied field,
the results are identical to those derivable direct-
ly from first-order perturbation theory. The low
intensity limit for arbitrary multiphoton order is
obtained readily for the case of circular polariza-
tion of the applied field. The hnear polarization
case is also developed, but it presents extra com-
plications because of the presence in that case of
a generalized Bessel function of taro variables.
The yroyerties of this function are given in the
Appendices. A general comparison of transition
probabilities for circular as compared to linear
polarization as a function of &s/&o is also given in
Sec. IV, where &~ is the binding energy of the
electron.

Asymptotic results for large values of the in-
tensity parameter, z, are given in Sec. V. The
energy conservation condition contains the inten-
sity parameter in such fashion that the condition
z» & requires also that the minimum multiphoton
order be large. The asymptotic forms thus ob-
tained are relatively complicated, but if a second
intensity parameter, zq, is large, then the simple
tunneling form occurs. This second intensity
parameter is sq =2zru/&e, where &e is the binding
energy of the electron. The zq parameter is just
the inverse quare of the Keldysh intensity param-
eter y. Because Keldysh. used a large multiyho-
ton-order ayproximation from the outset, his vrork
does not contain the more fundamental intensity

parameter, z.
The important yroblem of the time required for

the transition probability expression to reach its
infinite-time analytical form is explored in See.
VI. To reduce algebraic complication, attention
is confined to the simpler circular polarization
case. It is found that the condition for asymptotie-
time behavior is essentially ~t» 1. That is, the
condition is essentially that the time be much in
excess of a single wave period. With the further
limitation that transition probabilities should be
constrained to sufficiently small values that de-
pletion effects do not occur within a single pulse
of the applied radiation, the asymptotic-time be-
havior is guaranteed. The results about asymp-
totic times contradict results obtained by Gelt-
man. Hovrever, Geltman's technique was to con-
sider an intense oscillatory electric field in a
one-dimensional framework, vrhich is fundament-
ally different from the intense-field plane-wave
ease. . The magnetic field component of a plane
wave is important at high intensity, but Geltman's
work has no magnetic field. The physical prob-
lems are different.

An application of the formalism developed in
this payer to a concrete example is given in Sec.
VIl:. The example chosen is the yhotodetachment
of the excess electron from an H ion by 10.6-pm
plane-wave radiation, either circularly or linear-
ly polarized. Effects of the field on the neutral
atomic core of H are neglected. The bound-
state vrave function of H is represented by a
simple analytical approximation given by Arm-
strong. The differential transition probability
yer unit time is given in closed analytical form.
Integration over the solid angle to get the total
transition probability per unit time is done numer-
ically. The angular distributions of photodetach-
ed electrons are strikingly different in circular
and linear polarization cases. Circular polariza-
tion results always peak in the sideways direc-
tion (with respect to an axis along the direction
of propagation of the field). Linear polarization
results exhibit several peaks, with the largest
peak in the forward direction for odd multiphoton
orders, but not for even multiyhoton orders
(where the axis is oriented along the polarization
direction). The effect of intensity on the shape
of the angular distribution is modest for circular
yolarization, but striking for linear yolaxization.
On the other hand, the curves found for total tran-
sition probability per unit time as a function of
intensity do not show major deviations for either
polarization from the trend vrhich vrould be expec-
ted from low-intensity perturbation theory. s That
is, the total transition probability yer unit time
(or total cross section) is not a sensitive indicator
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of intensity effects. If angular distributions are
measured, the linear polarization case is sensi-
tive to intensity. Another way to detect explicit
intensity effects is accessible if the energy of the
detached electrons is measured. When intensity
is low, of course, only the minimum multiphoton
order contributes, and the electron spectrum is
monochromatic. However, as intensity increases,
there are major contributions from higher-than-
lomest multiyhoton orders, and significant extra
energy can be imparted to some of the detached
electrons. This effect is strongly dependent on
intensity, and is more striking with circular than
with linear polarization of the field. There is
another explicit intensity effect which does not re-
quire measurement either of angular distributions
or of electron energies. If one takes the ratio of
the total yield of photoelectrons as detached by
circularly as comyared to hnearly polarized radia-
tion, that ratio is independent of intensity until
about z =10 is reached. The ratio then rises
sharply with intensity. Specifically the ratio of
circular to linear polarization yields is quite
small at low intensity, as would be expected with
a relatively large multiphoton order. However,
the low-intensity ratio of 10 is increased by a
factor of 10 as the intensity increases to about
z =2.4. This intensity effect has not been re-
marked upon previously.

Section VIII gives a very brief treatment of the
application of the formalism to the neutral H atom.
Although this is the example selected by Keldysh,
the formalism is of very limited validity for this
problem.

Section IX is devoted to an investigation
of the convergence of perturbation theory in
the presence of circularly polarized radiation.
The analytical expression for differential transi-
tion probability per unit time lends itself to a vex'y
straightforward examination for singularity struc-
ture in the complex intensity parameter plane.
The intensity parameter, z, is the expansion
parameter of perturbation theory. The radius of
convergence of perturbation theory is found to be
limited by an essential singularity at s =[&}}/&u]
—E}}/(d, where the square bracket signifies the
smallest integer containing the quantity in the
bracket. For the example of H irradiated by a
10.6-gm field, this limit on perturbation theory
is z ~ 0.59. A plausibility argument is given to
show that the correction terms which were omitted
from the 8 matrix which was used are of such a
nature that they cannot cancel the essential singu-
larity mhich limits perturbation theory. If this
inference is correct, the limit found on the radius
of convergence of perturbation theory is an uyper
bound for this H problem, which can only be de-

creased by binding-potential corrections to the
theory given here. Although the limits given here
are for the H problem, they are easily found for
any finite-range potential by insertion of the ap-
propriate momentum-space wave function in the
transition probability expression. In principle,
limits on perturbation expansions can be found also
for linearly polarized fields, but the presence of
the generalized Bessel functions of two variables
makes the analysis very much more difficult.

II. S-MATRIX FORMALISM

The general physical yx oblem considered here
is one in which a charged particle (nominally con-
sidered to be an electron), initially bound to a
center of force by a finite-range potential, ex-
yeriences detachment from the center of force
through the action of an intense plane-mave elec-
tromagnetic field. The 8 matrix to describe the
yhotodetachment ean be written in general as

Sy, —lim (}I'q, 4}}}, (I)

where 4'& is the final out-state of the system con-
taining the complete effects of the electromagnetic
field as well as the binding potential, mhile 4& is
the initial state of the unperturbed system with no
field present. [The form given is more convenient
than the alternative form Sz, ——lim, (4z, 4';), be-
cause C, in Eq. (1) is the initial, unperturbed,
bound state, which is unique and well-known, '
whereas 4& would be one of a set of unbound
states. Furthermore, }I}& in Eq. (1}can reason-.
ably be assumed to be dominated by the applied
field, whereas no such assumption can be made
for }I}& .] By using the integral-equation solution
for P}, one can write Eq. (1) as

(2)

where V& represents the interaction potential due
to the applied electromagnetic field, and the sub-
script f~ on the scalar product means that all fac-
tors in the product deyend on tq. The steps neces-
sary to pass from Eq. (1) to Eq. (2} are described
in AppencUx A. The approximate form of the 8
matrix to be used in this yaper follows from the
assumption that, after detachment by the intense
electromagnetic field, the state of the initially
bound particle is adequately desex ibed by the state
vector in which only the effects of the ayplied field
are considered, and the binding potential is ig-
nored. That is, Eq. (2) is rewritten as

(8-}}»=-iJ d4(»», }' »g},

where +& is the state vector for the free charged
particle in the presence of the electromagnetic
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The state @& can, from Eq. {A10},be approxi-
mated by 4+. The integral to consider is then

dt2(4'+, Vs+„~}t2 . (4)

%ere the factor V& not present in the inner pro-

field-i. e. , the Volkov state vector. Equation (8)
is the basic apyroximation employed in this gaper.
This is exactly the Keldysh approximation.

Other approximations could also be used as a
starting point in place of Eq. (8). For instance,
one could substitute for @I' in Eq'. (2), a state vec-
tor corresyonding to a continuum state of a yar-
ticle in the presence of the binding potential, but
with no effects of the applied field considered.
This mould be more in line with conventional per-
turbation theory. Equation {3)is superior to this
other possibQity, and some further insight into
the reasons for that can be obtained from results
in Appendix A. A formal development is given in
Appendix A for the case where a particle bound

by potential V& is affected by the introduction of
the potential V„, representing the apylied field.
The formalism so developed is not strictly appli-
cable to the physical problems to be considered in
this payer, since V~ miQ be modified by the ex-
ternal field, whereas the assumption that V„and
V& are independent is inherent in Appendix A.
To give a specific example, suppose the physical
yroeess being explored is the photodetachment of
a negative hydrogen ion. Certainly V& has no
dependence on V&. However, VB represents the
binding potential of an electron to a neutral hydro-
gen atom, and the atom is itself polarized by the
applied field. This, then, modifies Va. Never-
theless, it is very instructive to suppose the in-
dependence of V&and V~, and see what emerges.

Appendix A gives a derivation of the full 8 ma-
trix for the ease when the yartiele bound by poten-
tial Vs (where V& is presumed independent of the
applied field) is affected by the introduction of the
potential V„. Equation (8} is just the leading term
of Eq. (A17} or (A18), with the notational corre-
syondence that 4~ of Appendix A is rendered as
4 here. An assessment of the accuracy of the
approximation represented by Eq. {8)can be ob-
tained by comparing the magnitude of the second
term in Eq. (A18) with the first term. For order-
of-m~nitude purposes, the theta function in the
second term can be ignored, and the integral over
tj of (O'„, V„4'~,) can be equated to the integral of
(@~,V~ s,) in the leading term. The ratio of the
magnitude of the second term to the first is then
to be found by estimating the magnitude of

which is generally true for atomic and molecular
problems. The time integration in Eq. (4} is
nominally between infinite limits, but if the field
is N wavelengths in spatial extent it is N periods
in temporal extent so

dt's (('t~, (' S„(,~ ~
=0, ,((X)

mRo N&

=o(—' +f(x x]' (5)

where %, (=1/m) is the electron compton wave-
length. For & of about 10 cm and Ro of the or-
der of angstroms, the right-hand side of Eq. (5)
is roughly 10 . This represents just one term
in the sum over j shown in Eq. (A18}, but even
if Eq. {5)is multiplied by the number of modes
in the field, the result mill still be small.

In the physical justification given at the begin-
ning of this section for adopting Eq. (8) as an ap-
proximate 8 matrix, the notion of high field inten-
sity was used. In arriving at the error estimate
of Eq. (5), however, the essential point was the
limited range of V~, and the field intensity does
not appear at all. In fact, it will be shown later
that the results derived from Eq. (8) reduce to the
expected limit when the field intensity becomes
small.

As discussed in Appendix A, the complete ~
matrix can be developed in a perturbation exyan-

duct in Eq. {4), it would be just an orthonormality
expression for the +& states, with a value of unity.
The presence of Va in the inner product affects
its value in tmo basic mays. Consider the inner
product to be in configuration representation, so
it is a spatial integral. First, since V& repre-
sents the binding potential, and since 4„is just a
modulated ylane wave of essentially uniform mag-
nitude over the volume of integration, then the
xnagnitude && can be extracted from the inner
product, mhere ~& is the binding energy. Second,
V& is taken to be a finite-range potential mhich
affects a volume much smaQer than that encom-
passed by the applied field. The inner product in
Eq. (4) will then be taken to be of order

(q „,V,q „)=O(Z, ft', /XX'),

where Ro is the range of the potential V&, and the
state +„(in configuration representation) is taken
to be normalized over a volume whose transverse
dimensions must be at least & (the wavelength of
the field), and whose extent in the direction of
propagation of the field is B wavelengths. The
binding energy is of order
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sion either in terms of V~ or Vs. Equation (3}and
the error estimates just given apply to the leading
term in an expansion in V&. Had an expansion in
V„been adopted instead, Eq. (A15) would apply.
An order-of-magnitude analysis of the type just
given, when applied to a comparison of the sec-
ond term in Eq. (A15} with the leading term, leads
to a result which is dependent on field intensity,
and will be small only when the intensity is low.
The approach based on Eq. (3}is thus much more
suitable than one based on Eq. (A15).

An important point can be made about the effect
of the field on V&. The error, estimate based on
Eq. (5) refers to the error incurred in using Eq.
(3) as an approximation to Eq. (2); it refers to
the error involved in neglecting the effect of the
finite-range binding potential on the unbound final
state. In the above discussion, V& is assumed to
be independent of X. When Ve is modified due to
effects of the applied field, the qualitative remarks
stemming from Eq. (5) remain unchanged as long
as V is not converted by the field from a short-
range to a long-range potential.

V„(t)e„=V„(p, t)e„. (6)

The initial-state wave function 4 j is a stationary
bound state,

C,(r, t)=y, (r) e~»'.

The advantages of radiation gauge for intens8-
field problems are described in Ref. 6. Further-
more, the use of radiation gauge leads to an ana-
lytical simplicity which confers major benefits
which will become evident below. Some of these
benefits have already been demonstrated in a
treatment of intense-field induced interband tran-
sitions in solids. The wave functions 4& are the
long-wavelength-approximation Volkov solutions
in radiation gauge

1 p2 pt
», exp ip'r-i

2
t-i I) d7'V„(p p)rl p (7)

where V„(p, t) is given by Eq. (6) with the iV-
operator replaced by the eigenvalue p, and where
V is a normalization volume. Note that +& is an
eigenfunction ' of the V„(t) operator,

IK TRANSITION PROBABILITY

A. General wave-packet S matrix

(6)

The S matrix to be calculated is given in Eq. (3},
where the state vectors +& and 4, and the opera-
tor V„are no% to be used in configuration repre-
sentation. The applied electromagnetic field will
be treated in radiation gauge, so that

I

eA '(-iV) e A
m '2m.

Since V& is a Hermitian operator, the S-matrix
expression in Eq. (3) can be written with the help
of Eq. (8) as

(S- 1)f) i—-dt (V„qd~p 4()f
aQ

dt V„(p, t)(%'~, 4,), . (10)

With Eqs. (7}and (9) employed in (10}, the result
is

( jap ( pt
(S-l)f, i( „—=» p, (r)

l
dte+ ~'V„(p, t) exp(i dr V„(p, r)

l
.

i

is just the zero distribution, and so the integration by parts gives

(S-1)fl v~lzpt'~(p) 2 -«l "te ' expl'p l j@2/2 ra-E jk2' j
d p (p, T)),

An integration by parts can now be carried out in the integral over t. This leads to an integrated part to
be evaluated at t ~~. However, for periodic X, the expression

e'e ~ ~" expli df v„(p, ~)
lg ~pcs ).

where Pq(p) is the Fourier transform of P, (r),

y, (p}=J) d're "'y, (r). (13)

Equation (12}is the basic expression from which
transition probabilities will be calculated. The
electromagnetic field enters in the exponential of

the integrand in the V„(p, v) factor. In principle,
the field can be any wave packet which vanishes at
infinite times, subject to the limitations that the
frequency components of the packet must all prop-
agate in the same direction and must satisfy the
long-wavelength approximation. The initial bound
state enters in Eq. (12) only through its momen-
tum-space wave function P, (p).
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B. Transition probability for circular polarization

=0, E, '6 =1.
The Volkov wave function (7) is then

(15)

2

g& ——v expl ip r-i t iz(d-t+iL, sin(~f —s)) I,
x/2 I'--. - . p

2HZ

(16)

The S matrix will now be written for the case of
a monochromatic circularly polarized plane wave.
The word "monochromatic" must be qualified to
the extent that the electromagneti'c field is pre-
sumed to be adiabatically turned off at I

t I
-~.

The vector potential in long-wavelength approxi-
mation for circular polarization is

X = -'a(«e'"'+ 0'e '"') (14)

with

« =2 '"(((I, +$8„) ) (2o)

where 8„,i„are unit vectors along the x and y
axes, respectively, and the upper and lower signs
in Eq. (20} refer to right and left circular polari-
zation, respectively. Equation (19}can then be
written as

p'«=2 (p, +it„)= 2 ii)e px(ii ratcnap„/p, ).
(21)

That is, pi is the component of momentum trans-
verse to the direction of propagation of the field

and y is the phase angle of ~ with respect to p,

(19)

For example, if the electromagnetic wave propa-
gates in the direction of the z axis, then the pola-
rization vector is

0, is the intensity-dependent amplitude

r.,=ealp «I/m(d, (18)

where z is a fundamental intensity parameter de-
fined by

z =- e'cP/4m(d, (17)

p =2'"Ip «I= lp. +e, l,

and the phase angle is

y =arctanp„/p„.

In terms of the above notation, Eq. (12) is

(22)

(22)

I'p' &
T'" I'p'

1)f( 1/z 4({p)I —E,
I Jl dt exp il —&, +z(() t -ii, sin'((df + s))V I2m (24)

The use of the generating function for the Bessel
function

e p[x- it;, sin((()f+ q)] = g &„(i,}e '"~"", (25)
n~-&

(s —1)I,——&, , ( &(p) g (ntd - ztd) s '"'z„((,)

—&, - nco+zco
p'
2m

(26)

The transition probability per unit time, av, is
found from

tU = llm
I {8 I)I( I (27)

puts the integral over t in Eq. (24) in the form of
a representation of the delta function, so Eq. (24)
is g, =-z'~y,

y = (2/m(u)'~p erne . (29)

The purpose of this new definition is to exhibit ex-
plicitly the intensity dependence of t;, The ang. le
e which appears in Eq. (29) is with respect to
an axis of spherical polar coordinates, where p
= lpl. In other words, P sine is just Pi of Eq. (22).

The total transition probability is found from
integrating s) over all final states available to the
detached particle. The Volkov states are continu-
um states with momentum parameter p. The total
transition probability, W, is thus

~='~ li((p) I'~'g & -z)'I&.("r)I'

(px61 -E,—n(d+zao I, (28}
ym

where the t;, parameter of Eq. (18) is now render-
ed as

The delta functions in Eq. (26) cause incoherence
between contributions from different terms in the
sum over n. The result of the operations indi-
cated in Eq. {27}is

V p
{2 )a I))

Vp dpdAte,
1

2' (so)
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where (2v) is the size of a unit volume in phase
space, and dQ is the differential solid angle.
With Eq. (28} employed in {80), the differential
form of the total transition probability per unit
time is

g(n-z)' Id' l)(r(Q)14(a vl

fp2 -E, -s~+z~l ~

]

where the notation (-'8 —= &8/(d has been introduced.
It is important to keep in mind that the p which ap-
pears in y [as given by Eq. {29)and in (r((p) l ] is
to be replaced by the value arising from the delta
function, which is

p = (2m(d)'+(n - z —Ce)"~.

This means that l(t ((p) l depends on 8, z, &8, and

~, in general. The new form of Y is

t=2(s-z -&8)' sin&. (84)

(88)

Equation (82) is the final form of the differen-
tial total txansition probability per unit time for
photodetachment arising from monochromatic cir-
cularly polarized electromagnetic fields. It is a
closed-form analytical expression as long as there
is an analytical form for the initial-state wave
function in momentum representation. The physi-
cal content of the conservation condition, Eq. {88),
is perhaps most easily seen in the quadratic form

p'/2m = (8- z - ~8)(d . (85)

First, consider Eq. (85) in the low-intensity limit,
8-0. Equation (85) then says that the final kinetic

The delta function in Eq. (81) can be used to ac-
complish the integral over p. The delta function
is in terms of p, but it is made directly usable
fox positive values of p by writing

5 +&8-8(d+z(dlP
2m ]

= (m/2(d)'~(n —8 —&8/(d) '~

x5[p (2m(d) (8-g - E /(d} ].
In this expression, the bound-state nature of the
initial state (E, & 0) is made manifest by setting

g g

where &8 is the (positive) binding energy. The
integrated form of Eq. (81) is

dW (2m (d~) +

dA (2m)
(n -z)'(n -8 —&8}'~

n~noy

n, = [z + ee-],
{87)

where no is the smallest index in the sum over n,
and the (zluare bracket in Eq. (SV) signifies the
smallest integer containing the quantity within the
bracket. The range of 8, initially [Eq. (25)] -~
&n&, is now confined to n() ~n&~.

C. Transition probabiTity for linear pohrixation

The vector potential for a monochromatic linear-
ly polarized plane wave in long-wavelength approx-
imation is

A =ac eos(dt,

where & is real and normalized {» =1), and an
adiabatic cutoff of A at lf l

— is understood. The
Volkov wave function is

2
~ P4~ ——V exp ip'r-i -- t-isn't

2m

.z+ fl sm(df I sln2(df
l )g 2 )

(Sa)

where 8 is defined in Eq. (1V). and 0, is the real
intensity-dependent amplitude

(0) —= 8QP ' &/m(d .
The 8 matrix, as given by Eq. (12}, becomes

p2
(S —lb( —— .n4(4»V 2m ]

~ p2
dt exp i —&, +z(d lf —g, sin(dt

2m

tZ+ —sln2cA
(40)

At this point it is appropriate to introduce a gen-
eralized Bessel function Z„(u, g), whose definition
and principal properties are given in Appendix B.
The generating function for Z„(u, v), given in Eq.
(Ml) leads to 'the expression

energy of the photodetached electron is given by
the energy contributed by an nth order interaction
with the field (loosely speaking, the energy of n

photons, 8(d), less the energy which must be in-
vested in overcoming the initial binding energy of
the electxon, ~~. In the genexal case, where z
& 0, the energy z~ is a minimal interaction energy
of the charged particle with the electromagnetic
field.

A consequence of Eqs. (88) or (85) is that n is
bounded fxom below, since

(85)

In terms of integer relationships,
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expl-iL, sin&of+i —sin2&A = &„lt:, , -- le
"".z z)

2 n-- "& ' 2)

(4I)

when Eq. (BV) is used. Equation (40) can now be
written

2%i
(S I)„= „,P, (p) (n~ —z~)Z„lt„- —

l2j
p'

X5 - 8&- gcv+zv, 42
2m

in close analogy to Eq. (26).
The transition probability per unit time, found

by using Eq. (42) in Eq. (2V}, is

w= I, lg, (p)l'aPQ(s-z)' z, lz' u, ——
l

5

x 5l Eg —tlcap +zccp l, (48)
(p'
(2ttl

where the intensity dependence of the t, param-
eter is made manifest by the notation

~t

n =2{mar} p cose .
(44)

The angle 8 is the polar angle in syherieal polar
coordinates, but in this linear polax ization ease,
the polar axis is taken to be along the yolarization
vector, ~. Thus, the spherical polar cooxdinates
are oriented differently in the circular and linear
polarization cases.

The total transition probability per unit time,
Eq. (80), leads to

dW (2m &o )
dQ 2v' g (s- z)'(s —z —z, }'"

NMg

a=8 (s-z-zz) cosa.1/2 1/2 (45)

As in the circular polarization case, dw/dA for
linear polarization as given by Eq. {45) is an en-
tirely analytic expression as long as an analytic
form exists for the momentum-space initial wave
function. An important difference in the two
cases is the occurx'ence of the generalized Bes-
sel function Z„{z n, —zz) in Eq. (45). This gives
a much xnore complicated structure to the linear
polarization case. For one thing, it introduces

(45)

by the same sequence of steps.which led to the
very similar Eq. (82) for circular polarization.
As before, the p which appears in o and in l$, (p) l,
is given in Eq. (88}, and & can now be expressed

very different behavior fox even and odd values of
s, as can be seen by observing some of the prop-
erties of 1„{s,e) given in Appendix B.

D. Limitations

It has been stressed that Eqs. (82) and (45) are
closed analytical forms obtained without the need
for any ayproximations beyond those inherent in
using Eq. (8). As indicated in the discussion in
Sec. E, a finite range for the binding potential
~~ should be enough to assure the accuracy of
Eq. (8). Other limitations do exist, however,
which wiQ be noted here.

The order of magnitude analysis associated with
Eq. (5) takes no account of the possibility of inter-
mediate resonances associated with the binding
potential. Suypose, for example, the cautions
about a long-range potential (like the Coulomb
potential) were ignored, and the above formalism
was applied to yhotoionization of a neutral atom
from the ground state. If energy conservation
demands a multiphoton process, then there is a
possibility that some number of photons less than
the threshold number for ionization will be reso-
nant with an excited bound state. Ionization then
takes place in two stages —excitation, followed by
ionization from the excited state. %'hen such a
resonance is yossible, it becomes the dominant
mode of ionization. The analysis connected with
Eq. (5), and the conclusions therefrom, are not
valid if such a resonance can occur with a bound
excited state.

Another caution which must be observed has
to do with depletion effects, which can occur when
W is of the order of (At), where M is the dura-
tion of the electxomagnetic pulse. For the sake
of simple exposition, consider a square pulse of
radiation turned on at tixne t =0. If No is the ini-
tial number of particles in the target region which
are candidates for photodetachment, then at time
f (f & Af), the number remaining is

and the yield of photodetached electrons exyres-
sed as a fraction of the initial particles yresent is

y = (No —N)/No —I —e (4V)

Thus, if 8'&«1, the yield builds Hnearly with
time

r=Wf (WAf«l),

permitting direct experimental determination of
W by measuring 8'M. If however, 8'&»1, then
Eq. (4V) sho'ws that F- I before the pulse is fin-
ished, and W cannot be determined from the total
yield. (This assumes that time resolution of &
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during the pulse is not possible. ) It will be as-
sumed hereafter that only

w« I/nf (48)

will be of interest. If & as short as 10 sec is
considered for 1.06-pm radiation, then W as
large as perhaps 10 sec can be treated. For
10.6-p m radiation, A -5 X 10 sec is currently
appropriate, so W as large as 2 X 10 is of inter-
est.

If the yield of photoelectrons during a pulse
could be time resolved, then another limitation
would have to be considered. The formalism used
above for finding W makes use of a large-time
limiting procedure. %ere saturation of the tran-
sition probability to occur during a time of the
order of a single wave period, the above formal-
ism for W is not applicable. To use the present
formalism, the constraint

W&(1/T, (49)

is required {&is the wave period), which allows
consideration of much larger W than does Eq. (48}.
The condition (49) will be examined in more detail
in See. VI.

As discussed in Sec. II, the presumption is made
that V~ does not experience a major alteration as
a consequence of the application of the external
field.

Subject to the limitations (48) and(49), and the cau-
tions about intermediate multiphoton resonances
and field-independence of Vz, Eqs. (32}and (45)
are intense-field expressions which can describe
nth order processes in a single closed-form ex-

pression. They are not limited by convergence
constraints on intensity as is perturbation theory.
The convergence of perturbation theory is exam-
ined in Sec. lX.

IV. LOW-INTENSITY LIMIT

A. Circular polarization

The differential transition probability for the
case of circular polarization when the fiel.d inten-
sity is low is found readily from Eq. (32). Be-
cause the argument of the Bessel function is small
when z is small, the lowest-order Bessel function
will be dominant, and only the n =np term in the
sum needs to be retained. With the approximation

J'„,(z'"r) = (s,!) 'z"&(so —ez)"o sin'"oe,

which follows from Eq. (34) for 'Y, dW/dQ for cir-
cular polarization is

dW (2m'&o')' (so-zz)"
(

- (-) (2 „, . 2„, ( )
dA (2v)' [(n —1)']~

for low field intensity. In the special case that
~
(f(,(p) ~

is independent of the e, (((( angular coordi-
nates, the differential transition probability in
Eq. (50) can be integrated over solid angle. The
momentum-space initial-state wave function will
be independent of angular coordinates if the con-
figuration-space wave function ((((,(r) is a function
of r only. If such is the case, integration over the
solid angle gives

W
™~s

(( (( 8
~ g { ) (2zno (51)

v (2s, +1)!

B. Linear polarization

Low-intensity results for linear polarization are more complicated than the circular case because of the
presence of the generalized Bessel functions in Eq. {45). It is shown in Appendix C that J„(z ' c(, ——,'z)
behaves as z" for small z, so again the sum over n reduces to the leading term, n=np. For even np, Eqs.
(C2) and (46) give the result

ft /2

n
~

(-8) ( — )
o 2) 4~ ~ 0 (2k)!{so/2 k)!

This leads to
ff /2 ftp/2

dW (2m (d )'
2( )g,~

~

(-) ~2
z)("o (-8) '(so ez "cos "e

dQ (2v)' o ' 4) . . (2k}!(2l)! (zno —k)! (mo —I)! '

and, if
~

((((,(p) ~
is independent of angular coordinates,

(2m'(o')'
2( ),~

~

- (-)~„(z),"o " (-8)'"(n, —~ )"
!(4) .((, , (2k)!(2l)! (~2O-k)! (~~o-l)!(2k+2l+1) '

For odd no, Eqs. (C3) and (46) yield

~ (, s&( ( ),„„„,„,(* " (-8('(n, -a, (' os eei/2 2m+i

2~ 4 ~ (2k+1}![(no -1)/2 —k]! '

which gives the results

(52)

(53}
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dW 8(2m (o ) s sn " - s ]'zl"() (-8) (no- &z) cosS S1/2 (tt -S)IS (I -1))S 4l 20,+l +1)

dA (2v)' s I(4) . (2k+ 1)!(2&+ 1)![s(ns-1) —k]![-,'(ns -1)—l]'

and, when IQ&(p) I does not depend on 8, s),

8(2m (2) ) s( )sn I, ( ) Is (z]

(s4)

&g -1)/2 (n 1)/2 +f

(2k+1)!(2f+1)![—,'(ns —1)—k]![—,'(ns-1) —l]!(2k+2l+3) ' (ss)

C. First-order processes

A case of special interest is the low-intensity
limit for no ——1, since that corresponds to the cus-
tomary first-order perturbation result. Both Eq.
(51) for circular polarization and Eq. (55) for lin-
ear polarization reduce to

W=2(3v) '(2ms)s" ~(~- E.)"lii(p) I" (56)

for no ——1. There a,re differences, of course, in
the angular distributions, with Eq. (50)'for cir-
cular polarization leading to

={2v) (2 m)'s(no((u-E )z'" Iy, (p) I z sin'e, (sv)

and Eq. (54) for linear polarization giving

~2(2v) '(2m')'"(d{(d —&z)'"
I j,(p) I'z cos'e.

(s8)

When no ——1, it is convenient to introduce the no-
tion of differential cross section, do/(fQ, or total
cross section, e. To go from total transition
probability per unit time to cross section, it is
necessary to divide by the flux of incoming photons.
In the units used here, the photon flux is

flux = scP(k) = m(k) z/2vop 2 (58)

where &o is the fine-structure constant. Thus the
total cross section found from Eq. (56) is

o=4(ss(3(k)) (2m) ((d - &z)"
I i~(p) I' (60)

Low-intensity cross section expressions for ns
=1 are independent of the intensity parameter z.
That does not remain true for higher orders,

I

where o or do/dA depend on z"() . Total transi-
tion probability is a more convenient concept than
cross section for high-order processes.

D. Comparison of circular and linear polarization results

A comparison is now made for total transition
probability per unit time as brought abbut by cir-
cularly vis-a-vis linearly polarized fields. This
is done for arbitrary order, np, but the compari-
son is confined to the case where the solid-angle
integration can be performed in general. That is,
the ratio of Eq. (51) to Eq. (53), or Eq. (51) to
Eq. (55) is examined.

Considerable interest in comparisons of this
sort was sparked several years ago, when experi-
mental results ' for second- and third-order
photoionization of alkali atoms showed circular
polarization to be more effective. This was in
conformity with prior theoretical predictions by
Hernandez and Gold and subsequent work by
Lambropoulos, but it appeared to contradict ear-
lier theoretical results of Perelomov, Popov, and
Terent'ev, who concluded that linear polarization
should be more eff8ctive in causing ionization.
This situation was clarified by Reiss and by
Gontier and Trahin, who showed that linear po-
larization was increasingly more effective than
circular polarization as the order of the process
increased, but that for second- and third-order
processes, circular polarization could indeed be
more important.

In the present problem, the ratio of circular to
linear transition probabQities in the low-intensity
case (when transition probabilities vary as z"()) is
found from the ratio of Eq. (51) to Eq. (53) to be

n /2, no/2 +) -1(W„„s2(ns- zs))"s [-8(ns —zz)1"
((}2„,„„(2k+1}t ~ (2k)!(2!)t(m —2)!(,' —1)!(2k+2l+1))

when n() is even. When ns is odd, Eqs. (51) and (55) yield the ratio

W.k..'!] 2'"o(n, z,)"s—
W„, J„~s (2ns+ 1)!

( )'"[ ( )]'"' )-1

(22+1)!(2l+1}t[—'(kk 1)—2]![—,'(kk-1) —l]t(2k+2l+2)t

(61)

(62)
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lo-

Wc

Wi
(64)

The result (63), showing the order of the Bessel
function to always exceed the argument, points to
the asymptotic form

Z„("'r)= (s!) '(-,'z'"r)"

When substituted in Eq. (32), Eq. (64) gives

dW (2m'~')'" g ( -z)'( -s,)"" „
dn (2.)' „., (.!)*

&
I ii(p} I'»n'"8, (65)

to~
0

Eii/fbi

FIG. 1. Transition probability in a circularly polarized
field as compared to a linearly polarized field in the
low-intensity case. The ratio is plotted against E&l~,
the binding energy expressed in units of a photon energy.

These results are plotted in Fig. 1.
It is seen that circular and linear polarization

transition probabilities-are equal for np ——1, as
expected, and that circular results can exceed
linear only for a range of && values within the np

=2 and 3 cases. Generally, as np increases, the
ratio W„„/W,» declines, but superimposed on
this general trend is a succession of discontinui-
ties marking the thresholds for new np values.
The maximum value the circular-to-linear ratio
can attain in this formalism is 1.5 when np =2 or
1.9 when np ——3. Results for the maxima of the
circular-to-linear ratio derived from perturba-
tion theory treatments of atomic photoionization
are 1.5 (Refs. 17, 18) for no =2, and 2.5 (Ref. 18)
for np =3. The measured values in photoioniza-
tion of alkali atoms are 1.28+ 0.2 (Ref. 15) for
sa —2, and 2.15+0.4 (Ref. 16) for no=3.

V. HIGH-INTENSITY LIMIT

A. Circular polarization

The high-intensity (z»1} limit for the case of
circular polarization is found in a very straight-
forward way by using the appropriate asymptotic
form of the Bessel functions which appear in the
dW/dQ expression in Eq. (32). The essential
starting point in choosing the correct asymptotic
form is to determine the relative orders of mag-
nitude of the order, n, and argument, z y, of the1/2

Bessel function. Equation {34}for r, and Eqs.
(36) and (37) for s, z are the essential inputs.
Starting from {s—2z) & 0, which gives n & 4z(n
—z), it follows that

= 2z'"(s-.)'" 2"I'( —.—.,}"=.'"r.
(63)

since it is justifiable in view of the large values
for z and no to ignore the bracket in Eq. (37), and
simply set np ——z + &8. The large value for np as-
sociated with z» 1 also predicts a very sharp peak
in the differential transition probability at 8 =v/2.

In the special case that P, (r) has spherical sym-
metry, so that P, (p) is independent of angular co-
ordinates, the solid-angle integration in Eq. (65)
can be performed, which leads to

{2m'(o')' ~ (n —z)'(4z)"(n-n, )"'"!- -
Iq

(66)

p =(n - no}/No

Equation (67} then takes the form

(68)

dPE{P,z, zz, cos8)e ' '*"z' . (70)
p

B. Linear polarization

Investigation of the high-intensity limit in the
linear polarization case is complicated by the mul-
tiparameter nature of the generalized Bessel func-
tion which appears in Eq. (45). Many different
asymptotic forms of J„(u, v) exist, depending on the
relative magnitudes of n, u, v. The form appro-
priate for the physical problem being explored
here is developed in Appendix D. The result given
in Eqs. (D11)-(D13) is accurate to within a few
percent for z~ 10.

When Eqs. (D11) and (D13) are employed in the
expression for the diff erential transition proba-
bility in Eq. (45), the result is of the form

= gf(s, z, zz, coso)e'"""z" ", (67)
fthm@ p

where

g(n, z, zz, coss) =RU ' + 3o.'(Q - U) /8 '

—2n arcsinh[(n —3z + Q)/2z]

(ss)

with symbols as defined in Eqs. (46) and (D12).
Since z»1 implies np» &, the sum over n in Eq.
{67) can be treated approximately as an integra-
tion over the variable P defined by
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zg» f ~

The condition (Vs) justifies an expansion of the
arcsinh function in Eqs. (V2) and (VS), which
gives the results

Gg =-Sz/Szz~",

G,' =-(2z/zg~)(1 ——,
' cos'8) .

(Vs)

(VV)

(vs)

The form of Go in Eq. (Vs) makes possible a more
explicit consequence of ~G,'~ »1 than just zq»1.
It is also required that z»z~, ox equivalently,
it is required that «z» (2/z) . This last in-
equality is assured by the constraint

(VQ)

In its most general terms, Eq. (VO} is very com-
plicated, and the integration cannot be performed.
However, if the exponential in Eq. (VO) can be ap-
proximated by the first tmo terms in a Taylor ex-
pansion in P, then an approximate integration can
be performed easily. The physic@1 circumstances
under which this is possible mill be shown to cor-
respond to the so-called "tunneling limit, "where
the binding energy is much in excess of a photon
energy of the apphed field. That is, the inequal-
ity &g » ~ applies.

The power series expansion of the argument of
the exponential function in Eq. (VO) can be written
as

G =Go + Gg'P + ' ' ',
with obvious meanings for Go and Go. From Eqs.
(68), (6Q), and (D12) it can be shown that

Go —-2(z + «z) arcsinh(«z/2z)

+[«z(2z+ «z}]'", (V2)

Go ——2(z+ «z) arcsinh(«z/2z) '

+ —,'(z+ «J[«z/(2z+ «z)]'" cos'e. (Vs)

It is convenient to introduce the parameter

zg —=2z/«z ——z tP/2m' .
An upper limit for the value of Go is

G,'~2z(1+zq')[-arcsinhzj' + —,'(1+zg) ' ]. (V5)

The bracket on the right-hand side of Eq. (V5) is
negative for all values z1~ 0.969. A negative value
for Go is a necessary condition to have conver-
gence of the integral in Eq. (VO) when only the
first two terms in the power series expansion (Vl)
are retained. The effective range of values of P
which will contribute is of the order nP =

~ Ga ~

and so the linear term in Eq. (Vl} would be ex-
pected to dominate higher-order terms when Go
is negative and ~GO ~

» 1. From Eq. (V5) this re-
quires that

1Vhen conditions (Vs) and (VQ) are satisfied (along
with the original requirement z» & employed in
Appendix D), Eq. (VO) becomes

dP S'e "o"'
dA

=z~sH(Z, «z, cose). (80)

C. Intensity parameters

As is evident from the defining relation (V4),
both quantities z and z& are intensity parameters.
The z parameter was present from the outset, but
zq arose only when considering z» 1 asymptotic
forms. The exponential form given in Eqs. (VV)

or (81) does not hold true generally when z» 1,
but occurs only when the furthex inequalities zq
» 1 and «z» 1 [Eqs. (V6) and (VQ)] are also satis-
fied. In the work of Keldysh, z is not mentioned
at all, and only zq is identified as an intensity
parameter. The quantity labeled y by Keldysh is
exactly z1 ' . Keldysh follows quite a different
procedure than the one adopted here. He intro-
duces the condition (VQ) relatively early in his
work by employing a steepest-descent calculation
based upon &~ as a large parameter. This is done
immediately after his Eq. (15). Keldysh then
employs the condition (Vs) to arrive at the analog
of Eq. (80} given in his Eq. (20). This means that
the general form given in Eq. (45) is bypassed,
and thus it is not possible in the Keldysh formal-
ism to explox e the general nature of the limits z
«1 and z»1.

As remarked earlier, the intensity parameter z
is one of the intensity parameters associated with
free-particle intexaction with an electromagnetic
field. On the other hand, z& is a bound-par-
ticle intensity parameter. It is not surpxising
to find both of these types of intensity parameters
arising in the present investigation, concerned
with photodetachment of a particle initially bound
to a short- range potential.

The identification of z1 as a bound-particle inten-
sity parameter can be made on quite general phys-
ical grounds. To assess the intensity of a field,
the strength of the field interaction with a bound
particle, as expressed by the intexaction energy

The form (80), with Go given by Eq. (VV), is fami-
bar as the form associated with tunneling of a
bound particle through a potential barx ier when
an electric field is imposed. %hen written in
terms of electric field strength as

G, =-Im(2Z, )']'"/zz, (81)

where I" =a(d is the amp1itude of the electric
field, the exponential has the same form for both
constant ' and time-dependent. ' fields.



1798 HOWARD R. REISS 22

eA p/m, can be compared with the binding energy
of the particle. The ratio of the two energies has
the magnitude

I eX p/ml
O (eaRO&zl~

(82)

ip/m = [r, &p], (ss)

followed by assessing the magnitude of the com-
mutator in Eq. {82) as it would appear in a tran-
sition matrix element. The range Rp comes from
r, and &~ is the energy difference between final
and initial states as it follows from the difference
in the eigenvalues of +p when applied to those
states. The square of the result given in Eq. (82)
gives a general intensity parameter for bound
states,

zi, =e a Rp. (s4)

Since, for all atomic and molecular problems,
the characteristic size of the system is related
to the binding energy by

Ra ~ 1/mZz,

then Eq. (84) can be written as

where Ro is a range characteristic of the binding
potential. The second statement in Eq. (82) arises
from replacement of the p/m operator according
to the theorem

z, =e'a'/m&„

which is exactly of the form of Eq. {74) for zi.

VI. SHORT-TIME BEHAVIOR

Uyi ——(4~, 4'i')i,

analogous to Eq. (A12), or as

Uf i —(4f s 4i)to s

analogous to Eq. (Als} or (1). The procedure
that previously led from Eq. (1) to Eq. (11) now
leads from Eq. (85) to

(85)

The S matrix and transition probability formal-
ism that has been used up to this point has been
conventional in the sense that transition ampli-
tudes are calculated by comparing the state of the
fully interacting system with a noninteracting sys-
tem at infinite times. However, a laboratory en-
vironment in which very intense fields can be
achieved is one in which significant transition
probability could occur within times of the order
of a single period of the applied plane-wave field.
The short-time behavior of the system is now ex-
amined in order to determine the conditions under
which the infinite-time asymptotic states formal-
ism is meaningful.

Consider a system in which the electromagnetic
field is turned on at a finite time to, and the tran-
sition amplitude is assessed at a later time t.
A transition matrix can be defined either as

( ty. r «'z" '"'z"'V~(p, &')~pIi d V~(p, ~) I,
~o

in which the initial time to has been taken to be to =0, and where Ez =-E, & 0. The integration by parts
which formerly gave Eq. (12) now yields

rt et'
(U-1}gi——ygg i( +&z

~

dt'e's z" exP i dr V~(P, &)
~V . m Qp )

-e'S a 'zz" exp~i ) a. V„{p,~)~+1 .
o )

(ss}

A comparison of Eq. (86) with the earlier results in Eq. (12) requires first that the relative importance
of the last two terms in the square bracket as compared to the first term be assessed, since only the first
term survives in the S matrix. The second element of a comparison is that the significance of the differ-
ence in integration limits between the first term in Eq. (86) and the integral in Eq. (12) must be evaluated.
For explicitness, this will be done within the context of a monochromatic circularly polarized field. A
complete treatment mould include wave packet effects, but only orders of magnitude are sought here.
Since the zero point of the time coordinate has been fixed as the turn-on time of the field, the time as it
appears in the vector potential, Eq. {14), should have a constant phase incorporated in it. Equation {14)
is thus replaced by

ra(deice»+ + zo& ku» s)-
where P is a constant. After the integration over r is done, Eq. (86) can be written
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(U -1)z, — ', „exptiL, sin(&uP - t/))]ti
~

+ Ez
~

dt' exp ]~ + Ez +z&u ~t'-if, sin(rut'+ arp —]I))
tp.

'
])2m / s o (2m

—exp i~ +Ez+za& t-g, sin(&dt+ /dP- y)
.(p.&2m

(s7)

A Iw

(P I) P){P)z'l], $)R])]ss) 0) ~J (g )z &))«a-s)
fi y&/4 ~ ff c e

+ sspf- i). sis(tsp —S )]I,
where the parameters z, l„and y are as defined in Eqs. (17)-(19). When an expansion like Eq. (25) is
employed for each of the trigonometric functions appearing in an exponential in the brace in Eq. (87), the
result, is

2x
~

+E
~

~ dt z)e /mss zz+aum )t &')0 /2 szz+ mw)t + 1 (ss)

Again, it is the first term in the square bracket in
Eq. (88) which is to be identified with the S matrix
derived earlier. This first term is most impor-
tant when

p /2m + &z +z to —sap = 0, (s9)

wt» 1. (91)

The next issue to be settled is to identify the set
of conditions under which the integral in the first
term in the brackets in Eq. (88) acquires the delta-
function character imputed to it in the S-matrix
formalism. The integral can be stated as

l ,/), /2, tsin —,
' AEt &)dt'e =e (92)

with the definition of 4& obvious from a compari-
son with Eq. (88). A representation of the delta
function is

and so the question that must be answered is what
constitutes a value of t which can be regarded as
approaching infinity as far as Eq. (92) is concer-
ned'P A graph of Eq. {92) exhibits a sharp peak of

under which condition the first term has a magni-
tude of approximately (p /2m+ Ez}t. The sum of
the second and third terms in the square bracket
in Eq. (88) vanish when Eq. (89}has exactly the
value zero, and the sum of these two terms is of
unit magnitude otherwise. The condition for domi-
nance of the first term is then

1
(p'/2m+ Z, }/(u

'

For a process with a multiphoton threshold, the
denominator in Eq. (90) has a value greater than
unity, and so condition (90) can be stated conserva-
tively as

I

width given by ,' hEt = 1 in—theneighborhood of
t =0. Delta-function behavior is exhibited when
the full peak is encompassed within an energy
range —,'~» ~, where ar is the smallest charac-
teristic energy in this physical problem. These
two statements combine to exactly the condition
given in Eq. (91}.

The implication of Eq. (91) is that the formal-
ism developed earlier in this paper is applicable
after the field has been on for several full periods.
This presumption will be made hereafter. Actu-
ally, one could use a finite-time formalism based
on Eq. (86) in place of the S-matrix formalism
which stems from Eq. (12}, but there is no real
point in accepting this extra complication. The
reason is that another condition will be imposed
which makes Eq. (91) irrelevant. It will be re-
quired that the total transition probability per unit
time be limited to values which do not cause de-
pletion in the target material during a full pulse
of the applied field. That is, it will be required
that

w«(nt) ',
as given in Eq. (48}, where nt is the pulse dura
tion. The shortest pulses of significance will be
taken to be about 10 sec for 1.06-pm radiation,
or 5X10 sec for 10.6-t)m radiation. For a CQ
laser {10.6 t) m), Eq. (48) requires that the tran-
sition probability per unit time be limited to much
less than 2&]'lft' sec . The implication of Eq.
(91) is that W«cu [see also Eq. (49)] or, for this
example of 10.6-pm radiation, W should be much
less than 2&10' sec . The condition (48) is
therefore much more stringent than (91), and
when Eq. {48) is satisfied, the infinite-time S-
matrix formalism is fully justified.

Comments about some results of Geltman '

are appropriate here. He has found that when an
atom is subjected to an oscillatory or static
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electric field, the ionization probability does not
have a simple exponential time development, but
exhibits a plateau phenomenon, with delayed de-
velopment of exponential behavior. A transition
probability per unit time which is independent of
time, as is true for the formalism employed here
corresponds to exponential time development as
shown in Eq. (47}. The theoretical framework
employed by Geltman is a one-dimensional model
atom with a delta-function attractive potential
producing a single bound state. Geltman's work,
however, is on a very different physical problem
than the one considered here. The present prob-
lem concerns photodetachment by a plane wave,
with emphasis particularly on multiphoton pro-
cesses. Multiphoton processes require large
values of field intensity in order to occur, and
such problems are inherently three-dimensional.
Specifically, it has been shown that an intense
plane-wave field cannot be approximated as a qua-
sistatic electric field. Even in electric field
gauge (or Goppert-Mayer gauge), the vector po-
tential of an intense plane wave plays a major
role. The direction of this vector potential in
electric field gauge is orthogonal to the electric
field direction, and it is thus, of necessity, ab-
sent in a one-dimensional model. A more physi-
cal way to say it is that the magnetic field compo-
nent of a plane wave becomes very important at
high field intensity, but a one-dimensional treat-
ment. can describe only the electric field compo-
nent. Geltman's treatment of the ionization of an
atom by an intense electric field thus does not ap-
ply to the plane-wave case.

VII. APPLICATION TO H

The negative hydrogen ion is'selected as an ex-
ample with which to illustrate the application of
the foregoing formalism. It will be assumed that
H has only one bound state. ' The binding poten-
tial is certainly of finite range, in view of the
neutrality of the residual atom after photodetach-
ment. Furthermore, a simple analytical approxi-
mation for the ground-state wave function of H
has been suggested, which makes possible the
statement of closed analytical forms for dW/dA.
All of this is advantageous for the application of
the present formalism. However, the neutral
atom itself can experience excitation and even
ionization as a consequence of the applied fields.
The interaction of these possibilities with the
photodetachment of the excess electron is ignored
in the formalism. This may not be a serious
limitation on the validity of the results for H .
In the numerical application of the present exam-
ple, the intensity parameter will be limited to

z =3 for a 10.6-pm field. This is equivalent to
about 3X10 W/cm, which would have only mod-
est effect on a neutral H atom, even though it has
very strong effects on the extra electron in H .
One way to see this is to note that photodetach-
ment of the extra electron in H of 0.75-eV binding
energy requires a minimum of seven photons when
&=10.6 pm, whereas excitation of the 10.2-eV
first excited state in the neutral H atom requires
a minimum of 88 such photons. Another index of
the relative ineffectiveness of a 10.6-p m field in
perturbing the neutral H atom is that, if the ap-
plied field is treated as quasistatic, the resulting
second-order Stark effect energy is 4X10 (mea-
sured in rydbergs) at the largest (z =3) intensity
considered below. All of this suggests the gen-
eral validity of the results to be obtained despite
the neglect of field effects on the neutral atom
core of the negative ion.

Pl/Rf -OP

y ()=(2„).
where

P =(2m'}'~,

(03)

{04)

and f is an empirical constant with the value

f =2.65. (05)

The momentum-space wave function that follows
from Eqs. (93) and (13) is

i&(p) =2f(2vP)' /(0'+ p') . {06)

As used in the transition probability, Eq. (96) is
to be squared, and the momentum condition arising
from the energy delta function, Eq. (33), is to be
employed. In other words, the expression needed.
is

[Q&(p}] =Szf (2m') /(s-z) (2m&v) . (97)

The differential transition probability per unit
time for a circularly polarized applied field is,
from Eqs. (32) and (97),

dA
={f'/w)(uc'" Q (n z-e )'"-J„( '"y),

(06)

where &z ——&z/&o, no is defined by Eq. (37), and
y is given in Eq. (34). The corresponding result

A. Formalism

The general expressions for the differential
transition probability per unit time given in Eqs.
(32) and (45} require only the appropriate momen-
tum-space wave function in order to apply to the
H case. The wave function given by Armstrong
is
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B. First-order perturbation limit

The first-order perturbation theory limit of the
general theory is found very simply by substitution
of Eq. (97) in the low-intensity results given in
Sec. IV. For n()

——&, the low-intensity form for
transition probability per unit time given in Eq.
(56) is applicable. The result is simply

W=(8/3)f z&o(1- ee) (100)

for both circular and linear polarization. The
corresponding cross section, from Eqs. (60) and

(97), or else from Eqs. (59) and (100), is

o=(16vupf /Sm(u)(1 —ez) (101)

These limiting results are now to be compared
with a direct first-order perturbation calculation
of photodetachment based on the ground-state
wave function in Eq. (93). The lowest-order
final-state wave function is simply the plane wave

Pt(r) = V ' exp(ip r) . (102)

This is consistent with Eq. (7) in lowest order.
The transition matrix element is found by evaluat-
ing the first-order term in the interaction Hamil-
tonian, Eq. (6), between the states given in Eqs.
(93) and (102). This gives

V+ (t) =(P&, m 'eA (-iV)P,)=(m eA '(-tV)g&, P&)

=(eA p/m}(y, y,), (103}

which follows from the hermiticity of Vz(t), and
the fact that P& is an eigenfunction of the momen-
tum operator. When A represents a linearly po-
larized monochromatic plane wave given by

X = ae cosset, (104)

the space part of Eq. (103) is

i

2'F&dzI (SmEe) p cosg
( Vm J p'+2mEe (105)

where 8 is the angle between the momentum vec-
tor p and the polarization vector of the field. The
"golden rule" must be written in the form

~ = (v/2) I V~, I'5(&, —E) —~), (106)

where only the delta function associated with ab-
sorption of energy from the field is retained, and
the usual golden rule factor of 2w is replaced by
z/2 because each Fourier component in Eq. (104)

for a linearly polarized field is, from Eq. (45),

=(f'/) ."g( —.—.)'"&I;",--~,

(99)

with a given in Eq. (46).

has a factor of & associated with it. As before,
E, =-Ee. The total transition probability per unit

time is found by substituting Eq. (105) in Eq.
(106) and then using Eq. (106) in Eq. (30). The
final outcome is exactly Eq. (100), thus demon-

strating that the formalism developed in this paper
reduces to the correct low-intensity, first-order
limit.

C. Results with radiation of wavelength 10.6 pm

Explicit numerical results are now exhibited
for the case of a negative hydrogen ion irradiated
by a monochromatic field of wavelength 10.6 pm.
The binding energy of H is taken to be 0.75 eV.
An intensity parameter of z =1 certainly can be
considered an intense field, but this corresponds
to only 1.1 X 10' W/cm' of 10.6- pm radiation,
which is an intensity readily achieved with a large
Cop laser. The transition probabilities which

emerge from the calculation are such that inten-
sity parameters up to z =2 or z =3 fall within the
depletion limit set in Eq. (48), and discussed fur-
ther in Sec. VI. In general, when explicit inten-
sity effects are described, the value z =1 is se-
lected as an example. However, in a few cases,
the results are extended up to the intensity z = 10,
beyond the depletion limit accepted here, in order
to illustrate in an exaggerated way some of the
effects of intensity.

For. the set of circumstances just prescribed,
with &=10.6 pm (or &@ =0.117 eV in energy units)
and Ee =0.75 eV (or ee——6.41), the differential
transition probability for circular polarization
and for z = 1 is shown in Fig. 2. This is the out-
come of Eq. (98), in which the value of np for
z =1 is no ——8. The shape of the angular distribu-
tion is quite smooth, rising to a prominent peak
in the sideward direction. The forward direction
in the circular polarization case is taken to be the
direction of propagation of the field. The general
character of the angular distribution remains much

the same for all intensities, with lower intensities
associated with a lower and broader peak, and
higher intensities leading to a higher and narrower
peak.

The angular distribution for linear polarization
of the field exhibits much more structure and
variability than does the circular polarization
case. Figure 3 shows the results of Eq. (99) ap-
plied to a "low-intensity" case, where z = 10
(This corresponds to about 10 W/cm of COp

laser radiation, which is not everyone's notion
of low intensity. ) The threshold order is np =7,
and essentially the entire differential transition
probability arises from this first term in the n

sum. A double-peak structure is shown, with
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FIG. 4. Angular distribution of photons photodetached

from H by an intense linearly polarized plane w fe wave o

Th
. -pm wavelength. The intensity parameter i = 1.er sz=

he forward direction is the polarization direction of
the field. The dashed curve is the contribution from the
lowest order, np= 8. The dotted curve is from n = 9.
The solid curve is the total contribution of all orders.

FIG. 6. Total transition probability per unit ti fme or
p o e achxnent of H by 10.6-pm linearly polari ed
radjadiation as a function of field intensity. The solid curve

~ ar z

s the calculated result. The limit of reliability is at
z=3. The de ashed line is a constant-slope extrapolation
of the low-intensity limit.

n ='7, which is the value of np when z -0 and th
( og )/d(logz)=V. The graphs are carried as

far as z =10 in order to emphasize that the full
calculated transition probability departs from
straight-line behavior at high intensity. Never-
theless, up to z =2 or 3, which is as far as the
calculated results are trustworthy, the departure
from linearity is not remarkable. These conclu-
sions figure importantly in the discussion of
possible demonstrations of the failure of pertur-
bation theory, which will be given in Sec. IX.

The nearly featureless simplicity of Figs. 5 and
6 is largely an illusion. The total W-versus-z
curves of Figs. 5 and 6 are repeated in Figs. 7
and 8, along with the separate contributions to W

arising from n of 7, 8, and 9. In both circular
and linear polarization cases, the lowest order,
n =7, is the dominant contribution to the total
transition probability when z is small. It then
declines in importance, and finally falls to zero

lP
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lO'

W

IO'

lP lo

io'

TOTAL

lo

lO

lO"'
lO' Io lo'

I

IO

lO

IO

(O I
lO' lO-t lO'

FIG. 5. Total transition probability per unit tixne for
photodetachxnent of H by 10.6-pzn circularly polarized
radiation as a function of field intensity. The soHd curve
is the calculated result. The limit of reliability is at
z=3. The de ashed line is a constant-slope extrapolation
of the low-intensity limit.

FIG. 7. Total transition probability per unit time for
circular polarization as a function of intensity. The
solid curve is the same as in Fig. 5, and represents the
suxn of all orders. The curves labeled n = 7, 8, and 9
give the separate contributions of those orders.
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FIG. 8. Tot+ transition probability per unit time for
linear polarization as a function of intensity. The solid
curve is the same as in Fig. 6, and represents the sum
of all orders. The curves labeled n=7, 8, and 9 give
the separate contributions of those orders.

Wq

at @=0.69 since, according to Eq. (37), the low-
est order which can contribute beyond z =0.59
is no ——8. Recall that &~ ——6.41 in this example.
The eighth order contribution is dominant for a
while, and goes to zero in its turn at z =1.59.

As z increases, not only does the order, no, of
the lowest-order contribution increase, but the
relative contributions of terms with n & no also
increase. This can be seen to some degree in
Figs. 7 and 8, but it is shown much more clearly
in Figs. 9, 10, and 11. Figure 9 refers to circu-
lar polarization with z =1. It shows the partial
contribution, 8'„, of each order to the total tran-
sition probability per unit time, W. Not only
does Fig. 9 show the most important order to be
n=10, rather than the lowest order, no ——8, but
orders 9 through 14 are all important, and all
give larger contributions than nq. This is an out-
come quite startling from a perturbation-theory
standpoint. In fact the intensity corresponding to
z =1 lies beyond the radius of convergence of per-
turbation theory for this problem, as is shown in
Sec. IX. For larger values of z, the pattern of
S' versus n broadens even more, with more dif-
ferent orders making important contributions, and
with the peak value of n even farther removed
from no.

Figure 10 gives the variation of S'„with n for
linear polarization with z =1. In this case, the
lowest order does dominate, although the few fol-
lowing orders are significant. Actually, the low-
est order remains dominant in the linear polari-
zation case even when z is larger than unity. The
effect of increasing intensity is to enlarge the set
of orders which make an important contribution
to the total W. This is shown in exaggerated form
in Fig. 11, for the unacceptably [for Eq. (99)]
large value z =10. The lowest order here is no
=17. Orders as large as n =30 remain significant.

IO4-

I I

5 10 12

I I I

14 16

D. Comparison of circular and linear polarization results

In Sec. 1V, the ratio of transition probability
arising from circular polarization to that associa-
ted with linear polarization was evaluated for
arbitrary &s in the low intensity, or perturbation
limit. The circular-to-linear ratio thus found,
has the value 1.04x 10 for && ——6.41, appropriate
to the H ion in 10.6-p m radiation. This result
comes directly from Eq. (63).

A more novel type of polarization comparison
will now be made. With && set at the value for H

in 10.6- pm radiation, the effect of intensity on
the circular-to-linear ratio is explored. The re-
sults are shown in Fig. 12. The ratio shows a
striking rise as the intensity increases. When
z =10, the ratio has essentially the zero-inten-
sity limiting value of 10 . This increases to
about 4X10 at z =1, and rises further to about
10 when z is in the neighborhood of 2 or 3,
which is about the limit of validity of the calcula-
tions. The rate of increase of the circular-to-
linear ratio has begun to diminish at this inten-

FIG. 9. The partial contribution, W„, of each order n
to the total transition probability per unit time for photo-
detachment of H by circularly polarized 10.6-pm radia-
ti,on at z=1. The lowest order is no= 8.
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FIG. 11. The partial contribution, 9'„, of each order
g to the total transition probability per unit time for
photodetachment of H by linearly polarized 10.6-pm
radiation at z = 10. The lowest order is np= 17. The in-
tensity is too high for the results to be reliable. The
intent of this figure is to show the nature of the change
from Fig. 10.

4

IO 12

ground state of H is an S state, and an interaction
with the field of order np leads to a final state
which can have only the angular momentum l =np
for circularly polarized radiation, but can have
any of alternate angular momentum states between

FIG. 10. The partial contribution, W„, of each order
g to the total transition probability per unit time for
photodetacbment of H by linearly polarized 10.6-pm
radiation at z= 1. The lowest order is gp= 8.

IO-'-

sity, and this trend toward leveling off is shown

by plotting the ratio as far as z =10.
The spectacular hundredfold increase in the cir-

cular-to-linear ratio between the small-intensity
limit and the region around z =3 is probably the
most striking of all specific intensity effects. Its
physical basis is easily understood. The reason
linear polarization dominates circular polariza-
tion for high-order processes in the low-intensity
limit is that there are many more angular momen-
tuin substates available in the linear case. The

IO'-

IO

IO IO IO'

FIG. 12. Transition probability for photodetachment
of H by 10.6-pxn radiation by a circularly polarized
field as compared to a linearly polarized field. The
ratio is plotted as a function of Geld intensity, z. The
limit of reliability is z= 3.

IO
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l =0 and l =np for the linearly polarized case.
That is, the comparison is between a single chan-
nel in the circular case, and either snp+ 1 (for np

even) or s(np+ 1) (for n p odd) channels in the lin-
ear case. However, when the intensity increases,
processes with n &np become increasingly impor-
tant. A comparison of Figs. 9 and 10 shows that
both the number of higher-order states which con-
tribute, and the relative importance of each of
these higher-order states, are much larger for
circular than for linear polarization. In the cir-
cular case, therefore, the extra channels which
open up due to the n & np states as z increases are
more important than for the linear case. There
is thus a tendency for circular polarization to
regain some of its importance relative to linear
polarization when z increases, even though np is
large.

VIH. APPLICATION TO H

2$ (was)2/2
y (P)= (I l~), {lo7}

from Eq. (13). General results can now be cal-
culated from Eqs. (32) and (45).

Only the low-inten'sity, first-order result will
be considered here. From Eqs. (58) and (107),
this is

25
Q (2 s 5)1/2 (I ~ )2/2 z cos

(108)

When divided by the incoming flux, given in Eq.
(59), the expression (108) becomes the differen-
tial cross section

ds 2'up(pap)' cos'&
dO m&d (1+p'up)' ' (109)

Photoionization of the initially neutral hydrogen
atom is not a problem which really suits the valid-
ity conditions given in Secs. II and III D because
of the possibility of bound-state resonances, and
because of the long range of the Coulomb interac-
tion between the detached electron and the residual
positive ion. Nevertheless, the present theory
might have some relevance to the hydrogen atom
problem, and some interesting results can be
shown.

The basic expressions stated in Eqs. {32)and
(45) require for their application only a knowledge
of the appropriate momentum-space wave func-
tion, p, (p). If the hydrogen atom is initially in
its ground state, with the configuration-space
wave function

/t/, (r) = (wa'p)
' exp(- r/ap),

where ap is the Bohr radius, then

where ap is the Bohr radius, and thus z1 is
ZS=e /2 /Sp, (llo)

exactly of the form of Eq. (84). As discussed in
Sec. VC, z2 is explicitly a bound-state intensity
parameter, and should be expected to be more
important in the hydrogen atom problem than is
z. The parameter z is more important than z1
in the negative ion problem. The form of z1
shown in Eq. (110) has previously been identi-
fied ' as the relevant intensity parameter for
electromagnetic interactions with hydrogen atoms.

IX. CONVERGENCE OF PERTURBATION THEORY

Ill this section, the radius of convergence of a
perturbation expansion will be found for one of the
closed forms achieved above for a transition
probability expression. This sets the stage for
references about perturbation expansions in other
problems in electrodynamics. In particular, it
may have bearing on an experimental investigation
of intense-field behavior.

When an expression such as Eq. (98) or Eq.
(99) is expanded in powers of z, the power series
so formed is a perturbation expansion of the dif-
ferential transition probability. The reason is
that the intensity parameter, z, as defined in Eq.
{17)can also be written as

z=~pp& &c ~ (111)

Thus, an expansion in powers of z is equivalent
to an expansion in powers of +p, the fine-. st;ruc-
ture constant. In Eq. (111), g is the Compton
wavelength of the electron, & is the wavelength
of the applied field (where% =—2./2w), and p is the
energy density of the field divided by ~. In other
words, p can be viewed as the "photon" density
of the field, since it is the field energy density
divided by the energy of a single photon of energy
Sco. The physical significance of the intensity
parameter, z, is evident from Eq. (111). It is

after using the kinematical relationship

{1-zs) =p /2m'/,

which arises from Eq. (33) in the low-intensity
first-order limit. Equation (109) corresponds to
the standard textbook result for the photoelectric
effect in hydrogen when the final state is approxi-
mated as a plane wave. The applied field is treat-
ed in dipole approximation in arriving at Eq. (109).

Another instructive remark that can be made
about hydrogen concerns the intensity parameter,
z2. This parameter is defined in Eq. {74}. For
hydrogen,

2mF~ =ao,



22 EFFECT OF AN INTENSE ELECTROMAGNETIC FIELD ON A. . . 1807

just the product of the fundamental electromag-
netic field-charged particle coupling strength o'o,

times the number of "photons" contained in an
effective interaction volume f X,. It really should

be expected that the interaction between the elec-
tromagnetic field and a charged particle should
involve more than just the basic coupling constant,

The electromagnetic field is a boson field,
and the more particles there are in a given mode,
the stronger the interaction should be. The sig-
nificance of this "gregarious" nature of bosons in
an intense-field problem has been remarked upon

previously. mo

It is not possible to do a general exploration of
the perturbation expansion properties of Eqs. (32)
and (45), because ~P, (p) ~' is unspecified in these
equations, and p is a function of z as a result of
the conservation condition, Eq. (33). This short-
coming does not apply to the specific results for
H stated in Eqs. (98) and (99). The complexities
of the generalized Bessel function make the ana-
lytical properties of Eq. (99) quite difficult to ex-
plore, and so attention will be focused on Eq.
(98).

The radius of convergence of an expansion of
Eq. (98) as a function of z is quite easy to estab-
lish. The argument of the Bessel function is
z y, with y a function of z as shown in the defi-
nition Eq. (34). Since the Bessel function can be
written as

(112)

then the squared Bessel function is

(113)

Since J„($) is an analytic function of $ for all com-
plex $ such that

~ ( ~

&~, then Q~($) as it appears
in Eq. (112) is also an entire function of $. Then
from Eq. (113},J„(z r) is an entire function of
zr . The only singularities in Eq. (98} thus arise
from the branch point in each term in the series at
z =n —&z contributed by the (s —z —&z) factors.1P

The radius of convergence of an expansion in z
is given by the singularity nearest to the origin.
That is, this radius of convergence is

z & so —Kz =[tz ] —zz, (114)

from Eq. {37). The square bracket in Eq. (114)
signifies the smallest integer containing the quan-
tity within the bracket. The radius of convergence
given by Eq. (114) is ioustrated in Fig. 13 as a
function of &~. For example, in the problem of
H photodetachment by 10.6- p m radiation, ~&

=6.41, [zz]=7, and so Eq. (114) gives z & 0.59.
In the light of Eq. {37), it is clear by inspection

0
0

FIG. 13. The radius of convergence of a perturbation
expansion of Eq. (98), the differential transition prob-
ability for photodetachment of H by circularly polarized
radiation. The radius of convergence is plotted against
E~/~, the binding energy expressed in units of a photon

energy.

that the radius of convergence of Eq. {98)cannot
exceed the limit stated in Eq. (114}. Should z
exceed the value in {114), the value of na is index-
ed upward by one unit according to Eq. (37), and

this sudden dropping of a term from the sum over
n is nonanalytic behavior.

It is instructive to examine the numerical results
developed from Eq. (98) to see the nature of the
effects manifested when the perturbation limit is
exceeded. The angular distribution in Fig. 2

shovPs nothing unusual. This figure is for z =1,
which is beyond the radius of convergence, but
smaller z values yield angular distributions much

the same as Fig. 2, only lower and broader.
Figure 5 also shows nothing unusual in the neigh-
borhood of z =0.59. The curve remains quite
smooth, nearly straight, and quite close to the
low-intensity slope. The resolution of the graph
of Fig. 5 into its components, as in Fig. 7, gives
the first indication of failure of perturbation the-
ory. The low-intensity lowest order, no ——7,
ceases to contribute at z =0.59, and higher-order
terms take over. This is not evident in the total
transition probability, but it is manifested in the
polarization ratio results of Fig. 12, where, as
discussed in Sec. VII D, the significant contribu-
tions of higher-order terms ease the angular mo-
mentum constraints associated with circular pola-
rization. Other evidence of the failure of pertur-
bation theory is clearly to be seen in Fig. 9,
where the most important order is two orders
higher than the lowest order, and even the fif-
teenth-order term is more important than the
eighth (lowest) order. Experimental detection of
this phenomenon would require energy resolution
of the photodetached electrons, in order to deter-
mine the order of the process causing detachment,
as established by Eq. (35).

The next step is to inquire about the relationship
of Eq. (98) to the exact analytical expression for
the photoionization of H by a circularly polarized
plane wave. Equation (98) falls short in two re-
spects. One limitation is that the ground-state
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wave function employed for H is not exact, but is
simply an analytical approximation. In view of
the lack of a precise analytical form for this wave
function, there is no remedy for this defect. How-
ever, a very large class of possible Pq(p) func-
tions will give rise to the result (114), in view of
the fact that the limiting singularity was not con-
tributed by I Q, (p) I, but was preexisting in Eq.
(32). It is thus not unreasonable to conjecture
that Eq. (114) is a generally valid outcome of Eq.
(98). If it is supposed that Eq. (98) really is an
exact application of Eq. {32)to the H problem,
what then, are the limitations of Eq. (32)? The
most fundamental limitation is the approximate
nature of Eq. (3), which is at the heart of all sub-
sequent results. No further analysis is possible
without a formal expression for correction terms
to Eq. (3}. None is available, but it is instructive
nevertheless to consult Eq. (A18), which would
be a complete formal expression for the 8 matrix
were V~ not influenced by the applied field.
Equation {32) represents the contribution of the
first term in Eq. {A18). The second term has
been neglected. However, the structure of the
inner products in the second term in (A18) is
such that one always contains a V& interaction
term, and the other contains V&. The leading
term in Eq. (A18) contains no Vz at all, except
indirectly in gz, (which is also in the second term).
Thus, the presence of the V& operator in the sec-
ond term gives it an analytical structure distinct
from the first term. New singularities in the z
plane can be introduced by the second term, but
the branch points from the first term cannot be
canceled by the second term. Therefore, the
radius of convergence in Eq. (114) can be reduced,
but not enlarged, if it were possible to consider
the complete analytical structure of the full tran-
sition probability. Equation (114) is an upper
bound (though not necessarily a least upper bound)
for the radius of convergence.

Some inferences for other physical problems
can be drawn from the H results analyzed here.
Lompre, et al. have conducted high-order multi-
photon ionization experiments on noble gases at
very high field intensity, and find no departure
from d(logW)/d(logzq) = ppp, where happ is the low-
intensity limiting slope. The relevant intensity
parameter for this atomic photoionization problem
should be essentially the z& of Eq. (74), (84), or
(110). As stated earlier, this is related to
the Keldysh intensity parameter y by z& ——y
Lompre, et al. carry their experiments with 1.06-
pm radiation as far as 10 ' W/cm, where zq = 10.
Since this appears to be a true intense-field en-
vironment, they note with great interest the main-
tenance of a constant slope in the logarithmic

graph of transition probability versus intensity.
This may very well be a phenomenon of the same
sort indicated in Fig. 5, where a nearly constant
value of d(log W)/d(logz) is maintained well beyond
the failure point of perturbation theory. The dif-
ficulty is that total-yield experiments simply do
not offer a sensitive test of the failure of pertur-
bative behavior (or the onset of explicit intense-
field behavior) .

APPENDIX A: S-MATRIX FORMALISM WITH TWO
POTENTIALS

The usual S-matrix formalism for transitions
induced in a system will be extended here to the
case where there are two distinct independent in-
teraction terms. Initially, both interactions will
be considered to be of equivalent importance, and
both can be time dependent. Distinctions between
the interaction terms will be introduced as the
formalism is developed.

The system under consideration is described in
full by the equation in the Schrodinger picture

(tag Hp Vg Vz)%:0 (A1)

where V& and V& can both be time dependent; +p,
Vg, Vg are Hilbert space operators, + is a vector
in Hilbert space, t is a parameter external to the
Hilbert space, and iB, is implicitly multiplied by
the unit operator of the Hilbert space. It is pre-
sumed that the solution vectors 4&, +& to the
equations

(ia, H, v )e„=o,
(ta, H, —v)4, =o,

{A2)

(A3}

(t tp} =-ie{t—tp) Q I&,j, t}(Aj, tp I

f
(AS}

where, for convenience, Dirac bra-ket notation is
used for the state vectors with the correspondence

4~{t) IA,j, t),
and the index j represents all the quantum num-
bers which define the state. The advanced solu-
tion of Eq. (A4) is

(t, tp) =G"(tp, t)

=ie(t t) g I&, j-, t)(A,j, t
I .

f

are known. The corresponding Green's operators
satisfy the equations

(ia, -Hp —v„)G„(t,tp} = s(t —tp}, (A4}

(iat Hp Vz)Gz(t tp) = S{t tp), (As)

with a unit operator of the Hilbert space implicit
on the right-hand side. The retarded solution of
Eq. (A4) is
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(t)=@»(t)+ jj «1Gg(fi f1)Vjj(tj)%' (tg),

or as

q "(f)=q. (f)+ JI «jG."(f,fj)V (fi)+"(fi) .

(A 10)

(All)

Up to this point, the interaction operators V&

and V& have been treated entirely symmetrically.
Now it will be supposed that V& is turned off at
asymptotic times, but Vjj is not; and it is the tran-
sitions caused by V& which are to be calculated.

The retarded and advanced Green's operator solu-
tions of Eq. (A5) are, of course, of the same
form as Eqs. (A6) and (A7). The action of the
Green's operator on a state vector is seen im-
mediately to be

G' (f, f,)q.(f,) =-f8(f- f,)q.(f), (As)

G'„'(f, f,)e„(f,}=j8(f,- f)e„(f). (AQ)

The solution of Eq. (Al} is expressible either as

The transition 8 matrix may then be expressed
either in terms of the in-state @' as

Sg j ——iim ('4 @'j'),
f (A12)

or in terms of the out-state 4 as

~f j llm (+f i +jj )y (A12)

where the subscripts i and f represent initial and
final conditions, respectively. The physical
meaning of Eq. (A12), for example, is that the
S matrix is the probability amplitude that an in-
state of the complete system (including both V„
and Vjj) will, at infinite time, be in some particu-
lar state of the system in which only V& is pres-
ent.

The form of the S matrix in Eq. (A12) will be
examined first. For @'j, the solution given in

Eq. (All) will be used, since this result contains
+& as the homogeneous term. Direct substitution
gives

1

Sfj llm (hajj @jjj}+ lim «j(qjjy(f) Gjj (f fj)Vg(fj)4 j (fg})
f ~»

1'

=5«+Iim «&(G,"(f» f)e, (f), V„(f,)e'j'(f, )).

If Eq. (AQ) is used with subscript B, then the only appearance of time t in the integrand is in the theta
function. The infinite-time limit is

lim8(t —tj) =1,t-»
so the S matrix takes the form

f j 5j'j j «&(%I t A j )jgi (A14}

where the subscript t~ on the scalar product in the integrand means that all factors in that product have
the argument tq. By repeated use of Eqs. (All) or (A10), the expression in (A14} can be expanded in pow-
ers of V„or Vjj. Suppose Eq. (All) is used in (A14), and 5« is included with Szj. This gives

(s —1)q, —-i I dt~(v, v„lv (,

(A15)

which can be further expanded by repeated use of Eq. (All). Equation (A15) fs a conventional perturbation
expression in which V& could have been incorporated in Ho, and V„ treated as the only perturbing potential.
Of more interest here is the case in which an expansion in powers of V& is more tractable than an expan-
sion in powers of V» An expansion in powers of Vjj is commenced by the substitution of Eq. (A10) in Eq.
(A14}. The result is then

(S 1)fj -j Jl dt, (4'jj, V„@„)j,

iJI dt's dt-2 (4'jj (ts), V„(tj)G'„(tj, t2) Vjj (t2)qj'(f2) ) . (A16}

Repeated substitution of Eq. (A10) in Eq. (A16) gives a series in which V„appears once in each term,
and V& appears with successively higher powers in each term.
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If Eq. (A13} is used in place of {A12)as the defining expression for the S matrix, then the result cor-
responding to Eq. (A16) is

(S-t)t, =-t J dtt{tttV„,d~ ),

df1 (N2{+y (f2)i ~B(f2)GA(f2t f1)i A(fl}+B (fl})

As in Eq. (A16), repeated substitution of Eq. (A10} in Eq. {A17) gives a perturbation expansion in VB. A
useful form of Eq. (A17) is obtained by replacing the Green's operator with expression (A6) to yield

{S-Il, =-t dt ( t~ttVd, ), , t. {-()$ J
dt dt 8(t t){d-' 't' d,„),{ d V„d), (AI6)

APPENDIX B: GENERAL PROPERTIES
OF THE GENERALIZED BESSELFUNCTION J„(u,v)

A generalized Bessel function of integer order
may be defined by

I

Further direct results are

J„(-u, v) =(-)"J„(u,v),

J„{u,—v) =(-)J (u, v) .
(B7)

f' 5

J„(u, v) =(2s) deexp[2(u sine+ v sin28 —se)].
%f

The standard recurrence relations for the Bes-
sel functions have their analogs with the J„(u, v).
It follows directly from Eq. (Bl) or (B2) that

The infinite series representation

J„(u, v) = Q J„2,(u)JB(v) (B2}

and

J„1(u,v) —J„,1(u, v) =26g„(u, v)

J„,(u, v)- J„,2(u, v) =26,J„(u, v).

(BS)

(B0)

for even n, or in the form

J„(u, v) =g Jpp 2(u)[J*,(„,2))2(V}—Jp«„2)tp(v)]

(B4)

for odd n.
From either Eq. (Bl) or (B2) it follows immedi-

ately that

J„(u, o) =J„(u) (B6)

can be derived from Eq. {Bl},or can be used as
the defining relation. The series representation
can be used to extend the definition to arbitrary
orders if desired. Functions closely related to
J„(u, v) have been identified and explored to some
degree since the early work ' on linearly po-
larized intense fields, but not in a systematic
way.

For purposes of numerical calculation, the doub-
ly infinite s12m of Eq. (B2) is more conveniently
cast in the form

J„(u, v) =Jp(u)J„g(v)

+ Jm u ~p,„n V +Jw~y V

(BI»
which corresponds directly to the generating func-
tion relation for the Bessel functions. The other
theorem is

J~+ u, v u, v =J„uku, v+v (B12}

An integration by parts in Eq. (Bl) yields

2uJ„(u, v) =u[J„1(u, v) +J„,1(u, v)]

+ 2v[J„2(u, v) + J„d2(u, v)] . (B10)

Various other results can be obtained by combina-
tions of Eqs. (BS)-(B10), for example,

uBdJ„(u, v) + 2vB„J„(u,v) =)2J„(u, v) —uJ„.2(u, v)

—2v J~d 2(ut v) t

uag„(u, v) +2v6„J„(u, v) =-uJ„(u, v) +uJ„-1(u,v)

+2VJ„2(u, v),

—,'a„J„{u,v)=ay„2(u, v)+ay„.1(u v).
Two important theorems can be proved from Eq.

(Bl). One is that
«I

Q e'"PJ„(u, v) = pfeix(u sin(f +v sin2y)],

and

J (0 ) 'tJ„g(v), u even
to, u odd. (B6)

which is analogous to Neumann's addition theorem
for the Bessel functions, and which has various
useful special cases.

Small-argument results for J„(u, v) are easily
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stated if only one argument is small. For
~
v

~

«1, the first-order result is

J„(u& v) =&„(u)+ ~2[&„s(u)—J..2 (u)], (B13)

&„(u, v) =-,'u[J@ f}Q(v) —J(„„)},(v}].
When ~u ~

«1 and n is even the lowest order in u
is quadratic, and is

(B14)

with various other forms available through use of
the recurrence relations. When ~u~ « 1 and n is
odd, one has

this appendix represent just a sampling of some
of the more easily proved properties of the J„(u,v)
functions.

APPENDIX C: SMALL-ARGUMENT LIMIT'
OF THE GENERALIZED BESSELFUNCTION J„(g,v)

The particular limit to be found is

lim/„(z'~g, zv),
«eo

where z is a positive real number. That is, the
notation is introduced that

J„(u v) 1 —
4 ~(1

— Z„}g(v) .
u' t

(B16) u=z p, v=zv,1j2 (Cl)

The case when both arguments are small, and
(v ( =0((u ( }is treated in Appendix C.

Asymptotic results for J„(u, v) depend upon the
relative magnitudes of n, u, and v, and generally
involve complicated expressions. Asymptotic
results for the case of direct interest here are
given in Appendix D. The partial differential
equation satisfied by J„(u, v) is too complicated to
be particularly interesting. The results given in

and z is here a small parameter.
For even n, the form (B3}can be used. The

lowest order in which z appears in Jo(u)&„~(v)
is n/2. The product Jqz(u)Z~~~(v) contributes
terms of minimum order 2k+n/2 in z, and since
the k sum starts at k =1, this term can be neg-
lected. The product &}a(u)J*~,2(v} contributes
terms of minimum order n/2 in z for k ~ n/2. The
function J„(z u, zv) thus behaves as z" for small
z, and is given by

lim J„(z p, zv) = lcm~ Jo(z pg„n(zv) + Jm(z !})J+~,2(zv)
)«-o «-o (

1 &zv!"s " 1 &z'n!}& 1 (zv'}+
s-o (~p)l E2 j (2k)! E 2 J (-k+~n)!'&2

&

(zv}"
"' (p'/2v)'

4 ) . (2k)!{m-k)!
(c2)

The same type of analysis for odd values of n, starting from Eq. (B4), gives

{ff&1)

lim J„(z !},zv) =lim [Jzz s(z yP~, @.njm(zv)]«0 a

tzv'}" (p,'/2v)'"
s-]} (2 ) (2k+1)![—,'(n 1) k]! ' (c3)

In each case, the result contains a factor z', and
a finite sum depending on g, v, and n

APPENDIX n: ASVuPTOmC UMIT
OF THE GENERALIZED BESSELFUNCTION J„(up')

hfany possible asymptotic limits exist for J„(u, v),
depending on the relative magnitudes of the order
and the two arguments. The case that will be inves-
tigated here is the most general case that is rele-
vant to the physical problem presented in this
paper. Specifically, the conditions of interest
are

u=z o}q v= z/2qig2

&=8 (n-z —zz) cose,

n+ z+~g,
n, z, &&, real and positive,

z &&1,

(Dl)

where the u, v parameters are as they appear in
Eq. (45), & is defined in Eq. (46), the lower limit
of n is as shown in Eq. {36), and zz =Ez/&o The- .
asymptotic nature of the problem is fixed by the
large maq~itude of the intensity parameter, z,
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which requires large magnitudes for n, u, z .
From Eq. {Bl), the function to be explored can

be written as
S

J„(z~~a, —z/2) =(2v) t dPe~'~', (D2)

where

g(P) =i(uz sing ——,
' sin2$ —ug/z),

g'{/t/) =i(&z '~ cosy —cos2y —u/z),

g"(p) =i(- oz ~ sing +2 sin2$) .
The saddle points of g(P) in the complex P plane
are found from g'(g) =0, which gives

Q
cos 40 &/I cos4 0 + 2 ]2z (Z

(D4)

where P o designates the saddle point. The solu-
tions of Eq. (D4} are

cospp = ~(&k 5[8(u -z) —o ] "}.1 1
4z' (D5)

From the definition of o in Eq. (Dl}, the radicand
in Eq. (D5) is

8(n-z) —o/ =8[(u —z- tz) sin p+ zz]

(D8)

where the inequality follows from n~ z+ && as
given in Eq. (Dl). The saddle points, therefore,
are not on the real. axis. This is made explicit
by setting

0'o=0, +i4/, , 4)„4» real.

Equation (D5) is equivalent to the two equations

cosQ„cosh/, = u/4z ',
sing, sinhp, =+[8(n —z) —o ] /4z

(Dv)

These equations can be solved to give

cosy„=(2z'") '((u+z)-[(u+z}'-z&]' P'",

sing„~(2z' } '((3z -u) + [(n +z)' —z &]' }'",
(D8)

cosh', =(2z ~) ({u+z)+[(n+z) -z&]'"}',
sinhp, =a(2z'") '( —(3z —n)+[(n+z) —zo ]' }'

1 /2 exp[zlr{AI}]
n( i 2 } [ 2 ~ ( )]1/Z (D8)

where the sum is carried out over the saddle
points through which the steepest-descent path
passes, andg(Pp) g (Po) are found from Eq. (D3)
with the values (D8) substituted. The values of
sinPo which appear in g(go), g'($0) are

Of the four saddle points that lie between Q„=-m
and P„=+m, two lie above the real axis and the
other two below. It is the latter two saddle points
through which the original path of integration can
be deformed, so that the integral can be evaluated

by steepest-descent approximation.
The result of a steepest-descent approximation

to the integral in Eq. (D2) can be written in gen-
eral as

(D11)

sfny, =+(2z'~) '{(u+z ——,'o'+[(n+z)'-zcP]'~}'~-f(-u- z+ —,'&+ [(u+z)' zc/']"-}'"} (»0)
This, together with cosgo in Eq. (D5), gives all the information necessary to fix g(Pp} and g"(gp). At one
saddle point, the upper sign is to be used in boths Eqs. {D5) and (D10), and the lower sign in both {D5) and

(D10) is associated with the second saddle point which lies along the deformed path of integration.
With g(gp) g (Pp} expressed by means of Eqs. (D5} and (D10), and the results employed in Eq. {DQ}, the

asymptotic form thus found for J„(u, v) is

J„(z ~c/, —~z)=(2zQR) ~(2z ~}"[(u+z+Q) +(u —3z+Q} ~]

x[(Q ~+ U ~) ~ cosy-(Q ~- U +) ~ sinX]exp[RU ~/2+3m(Q- U) ' /(32) ~],

where

X=3« "/(32) -R(Q- U) /2

—u arccos[(u +z —Q)'+/2z'+],

Q=[( +z)'-z d]'~,
R = (u z —,

' oP}'/,

U= '(n+z Q+—)-—'cP .

(D12)

I

An alternate way to express Eq. (D11) arises
from the relation

(2z ~)"[(n+z+Q) / +(n 3+zQ) -~]

= exp[- u arcsinh[(u- 3z + Q) ~/2z ~]}. (D13)

Equation {Dll) is the most general asymptotic
form of J„(u, v) which follows from the conditions
stated in Eq. (D1).
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