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The Sternheimer equation for atomic polarizability is modified to account for the self~nsistent field. The

equations are quite simple for closed-shell ions. Numerical results are presented.

In a weak external field, a closed-shell ion de-
velops a moment proportional to the field. The
coefficient of proportionality is called the polar-
izability. The best known is the dipole polariza-
bility, which gives the dipole moment. However,
the idea is easily generalized to higher moments,
and often it is useful to know others such as quad-

rupole, oetupole, etc. The Mth moment is in re-
sponse to the Mth field, and this field has the gen-
eral form

5Vs(r) =r"P„(cose)e„,

where I'~ is the Legendre function and e& is the in-
finitesimal field. In response to this field, the a-
tom or ion will develop a moment p& given by

(2)

The polarizability a„can be dipole (M =1), quad-
rupole (M =2), octupole (M =3), etc. These polar-
izabilities are useful in a wide variety of atomic
and solid-state applications.

In 1954 Sternheimer' suggested a method of e-
valuating the polarizability which has become wide-

ly used. In fact, it is employed in nearly all cal-
culations. + Even Hartree-Fock calculations are
recast in terms of the Sternheimer equation. Re-
cently 1 used the density-functional method to e-
valuate the Sternheimer equation for many closed-
shell ions and atoms. '

The Sternheimer equation relies on a one-parti-
cle picture of the atom. Recently Stott and Zarem-
ba~ (SZ} showed that a consideration of electron-
electron interactions requires the polarizability to
be evaluated in a many-particle framework. When
the atom polarizes, in response to the external
field, the polarizations on different orbitals inter-
act via electron-electron interactions, which af-
fect the polarizability in a substantial fashion. One
has to calculate the polarizability self-consistent-
ly, by taking into account the mutual interaction of
different polarizations. Stott and Zaremba showed
that calculating self-consistently reduced the dipole
polarizability by typically 4Q%. Zangwill and So-
ven' (ZS) have used the identical method to calcu-

late the polarizability and also the optical absorp-
tion, and both are quite accurate. The method of
self-consistent field (SCF), when applied to atomic
polarizability, greatly improves the accuracy and

must be regarded as a great step foxward.
Here we would like to do three things: (1) Show

that the method of SCF ean be recast as a modified
Sternheimer equation; (2) show for a closed-shell
ion that the modified Sternheimer equation has very
simple angular-momentum characteristics. (These
two features make the SCF very easy to solve nu-
merically, and one can very quickly obtain accu-
rate self-consistency); and (3) present a table of
values for the first four moments (M =1, 2, 3, 4)
of most closed-shell ions. One of the features of
the present method is that the calculation is equal-

ly easy for any value of M. Our numerical results
show that the diyole polarizability is indeed re-
duced by 4Q% when the fields are made self-con-
sistent, in agreement with SZ and ZS. However,
the higher moments are only altered by +2% by the

SCF so the effect is usually negligible except for
M =1.

I. MODIFIED STERNHEIMER EQUATION

[-V + V(r)](t(&(r) =Es()'&,

n(r) = Q [ |(,[',
(4)

The derivation is cast in the language of the den-
sity-functional method. "'2 Most recent work has
used this formalism to evaluate the polarizabil-
ity. Here the electron potential in the ground

state of the closed-shell ion has terms from the

interaction with the nucleus, the other electrons,
and the exchange-correlation potential which is
taken to be a local function of the electron density
n(r):

I

v(r)=-2 —+( fd'r,
(

—v (n(r().

Each electron orbital in the ion is given by the
Schrodinger- type equation
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and the density s(rj is found by adding up the den-
sities of the occupied orbitals. These equations
are a self-consistent set mhich have been solved to
'describe successfully many atomic properties. " '

Next consider the response of the atom mhen me

apply the infinitesimal perturbing field 5V»(r ) in
Eq. (1). Each wave function (I(,(r) will be perturbed
by this field. In first order, the change is given by
(j(, which is defined by

4+tfs«'
Of course, this causes the density s(rj to change,
mhich in first order is given by

((s(r) -s(r}+bs(r}s«,

cn(p(=RRa I (,(r("(((r().
i

The potential acting upon the electron also changes.
Of course there is the nem external perturbation
5V»(r1. In addition, the density changes t(ss(r)s»
cause a change in V(r) in (3). The total self-con-
sistent potential is found by combining these effects
(v = cos8),

V(r) —V(r) + V scF (r)s«,

V'scs((rj =r P„(v)

+2 Cr', + 5s(r)s, fss(r')
lr- r'I

The final step in the argument is to derive an equa-
tion for (j(,(r ). It is obtained from Schrodinger's
equation in first-ordei perturbation theory. Since
the energy changes are of order ez and negligible,
me have

[-V + V(rj+ VscF s«](4l + 4s«) «(%+As«j.

The component of this equation mhich is first order
in e& provides the inhomogeneous equation satisfied

[-&'+V(r) —«1A(r) =-Vscr(r)A(r) (7)

This equation is defined as the modified Sternheim-
er equation. The original Sternheimer equation'
had r"P„(v) instead of Veer on the right. The mod-
ification uses the self-consistent potential Vs c~ on
the right-hand side of (I). First one does the a-
tomic calculation in order to find the set of atomic
wave functions ()(&(r), eigenvalues E&, and potential
V(r). With these in hand, Eqs. (5)-(7) form a self-
consistent set of equations to find g, (r) and 6s(r).
The polarizability is given by

Of~=28~ d t' 0 I~ P 5@ r

Thus the polarizability is rather easily obtained
after one has found the self-consistent 5e(r).

The above set of equations is exactly equiva, lent
to the set introduced by Stott and Zaremba. They
derived them in a different fashion, and solved
them using a Green's function method which in-
volved solving an integral equation by diagonalizing
big matrices. The present derivation is much
simpler. %e mill also shorn that for closed shells
it is numerically easier to solve directly the mod-
ified Sternheimer equation ('I).

A (r) =-Z U), g FT (8, i}) .
The properties of angular functions can be used to
turn (7) into just a radial equation for each U~ &.

The important question is the number of terms
needed in the angular-momentum expansion in (9).
The ansmer depends upon the angular dependence of
Veer(r) which in turn depends upon the angular de-
pendence of 5s(F). Each of these functions can also
be expanded in spherical harmonics. For the gen-
eral case, one can shorn that the expansions

6g (r) =Q 5ss(r)Ps(v),
L

Vscr(r)=Z Vs(r)P~(v»
(10}

must have an infinite number of terms: Since par-
ity is conserved, the sum is either over a,ll odd or
all even values of L. For a closed-shell ion, our
theorem is that the sums in (10) contain only the

single term I =M, and all other terms vanish.

For a closed-shell ion the angular dependence of

bs(r) is exactly given by (v =cos8),

5(s(r) =es«(r)P«(v) .
Vfe shall prove this theorem belom. One conse-
quence of it is that both V sc„(r) and a» also have a
simple form

a» ——~g I as
" Cr r ' 5s«(r),

V scF (r) = V scp «(r)P«(v),

II. ANGULAR-MOMENTUM THEORIM

For a closed-shell ion or atom, only the radial
equation needs to be solved in (7). The wave func-
tions (j(,(rj are products of radial functions and

angular functions, and (j(,(r) can be expanded in a
similar series
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v~,„(r)=r"+~ ) jar (r )'' as'(r

~&V 'I

%e shall prove the theorem by explicitly deriving
the form of fv)»(r), and showing terms in (10) with
L 4M are zero. For an atom of closed shells, the
density change f)s(r} is composed of a sum of the
contributions from each shell, thus we can sum
over the radial and orbital quantum numbers of the
occupied shells

0s{r)=Q Ss'""{r),
nvl

()
6), ) )

P&) 0 &I))(&)P ()))
(14)

The change in density Sg(r ) is given by (5), and we
add an additional factor of two for spin degeneracy'.

6s'""(r)=,U~(v )V„„»P»(v),
1

t)s„'")(r}=,fr„.(r}V„.„(~}.

the modified Sternheimer equation has the form

+ x + p'(&) - &~ ~~.o.»
a' M(M P 1}

a rz ]
=-v„.(r)0v~F, »(r}. (16}

P states. For P states and higher angular mo-
mentum, the proof is more complicated. The proof
proceeds in the fashion of perturbation theory.
First we shall assume that there is only the exter-
nal potential 5V»(r) in (1) which contains only the
single angular harmonic P»(»}. For the'case that
I)), is (/ =1, m =0), the right-hand side of theStern-
heimer equation (V) contains the angular factors
vP& which can be decomposed to PjI,q and P„„q.
Thus g& contains terms with both of these two angu-
lar functions. When we evaluate 5()(r} in Eq, (5) we
have the product of v from-Q& and P„,& from g, .
These will give the combinations P&,2, Pz, and

P~ 2. Of course, the new guess at a self-consist-
ent potential now has all three of these angular

The theorem will be proved separately for each
angular-momentum s tate.

s sites. The theorem is trivial to prove for s
states; and this case is only included for complete-
ness. The original wave function )})& and changed
part 7(), can be written as

1
y, = ~ v„.(~),

i
V„, »(r}P»() ) .

functions, since the angular dependences of Vsc):(r)
and 5»(r) are similar. Thus, when we use this new
'Vsc) in Eq. (V), we will find that the new guess at
g, has angular functions P»~ and P„„.. The new
6s{r)has P„, P„„,and P„,4. Thus each iteration
produces more angular harmonics for each func-
tion. However, for a closed-shell ion all the terms
in 5»(r) vanish except P„. In order to show this,
we first need some standard relationships among
Legendre functions,

M+1 M
PP»(P)=2M IP»~)+2M I » ) )

sin8P„=~ 1 P»,) —P»~ I )2M+1 (1V)

M(M+1)
P& i - PM+i

First we define the auxiliary function I), associated
with the (I =1, )s =0) function ())&,

=(-')""""
3 (~~2 (M+1—

) ~ 2M 1
IJ ),» )P» )(~)

y 4g) ~2M+i

'2M+1~" "-'P"-'"}).

Next we do the same for the functions associated
with (I =1, s) =+I),

(3 ))/2U

,8 ~

(3 ))()2 ~io
PE —

ll 0 ) 2M + I)l~)I),»+1P» 1(»)

—~.),» )P» )() H.

The coefficients in both of these expansions have
been chosen to agree with those in (1V). With this
choice, the auxiliary functions P„q &~q are inde-

pendent of the magnetic quantum number m. The
auxiliary functions obey the radial equation (M'

=M+1),

(
M'{M' ~1),+, + v(r) )(„.)I7„, -

=-I s)(&)y'scv. »(&}~

The change in density 5g(r} is found by adding the

product gg, forthethreestateswith m=1, 0, -l.
The coefficients of the terms with P&,2 both vanish,
and one is, left with

m+1~" ")'"'(„)) 3U„)(r) M+1

+m+) "'"'(")}'M
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Again we have added a factor of two for spin de-
generacy. The factor of three essentially accounts
for orbital degeneracy.

The proof is self-consistent, in that if we assume
that 6n(r) has only the single angular component
I~, then we calculate for it only the same single

angular function. %e can also think of this proof
as proceeding by perturbation theory, in that the

applied potential 5Fs(r) only has a single angular
function P&, which generates in the self-consistent
potential V&cp also only the same angular function.

I

d states. For d states the algebra is formidable, thus we shall just give the result. The auxiliary func-
tion Q, has three radial components where M' =M- 2, M, and M+ 2. Each obeys the e{luation

8 M'(M'+ 1)—),+ p +V{r)-{{„g)l)„g,„.= {{{r)V~~ „-{r).

The density is given by

5U'„,(r) 3M(M-1) ~ M(M+1) ~ 3(M+1}(M+2) &
2(2M-1)(2M+1) "'"" (2M-1)(2M+3) "'" 2(2M+1)(2M+3) "'"'&)'

where U„2(v') is the radial part of )I)&.

In summary, there is one auxiliary function V
for 8 states, two for p states, three for d states,
etc, This number is exactly the same for the old
Sternheimer equation. The modification to the
self-consistent field does not alter the number of
auxiliary functions which must be computed. The
only change is that now they must be calculated
self-consistently.

The set of equations we have derived is formally
equivalent to that given in Refs. 9 and 10. How-

ever, the present equations appear numerically
simpler and faster, since both Stott and Zaremba,
and Zangwill and Soven used a Green's function
method which required diagonalizing large matric-
es. %e have previously described the numerical
technique for solving the inhomogeneous xadial
equations for P. The self-consistent potential
Vac„,„(r)was found by iteration, and 0.1% conver-
gence in e~ was obtained after a half-dozen itera-
tions or fewer.

III. RESULTS AND DISCUSSION

Table I shows our calculated values of e~ for M
=1, 2, 3, 4 for many closed-shell iona. ~~ The di-
pole polarizabilities are compared with the calcu-
lations of SZ and ZS. The column labeled "Expt."
are the best values deduced from experiments and
other theories. '6'~ %e followed ZS and used the
form of correlation and exchange suggested by
Gunnarsson and Lundqvist':

'Y — ' 0 06661 1+ t; j'
Thus our calculations are an exact copy of those of
ZS, and we should reproduce the four dipole polar-
izabilities they reported. %e do agree with them to
within 1%, which is our calculational accuracy, so

that we have confirmed their results. Their choice
of correlation and exchange was adopted because of
the excellent values they obtained for the rare gas-
es. Our results show that this good agreement be-
tween theory and experiment is extended to many
other closed-shell ions.

The original results of Stott and Zaremba were
usually 10% different than ZS and ours. However,
they recently found and corrected a numerical
error, and their revised values are shown in Ta-
ble I. They are in excellent agreement with ZS
and ours.

The right-hand columns of Table I show values
of e& for higher values of M. %e give the results
from both the modified (SCF) and unmodified (r")
Sternheimer e{luation. Here the difference is typ-
ically +2+, in contrast to the change in dipole po-
larizability which is 40+. The higher moments
are only slightly affected by making the fields self-
consistent. Because the calculated dipole polari-
zabilities are so accurate when compared with ex-
perimental values, it is hoped that the higher mo-
ments have a similar accuracy. No reliable ex-
perimental values are available for higher polari-
zabilities.

It is helpful to have a calculational technique
which gives the polarizabilities so accurately. Yet
we are surprised and troubled by the fact that it
works so weQ. The density-functional scheme we
used in these caleulahons has a feature we regard
as unsatisfactory. The Coulomb interaction in Eq.
(3}has the full electron density, thus it has the
particle interacting with itself. This self-interac-
tion is supposed to be canceled by a like term in

V~. However, when V~ is approximated as a local
functional of the density, this cancellation is very
incomplete. 'I Bryant showed that much better xe-
sults wer8 obtained in the density-functional method
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TABLE I. Polarizabilities for some closed-shell ions given in angstrom units. In the column labeled "Expt."are the
best values deduced from experiments and other theories. The next two columns give the self-consistent results of
Stott and Zaremba, and Zangwill and Soven. Our self-consistent results are next, followed by the non-self-consistent
results calculated with the unmodified Sternheimer equation. The last six columns give the results for M=2, 3, 4 for
both self-consistent (SCF) and non-self-consistent (r") methods.

Dipole (A )
Stott Zangwill

and and
Z Ion Expt. ' Zaremba Soven

Present
SCF r

Quadrupole (A )

SSCF

Octupole (A.T)

SCF
si pole (L)

SCF

2 He
3 Li+
4 Be+

0.205
0.028

0.24
0.032

0.24 O.26
Q.032 0.034
0.0083 0.0087

0.134
0.0057
7.3(-4)

0.139
0.0058
7.3(-4)

0.183
0.0026
1.6(-4)

0.188
0.0026
1.6(-4)

0.45
0.0022
6.6(-5)

Q.46
0.0022
e.e(-5)

1O Ne 0.4O

11 Na+ 0.158
12 Mg'+ O.O784

18 Ar 1.64
19 K+ 0.85
20 Ca2+ 0.522

30 Znm+

31 Ga~

36 Kr 248
37 Rb+ 1.41
38 Sr + 0.84

47 Ag+

48 Cd'+

49 In~

54 Xe 4.04
55 Cs+ 2.42
56 Ba + 1 73

Q.44
0.158

1e75
0.84

2.62
1.40

4,19
2.41

0.43

1.74

2.60

4.12

0.44
0.157
0.075

1.73
0.83
0.49

0.42
0.205

2.58
1.37
0.87

1.46
0.79
0.50

4.15
2.36
1.56

0.50
0.179
0.085

2.57
1.27
0.75

0.52
0.246

3.86
2.09
1.33

2.26
1.18
0.73

6.64
3.74
2.46

0.40
0.072
0.023

2.84
0.87
0.36

0.42
0.13

5.15
1.84
0.82

2.90
0.97
0.44

11.5
4.9
2.65

0.41
0.073
0.024

2.82
0.84
0.34

0.41
0.13

5.11
1.78
0.80

2.62
0.89
0.41

11.0
4.5
2.36

0.68
0.070
0.014

7.25
1.35
0.40

0.38
0.090

15.9
3.76
1.34

4.31
1.07
0.38

41.9
12.1
4.9

0.70
0.071
0.015

7.47
1.37
0.40

0.39
0.092

16.4
3.78
1.33

4.47
1.10
0.38

42.8
12.0
4.8

1.92
0.090
0.011

26.6
2.65
0.51

0.61
0.096

65.
8.8
2.13

11.6
1.87
0.49

194
34
10.0

1.96
0.092
0.011

27.5
2.72
0.52

0.63
0.098

68.
9.0
2.19

12.1
1.93
0.50

203
35
10.2

Reference 17.
Reference 16.' Reference 9.
Reference 10.

if this self-interaction were removed. '3' Others
have recently confirmed this improvement. '9'

Thus it would seem better to calculate the polari-
zability with the removal of the self-interaction.

Our earlier calculations of the polarizability
were done this way, without self-interaction,
although not self-consistent. Removing self-
interaction makes V(F) more attractive, makes
the eigenvalues larger in magnitude, and makes
the ions less polarizable. This explains mhy
the non-SCF polarizabilities reported in Ref.
8 are smaller than those in Table I. When
we make the SCF correction to the polarizabilities
calculated without the self-interaction, the dipole
polarizabilities get about 30% smaller, and be-
come too small when compared with experiment.
Thus when we calculate using SCF, and eliminate
the self-interaction, the dipole results are too
small for all cases. The procedure for doing this
is complicated, since one must not only eliminate

the self-interaction in s(r) but also in ()s(r), which
in fact we did oddly approximately. - The step of re-
moving the self-interaction, which generally im-
proves the calculated atomic properties, makes
the polarizabilities worse. One exception to this
statement is for the first rom of the periodic table,
where our spin-polarized exchange gave better re-
sults for He and Li'. Another case where the re-
moval of self-interaction improves the result is
for the negative halide ions. They cannot be calcu-
lated at all with the method of the present paper,
since the self-interaction renders the atomic state
unstable. The method of Ref. 8 gives nice solu-
tions, although making the dipole polarizabilities
self-consistent makes them too small when com-
pared with experiment, in agreement with the other
cases.

This research was supported by NSF Grant No.
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