
PHYSICAL RKVIE% A VOLUME 22, NUMBER 5

Exyansion of the syin-syin interaction

NOVEMBER 1980

Keh-Ning Huang
Department ofPhysics, The University ofNotre Dame, Notre Deme, Indiana 46556

{Received 19May 1980)

The splee part of a general spin-spin interaction is expanded in a complete orthonormal set of irreducible tensors
constructed from spherical harmonics of the interacting particles. %ith this expansions, the m-scheme matrix

element of the spin-spin interaction is represented as a sum of weighted radial integrals along with its graphical
representation. The graphical form of the m-scheme matrix element enables one to obtain graphically matrix
elements between many-particle configurations in any coupling scheme.

I. INTRODUCTION

The progress ih spectroscopic technology, e.g. ,
electron spectroscopy for chemj, cal analysis
(ESCA), bent crystal, and optical interferometry
with lasers, has provided an appreciable challenge
to further atomic and molecular structure calcu-
lations including correlation and relativistic ef-
fects. To account for the correlation effects in
many-particle systems (including atoms, mol-
ecules, and nuclei), correlated wave functions
which explicitly contain interpartiele distances
y, ~

have been widely used. On the other hand,
magnetic interactions in atoms, molecules, and
nuclei are among the most interesting relativistic
effects; a few recent formulations have been sug-
gested. '~ The spin-spin interaction, in particular,
has been expanded by many authors' "in irreduc-
ible tensor form, which is appropriate only for
states constructed from products of radial func-
tions P(i,) and spherical harmonics y, (r,) To.
evaluate the matrix element of the spin-spin in-
teraction with correlated wave functions contain-
ing interparticle distances we have to consider,
besides spherical harmonics accounting for the ro-
tational symmetry of the states involved, a tensor
operator of the general form

Here J(r„) is a scalar function possibly containing
the correlated part of the wave functions, and 5,
and o, are the Pauli matrices of the respec-
tive particles. Ne note that the Fermi contact
term" involving P(r») in the spin-spin interaction
can be evaluated trivially and is therefore not con-
sidered here. In a differ'ent context, the tensor
operator (1) represents simply the general tensor
force," which is probably part of the actual
nuclear interaction between nucleons and is re-
quired to describe nucleon-nucleon scatterings.

The tensor interaction (1) has been expanded by
Talmi" in terms of irreducible tensors of each

particle; however, the expansion is a complicated
sum of tensor products and does not reflect its
simple tensor properties. Nevertheless, the ma-
trix element of (1) for harmonic oscillator func-
tions can be evaluated by using the Moshinsky
transformation brackets. " This alternative ap-
proach is, however, based on particular trans-
formation relations between harmonic-oscillator
functions and is not applicable for angular-mo-
mentum eigenfunctions in an arbitrary central
field. The tensor interaction (1) can readily be
written as a scalar product of two second-rank
tensors involving spins and the vector V», re-
spectively. The tensor formed from the vector
F» has the form f(r») y'2 (j»), and it is this space
part which needs attention. By a differential-
equation method, Sack" Has considered a more
general function f(z») I', (i») and obtained an ex-
pansion in operational form involving powers of
differential operators, which is not in a conven-
ient form for computational purposes.

In this work we shall expand the space part of
(1) in a complete orthonormal set of irreducible
tensors constructed from spherical harmonics of
the two interacting particles. The m -scheme ma-
trix element of the tensor interaction is also given
in terms of radial integrals along with its graph-
ical form. This graphical form of the m-scheme
matrix element enables one to obtain matrix ele-
ments between many-particle configurations in
any coupling scheme by adopting a graphical meth-
od."

II. IRREDUCIBI.E TENSOR EXPANSION

It is well known'that the tensor interaction (1)
can be cast in a tensor product form

V = V(r»)[(r»r»)„('5, ff,)„j
where the scalar function V(i.») is

V(~„)= MSZ(~„)/~', , .
The scalar product of two tensors is defined as

0& 1980 'Ihe American Physical Society



KEH-NING HUANG

[(&,2&»)2.(stiff»}.»],0= Q &2~2P 100&(~»f'»)"(ff~d2}» with the radial coefficients C(j j) given by

where &2q2p l00& is the Clebsch-Gordan coeffic-
ient." Here (5,Pr,)» is the irreducible tensor of
rank 2 formed from 5, and 5», and (I»F»)„ is that
formed from the vector f». By defining the Her-,
mitian conjugate of a tensor operator T, as

1' t„=(-)' 1',

we can rewrite (4) as

x(r~VI+r' V»~ —2r, r2V~, ),

2j(j+ 1)
'i25(2j -1)(2j+1)(2j+3})

x{(2j+1)(r',+ r', )V,

-r,r, [(2j 1)V,„+(2j+2)V, ,]3,

(Ba)

[(y„e„)„(ft,e,)„] = 5 '~2 g(v„e„)„(ft,S,),', . (5)
a

The spin part of the tensor interaction (2) is al-
ready separated in the spin coordinates of the two
particles, while the space part V(r»)('P»P»), ', de-
pends explicitly on the relative position of the two
particles. Because in a central-field approxi-
mation the space eigenfunction of particle i de-
pends only on its own coordinates f„ the evalu-
ation of matrix elements will become consider-
ably simpler if we manage to separate the space
part into a product of functions of the individual
coordinates P, and r, . This can be achieved to the
extent that the angular coordinates 0, and 02 are
separated.

We note that V(r»)(P»P»)„ transforms like an
irreducible tensor of rank 2 and can therefore be
expanded in a complete orthonormal set of tensors
of the form

1'„(j'j)= Q &j'm'jm l2q&yq, , (Q,)Y (Q ), (6)

where Y» are the spherical harmonics. Such an
expansion would enable a straightforward evalu-
ation of the m-scheme matrix element using angu-
lar-momentum eigenstates. The expansion is ob-
tained as

(
~ .

) ( )~l
(j+ )(j+ )

l5(2j+ 3)

x(r ~VI+ r»V». »
—2r~raV», q) ~ (gc)

Here the radial functions V, are defined by the
generalized Laplace expansion"

V(r„)= P V,{r,r,) V*, (n, )r,.(n, )

for any well-behaved function V(r»}; many expan-
sions of this type are well known and converge
fast.

To summarize the results obtained in this sec-
tion we present the spherical tensor expansion of
the tensor interaction (2) as

(10)V, =5 ~' g C(j'j)1„(j'j)(ft,ft,)~„
f S.» c

with j'=j, j+2. Compared with other expansions,
notably that of Talmi„" the present derivation is
simple and straightforward and gives a consider-
ably more concise expression. The computational
advantage of the present expansion (10}lies in the
fact that-the dynamical effects of the tensor force
are all absorbed in one factor C(j'j) with one re-
coupling coefficient to be evaluated in calculating
many-particle matrix elements.

IH. m-SCHEME MATRIX EI.KMENT

Matrix elements of a two-particle operator between any many-particle configurations can always be ex-
pressed as a linear combination of matrix elements for corresponding two-particle configurations. Con-
sequently we will deal only with the general matrix element for two-particle configurations in the m
scheme.

The orbital of a particle has the form

la&=- ln.f.m.& le, i .&, {11a)

where ln, l,m, & and ls,p, & are the eigenstates of the orbital and spin angular moments, respectively. Or
we caa write (lla) explicitly as
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1
r "ao a I

where g„denotes the spin eigenstate with s,= p, . %e emphasize again that the correlation part involving"a
the interparticle distance r» is to be included in the tensor interaction. The m-scheme matrix element of
the tensor interaction (2) is defined as

(ab
i
V

i
ed) = 5 ~' Q (n,l,m.(1)n,l,m, (2)

iV(~„)(f(„f'„)„inguen, (1)nJ,m, (2))

x(s,p,.(I)s„i(,,(2) i(tf,5,),', is,g,(l)s,i(,(2), &. (12)

In order to show later explicitly the coupling of spin angular momenta, we use s„s„s„and s~ instead
of their numerical value —,. It is straightforward to express (12) in terms of radial integrals using the ex-
pansion (10), and the result is given as

(ab
i
V r i

ed) = Q G i ,(ab.; ed)X,.~(ab; cd) .

In (13) the interaction strength X~, &(ab; cd) is

(13)

X,, ~(ab; ed) = (-)'o' '(I5(2j'+1)(2j+1)(2l,+ l)(2I, +1}(2I,+1)(2I,+ I)]'~'

'}!(P.I,G(j'~)I,I,&,
(0 0 Oj ((0 0 Oj

with the radial integral defined as

(p p C(( J)pp )= J dr f dr p„, (r l&„, (r lC(i'()J'„,,(r )r„, (r) .

The geometrical factor G~. ~(ab; ed) in (13) is given as

t'I 1 2), (g j q) (s, m g,}(s, n(," p, ) (I, M m,}(I, M m~)
'""'

(((n mr qj(M' M 2j ip. 1 s j I p, 1 s j im. j' I,jim, j

(15}

Here, to better indicate the tensor properties of
the matrix element, we use the signer 3-j symbol
in the covariant notation" with a modified phase
factor." This covariant vector-coupling coeffic-
ient, called the covnriant 3-jm symbol or simply
the 3-jm symbol, is related to the signer 3-j sym-
boV ' and the Clebseh-Gordan eoeffj, ejent " o by

=(-)" " "(2j..l) "&,

IV. GRAPHKAL REPRESENTATION AND
APPLICATIONS

With the m-scheme matrix element (13) of two-
particle configurations, matrix elements between
arbitrary many-particle configurations in any
coupling scheme can be obtained easily by using
computers. For an analytical study of the matrix
element, however, it is desirable to obtain an ex-
pression in terms of 3n-j symbols and radial inte-
grals. The complexity in the reduction of angular-
momentum couplings can be obviated by adopting
a graphical method. " The graphical representa-
tion of (13) is given as

(17) (ab iVr icd)

where in this particular case the first two compo-
nents are eovariant, and the last component is con-
travariant. To transform the 3-jm symbo1. to the
signer 3-j symbol, we associate each contravari-
ant component j with a phase factor (-)~' and
change the sign of m. By this definition the %'ig-
ner 3-j symbol is a fully covariant 3-jm symbol.

sc
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where the interaction strength X& &(ab; cd) and
summations over it are denoted by the cross "X"
at the node (j'2j). In (18) each node represents a
8-jm symbol, and the three angular-momentum
lines originating- at the node specify the three com-
ponents of the 3-jm symbol. A lihked angular-mo-
mentum line also implies the summation over the
magnetic quantum number associated with it.

The graphical procedure in evaluating matrix
elements between many-particle configurations
may be described briefly as follows. " By using
graphical rules, a many-particle configuration
can be constructed as an angular-momentum
coupling diagram with the allo&emce for antisym-
metrization. The interaction diagram (18) is then
combined with the two diagrams representing the
two interacting configurations to form a single
angular-momentum diagram. This resulting di-
agram can be decoded as a sum of products of
3n-j symbols by using simple graphical rules.
Matrix elements between many-particle configu-
rations can thus be expressed as a sum of weighted
radial integrals.

As a simple demonstration, we prove graphically
that the tensor interaction between a closed shell
and arbitrary open shells vanishes. The direct
contribution of the many-particle matrix element
concerned is given by the diagram

s, j
coupling

diagram
=0. (2O)

The exchange contribution is
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So

coupling
diagrom

=0. (21)

&c

The vanishing of this contribution follows from the
fact that s,(=~), 2, and s, (=-,') do not satisfy the
selection rule of angular-momentum coupling.
Therefore we conclude that the tensor interac-
tion between. a closed shell and arbitrary open
shells vanishes. In fact, this result can readily
be seen by inspecting how the angular-momentum
lines s, should be joined together in the m-scheme
matrix element without drawing the entire recoup-
ling diagram. These and many other similar an-
alyses of different contributions to the tensor in-
teraction in a many-particle system can be carried
out easily and expediently.

where the summation over the closed sheQ i is
performed graphically by joining the correspond-
ing angular-momentum lines s, and l,. This con-
tribution vanishes because of the fact that
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