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The space part of a general spin-spin interaction is expanded in a complete orthonormal set of irreducible tensors
constructed from spherical harmonics of the interacting particles. With this expansions, the m-scheme matrix
element of the spin-spin interaction is represented as a sum of weighted radial integrals along with its graphical
representation. The graphical form of the m-scheme matrix element enables one to obtain graphically matrix
elements between many-particle configurations in any coupling scheme.

I. INTRODUCTION

The progress in spectroscopic technology, e.g.,
electron spectroscopy for chemical analysis
(ESCA), bent crystal, and optical interferometry
with lasers, has provided an appreciable challenge
to further atomic and molecular structure calcu-
lations including correlation and relativistic ef-
fects. To account for the correlation effects in
many-particle systems (including atoms, mol-
ecules, and nuclei), correlated wave functions
which explicitly contain interparticle distances
7;; have been widely used. On the other hand,
magnetic interactions in atoms, molecules, and
nuclei are among the most interesting relativistic
effects; a few recent formulations have been sug-
gested.'™ The spin-spin interaction, in particular,
has been expanded by many authors®™° in irreduc-
ible tensor form, which is appropriate only for
states constructed from products of radial func-
tions ¢(r;) and spherical harmonics Y ,,(r;). To
evaluate the matrix element of the spin-spin in-
teraction with correlated wave functions contain-
ing interparticle distances we have to consider,
besides spherical harmonics accounting for the ro-
tational symmetry of the states involved, a tensor
operator of the general form

Vp=Jd(r,)[(5, )5, i‘12)/"' ) -3 (51 '32)] . (1)

Here J(7,,) is a scalar function possibly containing
the correlated part of the wave functions, and &,
and 0, are the Pauli matrices of the respec-
tive particles. We note that the Fermi contact
term! involving 83(T,,) in the spin-spin interaction
can be evaluated trivially and is therefore not con-
sidered here. In a different context, the tensor
operator (1) represents simply the general tensor
force,'® which is probably part of the actual
nuclear interaction between nucleons and is re-
quired to describe nucleon-nucleon scatterings.
The tensor interaction (1) has been expanded by
Talmi'® in terms of irreducible tensors of each

particle; however, the expansion is a complicated
sum of tensor products and does not reflect its
simple tensor properties. Nevertheless, the ma-
trix element of (1) for harmonic oscillator func-
tions can be evaluated by using the Moshinsky
transformation brackets.!* This alternative ap-
proach is, however, based on particular trans-
formation relations between harmonic-oscillator
functions and is not applicable for angular-mo-
mentum eigenfunctions in an arbitrary central
field. The tensor interaction (1) can readily be
written as a scalar product of two second-rank
tensors involving spins and the vector T,,, re-
spectively. The tensor formed from the vector
T, has the form f(r,,)Y,,(#,,), and it is this space
part which needs attention. By a differential-
equation method, Sack'® Has considered a more
general function f(7,,)Y,,(7,,) and obtained an ex-
pansion in operational form involving powers of
differential operators, which is not in a conven-
ient form for computational purposes.

In this work we shall expand the space part of
(1) in a complete orthonormal set of irreducible
tensors constructed from spherical harmonics of
the two interacting particles. The m -scheme ma-
trix element of the tensor interaction is also given
in terms of radial integrals along with its graph-
ical form. This graphical form of the m -scheme
matrix element enables one to obtain matrix ele-
ments between many-particle configurations in
any ‘coupling scheme by adopting a graphical meth-
od.!®

II. IRREDUCIBLE TENSOR EXPANSION

It is well known that the tensor interaction (1)
can be cast in a tensor product form

V p= V(712) [(F12712)24(8182)2 5 Joo » 2
where the scalar function V(r,,) is
V(ry,)=V5J(r,)/72,. (3)

The scalar product of two tensors is defined as
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[(f12f12)2q(61.62)20})0 = Z,,: <2q 2p IOO) (flzflz)zq(vxaz)zp ’

4)

where (2¢2p |00) is the Clebsch-Gordan coeffic-
ient.!” Here (3,3,),, is the irreducible tensor of
rank 2 formed from %, and §,, and (F,,¥,,),, is that
formed from the vector T,,. By defining the Her-
mitian conjugate of a tensor operator T,, as

T ;m = (_)’-mTj-m ’

we can rewrite (4) as

[(F12F12)24(8:82)2pJ00 =57 e Z (fxzflz)zc(alaz)gc . (5)

The spin part of the tensor interaction (2) is al-
ready separated in the spin coordinates of the two
particles, while the space part V(r,)(F,,F,,),, de-
pends explicitly on the relative position of the two
particles. Because in a central-field approxi-
mation the space eigenfunction of particle 7 de-
pends only on its own coordinates ¥,;, the evalu-
ation of matrix elements will become consider-
ably simpler if we manage to separate the space
part into a product of functions of the individual
coordinates ¥, and ¥,. This can be achieved to the
extent that the angular coordinates @, and £, are
separated.

We note that V(r,,)(f,,f,,),, transforms like an
irreducible tensor of rank 2 and can therefore be
expanded in a complete orthonormal set of tensors
of the form

To(i'1)= 2 (G'm'im [20) Yy e (2)Y (D), (6)

where Y,,, are the spherical harmonics. Such an
expansion would enable a straightforward evalu-
ation of the m -scheme matrix element using angu-
lar-momentum eigenstates. The expansion is ob-
tained as

V(rlz)(fxzflz)'zq: Ec(jlj)Tzq( i'i, (7N
i

with the radial coefficients C(j‘j) given by

(i 1/2
cli-2,9=(-1(Z5=2))

X('er,+‘r'§V,_z —27172‘,’-1) ) (83.)

ey 2D\
c(,i)=(=) (15(21‘ —1)(2j+1)(2j+3)/

x{(2j+ )2+ 72V,

-7, [ -1V, +@2i+3)V ., ],
(8b)

. . 1/2
O+ 2,)= (1Ll

X(r3V,+ 73V, =2n7,V,,). (8c)

Here the radial functions V, are defined by the:
generalized Laplace expansion'®

Viry,)= f[, V7, 7) Y ()Y () 9)

for any well-behaved function V(r,,); many expan-
sions of this type are well known and converge
fast.

To summarize the results obtained in this sec-
tion we present the spherical tensor expansion of
the tensor interaction (2) as

Vp=571/2 ;: CUi' DTl 5 )88, (10)
‘ira

with j'=j, j+2. Compared with other expansions,
notably that of Talmi,'? the present derivation is
simple and straightforward and gives a consider-
ably more concise expression. The computational
advantage of the present expansion (10) lies in the
fact that-the dynamical effects of the tensor force
are all absorbed in one factor C(j’j) with one re-
coupling coefficient to be evaluated in calculating
many-particle matrix elements.

III. m-SCHEME MATRIX ELEMENT

Matrix elements of a two-particle operator between any many-particle configurations can always be ex-
pressed as a linear combination of matrix elements for corresponding two-particle configurations. Con-
sequently we will deal only with the general matrix element for two-particle configurations in the m

scheme.
The orbital of a particle has the form

|a)= |ngdama) |saka) s

(11a)

where In,,l.m,) and |s,,ua) are the eigenstates of the orbital and spin angular momenta, respectively. Or

we can write (11a) explicitly as
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w"a‘a"‘a“a ::- "a'a(r)y'a"'a(n)x“a

where Xug denotes the spin eigenstate with s, = u,.
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(11b)

We emphasize again that the correlation part involving

the interparticle distance 7,, is to be included in the tensor interaction. The m-scheme matrix element of

the tensor interaction (2) is defined as

@b |Vyled)=5""2 3" (ndam (1, ym,(2) [V(ry,)(F,,5,,), [ndom (Dn l gm o 2))

X (sqhta(1)s,h(2) [(8,8,)], s 1t (1)s,11,(2)) .

(12)

In order to show later exphcltly the coupling of spin angular momenta, we use s,, Sys S, and s, instead
of their numerical value 3. It is straightforward to express (12) in terms of radial integrals using the ex-

pansion (10), and the result is given as
(ab |V 5| cd)= ZG,, [ab; cd)X,. (ab;cd).
]

In (13) the interaction strength X, (ab; cd) is

(13)

X (ab; cd) = 5= (=)'e" H{5(24" + 1)(25 + 1)(2l, + 1)(2L, + 1)(2L, + 1)(21,+ D2

L, 7" L\/, i1 .
X( aJ c)( v J d) <Pa P,,C(]I])PcP,> ,
00 0/\0 OO

with the radial integral defined as

®PCGNPPY= [ ar, [ r,Pyy 0P, GO, (r)Peyy (7).

The geometrical factor G, [(ab; cd) in (13) is given as

11 2\/j
G, fabed)= D ( )(’
qmm’ MM’ m m’ q M'

Here, to better indicate the tensor properties of
the matrix element, we use the Wigner 3-j symbol
in the covariant notation'® with a modified phase
factor.!® This covariant vector-coupling coeffic-
ient, called the covariant 3-jm symbol or simply
the 3-jm symbol, is related to the Wigner 3-j sym-
bol'**% and the Clebsch-Gordan coefficient'?° by

(jl. J2 m3)=(__)i30m3(j1 Ja ja)
my, my Js m, my; =My

= (=) %27 93(2j5+ 1)V 2 jym jom, |jgms)
(17)

where in this particular case the first two compo-
nents are covariant, and the last component is con-
travariant. To transform the 3-jm symbol to the
Wigner 3-j symbol, we associate each contravari-
ant component j with a phase factor (-)’* ™ and
change the sign of m. By this definition the Wig-
ner 3-j symbol is a fully covariant 3-jm symbol.

j q)(s,, m u.c)<s,, m u.,,)( . M mc)( » M m‘>
M 2/\ps 1 s /\u, 1 s,/\m, ' 1. /\m, j 1,

(14)

(15)

14 l

(16)

IV. GRAPHICAL REPRESENTATION AND
APPLICATIONS

With the m-scheme matrix element (13) of two-
particle configurations, matrix elements between
arbitrary many-particle configurations in any
coupling scheme can be obtained easily by using
computers. For an analytical study of the matrix
element, however, it is desirable to obtain an ex-
pression in terms of 3n-j symbols and radial inte-
grals. The complexity in the reduction of angular-
momentum couplings can be obviated by adopting
a graphical method.!® The graphical representa-
tion of (13) is given'as

(@b |V p |ca)
Se S 1, 2.
1 i
= 2 % ] (18)
1 j
———— —
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where the interaction strength X, (ab; cd) and
summations over it are denoted by the cross “X”
at the node (5'2j). In (18) each node represents a
3-jm symbol, and the three angular-momentum
lines originating at the node specify the three com-
ponents of the 3-jm symbol. A lihked angular-mo-
mentum line also implies the summation over the
magnetic quantum number associated with it.

The graphical procedure in evaluating matrix
elements between many-particle configurations
may be described briefly as follows.'® By using
graphical rules, a many-particle configuration
can be constructed as an angular-momentum
coupling diagram with the allowance for antisym-
metrization. The interaction diagram (18) is then
combined with the two diagrams representing the
two interacting configurations to form a single
angular-momentum diagram. This resulting di-
agram can be decoded as a sum of products of
3n-j symbols by using simple graphical rules.
Matrix elements between many-particle configu-
rations can thus be expressed as a sum of weighted
radial integrals.

As a simple demonstration, we prove graphically
that the tensor interaction between a closed shell
and arbitrary open shells vanishes. The direct
contribution of the many-particle matrix element
concerned is given by the diagram

tum lines
Oor all other particles

any 1, s.| any
coupling ' coupling | (19)

where the summation over the closed shell 7 is
performed graphically by joining the correspond-
ing angular-momentum lines s; and /;,. This con-
tribution vanishes because of the fact that

2
1 coupling
H | =0,
! diogram 0 (20)
The exchange contribution is
) tum lines
1or all other particles
any |4 any
coupling L’. """""""""" N _fe_‘ coupling
3, S, 8 N b 47
. ; 7S
Mo P
1 P
SR e nl
Sa
1 2 coupling
= Si . =0’ (21)
1 diagram
Se.

The vanishing of this contribution follows from the
fact that s,(=32), 2, and s, (=3) do not satisfy the
selection rule of angular-momentum coupling.
Therefore we conclude that the tensor interac-
tion between. a closed shell and arbitrary open
shells vanishes. In fact, this result can readily
be seen by inspecting how the angular-momentum
lines s; should be joined together in the m -scheme
matrix element without drawing the entire recoup-
ling diagram. These and many other similar an-
alyses of different contributions to the tensor in-
teraction in a many-particle system can be carried
out easily and expediently.
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