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The cycle that maximizes the average power output of a class of irreversible heat engines has been

obtained using optimal control theory. This class of heat engines is distinguished by being endoreversible,

having a fixed compression ratio and being irreversible because of linear heat conduction. The optimal cycle

is found to have eight branches including two fixed-volume branches, two isothermal branches, and two

maximum-power branches. Maximum-power branches are defined and discussed in detail. It is shown that

the maximum-power cycle contains no adiabatic branches. Two special limits are analyzed in detail, the

Curzon-Ahlborn limit and the large-compression-ratio limit. The fixed-compression-ratio constraint and the

periodicity of the engine require special attention which lends this problem some purely mathematical

interest.

I. INTRODUCTION

A standard problem in thermodynamics is to
determine the maximum useful work that can be
obtained from a given process which is specified
by placing constraints on some of the state vari-
ables of the system. In order to obtain the maxi-
mum useful work it is necessary for the process
to be reversible, which means that the process
must be carried out in an infinite amount of time.
Recently several papers have appeared which con-
sider the problem of optimal performance of heat
engines for processes of finite durations. In
this paper we extend the results of Ref. 4 to a
class of heat engines with fixed compression
ratios. This is an interesting extension of the

previous work because of the constraint imposed

by the fixed compression ratio.
The problem of obtaining bounds on physically

interesting quantities is usually attacked by either
obtaining inequalities through direct mathematical
or physical reasoning or by employing the machi-

nery of var jational calculus. In the past twenty-
five years mathematicians and engineers have

developed and applied an extension of variational
calculus to the study of extremum problems under

the name of optimal control theory. In this paper
I mainly will rely on the standard techniques of the
calculus of variation, however, I shall not hesitate
to use results from optimal control theory where

they are advantageous. From a mathematical
point of view the problem formulated here has

two interesting and challenging parts. One of

these arises from the constraint implied by a fixed
compression ratio. This type of problem has been
discussed extensively' for certain cases, but does
not seem to have been thoroughly analyzed for
periodic systems. The other interesting point is
that the quantity being maximized is a time aver-

aged quantity. As with Refs. 1-6 the purpose of

this paper is to gain some understanding of the

effect of the requirement that processes occur in

a finite time has on thermodynamic bounds.
The plan of this paper is as follows. In Sec. II

the model heat engine to be studied is presented.
Section GI begins with a formulation of the opti-
mization problem. The optimization procedure
is carried out in several steps during the remain-
der of this section. Particular attention is given
to the corner conditions which determine how the
various branches of the maximum-power cycle are
linked together. Control theory in the form of the

Pontryagin maximum principle is used in this
section to determine the possible values of the
control variables along the cycle. The section
concludes with the derivation of the maximum-

power cycle. Anyone not interested in the mathe-

matical details of the derivation may skip to Sec.
IV where the maximum-power cycle is analyzed
and the final results are presented. The paper
concludes with a summary and three technical ap-
pendices.

II. MODEL HEAT ENGINE

The heat engine we discuss is a subclass of the
class of endoreversible engines. An endorever-
sible engine is an engine whose working fluid
undergoes reversible transformations so that any
irreversible processes must occur through the
coupling of the engine to the environment. Here
we shall be interested in the case for which the
irreversible process is linear heat conduction be-
tween the working fluid and a thermal reservoir
at temperature T~.

Our model heat engine is defined by the follow-
ing conditions.

(1) The engine is endoreversible.
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(2) During each branch of the process the walls
have a constant thermal conductivity p subject to

0&P-Po ~ (2.1)

TR& T~. (2.3}

(5} The work done by the engine in one cycle is
given by

T

W=
J

PVdt,
0

(2.4)

where P and V are the pressure and volume of
the working fluid, the time derivative of V is de-
noted by $', and ~ is the cycling period of the en-

gine.
(6) The working fluid is an ideal gas with con-

stant heat capacities.
To state our next assumption it will be conven-

ient to define

(3}When the engine is in thermal contact with a
heat reservoir of absolute temperature TR, the
heat flux into the-working fluid is given by a linear
law

(2.2)

where T is the absolute temperature of the work-

ing fluid.
(4) Each heat reservoir has a constant tempera-

ture T„where

the conditions listed above. Because of the con-
straint on P, the maximization problem is not as
straightforward as the problem discussed in Ref.
4.

We conclude this section with a few words about
the order of magnitude of p, c&, and c„. To esti-
mate the order of magnitude of these quantities we
assume that the engine is a simple piston and

cylinder. If the thermal conductivity of the walls
is taken to be 5 W/m K, the thickness of the walls
to be 0.5 cm, and the effective area of the cylinder
tobe 0.1 cm, then po = 100 W/K. If we take C»
to be approximately 5 J/K, then pa=20 s . This
means that the relaxation time for thermal con-
ductivity is about ~ s, which is probably an upper
limit.

To estimate c~ and c, we recall that the as-
sumption of endoreversibility means that the work-

ing fluid must remain in internal equilibrium.
This puts constraints on all the rate processes.
In particular, the volume must not change by a
large fraction in the time it takes for a sound wave
to cross the cylinder. Taking the speed of sound,

a, to be 350 m/s and a typical dimension of the

cyclinder, L, tobe 0.1 m, we must require that
c„and c are much less than 3.5X10 s

These estimates are quite rough; however, it
seems plausible that if we let & lie between —,

' and

10 where

P=(y 1)lnV/V„ (2.5) &=pp/min(c„, c ), (2.11)

where y= C~/C» is the ratio of the constant pres-
sure and constant volume heat capacities of the

gas, and Vo is a constant reference volume. We
then require that the rate of change of P, P= c, be
bounded.

('7} I et c and c„be arbitrary constant positive
numbers. Then we require that c(f) be restricted
such that

—c~ «& c «& cg ~ (2.6)

(8) The engine has a fixed compression ratio.
If Vp in Eq. (2.5) is the minimum volume of the

cylinder this constraint may be written as

0&P &P&. (2.7}

It is now a simple matter to show that the equa-
tions of motion of the system are

T =-cT +p(re —T), (2.8)

P=c, (2.9)

where p =p/C» and the average power output is

then we should cover most cases of interest.

III. OPTIMIZATION PROCEDURE

Our problem is to maximize P defined by Eq.
(2.10) subject to the constraints imposed by Eqs.
(2.1}, (2.3), (2.6}, (2.7) and the equations of mo-

tion (2.8} and (2.9). In the language of optimal
control theory the variables Te, c, and p=p/C»
are called control variables and T and P are called
state variables. The solution of our problem in

the space of state variables is called the optimal
trajectory and the corresponding controls are the
optimal controls.

Anyone not interested in the mathematical de-
tails may wish to skip the remainder of this sec-
tion and proceed to Sec. IV.

The technique for solving the problem stated
above is to introduce time-dependent Lagrange
multipliers called adjoint or co-state variables
and to treat the equations of motion as constraints.
Thus, define'1P=C„—cTdT.

T
(2.10) L=H —gT- QP, (3.1)

The problem now is to maximize P subject to all where
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H =(I/~)cT+ gq[- cT+p(T„—T)]

+pc- PGy

G =P(p P-g),

(3.2)

(3.3)

and p is a time-dependent Lagrange multiplier.
Maximizing E(I. (2.10) is now transformed into

maximizing

J= dt L.
0

(3.4)

H is the Hamiltonian of our problem, the g's are
the adjoint variables, and the constraint (2.7) is
equivalent to the requirement that

G& 0. (3.5)

d=g I dfd. , (3.8)

where t„,~ ——to+ T and t 0- t~ & ' ' & t„,q are the
times at which some control changes discontinu-
ously.

The state and control variables are required to be
periodic with period T.

In the usual fashion, we now assume that the
optimal trajectory and optimal controls are known

and consider small deviations from the optimal
functions. It will be convenient to divide the prob-
lem in several parts starting with the variations of
the state variables. The variations in the control
variables, the corner conditions which indicate
how the cycle is pieced together, and the variation
in the period T will be studied in that order. Of

these procedures the first is standard and should

be familiar to anyone who has studied the calculus
of variation. The calculation of the control vari-
ables is most easily done using control theory,
although the problem may be formulated as a
calculus of variations problem. The final two

parts of the problem employ standard mathemati-
cal techniques of the calculus of variations but may

be unfamiliar.
Before beginning the calculation, it should be

noted that trajectories obtained by solving Eqs.
(2.8) and (2.9} subject to the constraints are con-
tinuous functions of time by virtue of the fact that

they satisfy differential equations. The deriva-
tives of the state variables are piecewise contin-
uous because the control variables are allowed to
be discontinuous. Thus the trajectories are in

general made up of arcs which begin and end at
points, called switching points or corners, where

the controls change discontinuously. Because of

this it is convenient to write E(I. (3.4) a,s

A. Variation of the state variables

We first consider variations which leave the end

points of the arcs unchanged. After the usual in-
tegration by parts, we find

~=/ f '
d~ (

—'".d, )dT .(
—'".

d,)dd (d.T)

f

For J to be a maximum, dJ ~ 0; therefore, since
6T may be positive or negative we must require
that the coefficient of &7' vanish. The variation of

P is complicated by the constraint (3.5).
There are two cases that must be considered.

First, if G & 0 then &P is arbitrary. In this case
p. is set equal to zero and the coefficient of &P in

E(I. (3.7) must vanish. Secondly, if G = 0 some-
where on the optimal trajectory, then &I3 is not

arbitrary because the allowed variations of P must

not violate the constraint. This implied that &G

= (RG/BP)5P ~ 0 at such a point. This constraint is
enforced by choosing p(t) so the coefficient of &P

in E(I. (3.7) vanishes. It is not difficult to show

that in order for J to be a maximum i(.(t) ~ 0.
Thus by appropriately choosing p, along the opti-
mal trajectory KG=0 and the first-order varia-
tion of the state variables yield the equations of

motion of the adjoint variables:

BH
1T=-Bd ——dg)+Pd, ,

(3.8}

6=-
8P

=~(2P-P~). (3.9)

B. Determination of the control variables

It is possible to treat the control variables in a
manner analogous to the treatment of P; how-

ever, it is simpler to use the central result of

optimal control theory, the Pontryagin maximum

principle. We refer the reader to Ref. 4 and the

list of references contained in that paper for a
discussion of this principle. We shall simply
state the maximum principle for the case we are
studying here.

Suppose we have solved our problem and deter-
mined the optimal trajectory, the optimal controls,
and the corresponding solution to the adjoint equa-
tions. I et H* be the value of H evaluated at any

time by using the optimal solution. I.et H, be the
value of the Hamiltonian evaluated in the same
way as H* with the exception that the optimal con-
trols may be replaced by any value of the controls
consistent with the constraints on the control vari-
ables. Then the maximum principle states that
H* 0, .

To see how this works in practice consider
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H —H, = [(I/~ —yg) T + g](c —c,)

+ A[P(TR —T) —Pt(TR, —T}]- 0 (3.10)

(2) Maximum-power branches:

p =pp, c =cy ox' —c TR —Tz or Tz,

where the subscript t denotes a trial value and all
the other functions are evaluated. at any point on
the optimal trajectory.

First set p, =p and TR = T» then, we imme-
t

diately obtain

!
!' c„+0

c= & -c if (I/~ —Pz)T+Q, &0

~

undetermined, =0.~

~

E.

The last possibility corresponds to what is called
the singular control problem and is discussed in
Ref. 4. Next, set ct —c and p, =p, then Eq.
(3.10} implies that for p & 0

(3.11)

(3.12)TR=&

undetermined, =0.
It is shown in Ref. 4 that g~ cannot vanish over a
finite time interval. " Finally, set c, =c and TR,
= T„; then Eq. (3.10}yields

(3.13)

p=O c=cg or -c
(2) Maximum power branches:

p=pp TR=TH ox' TI, &
and c=c„or -c

(3) Isothermal branches:

P" =pp, TR —Tz pr Tl. .
(4) Boundary branches:

p=O or p&, TR=T& or TI, , and c=O.

The equations of motion and the adjoint equations
for each of these cases are easy to solve. ' We40 13

find the following results

(1) Adiabatic branches:

p=O, c=cg ox' -c
T(t)=T(ti)e-" '~', P(t)=P(t&)+c(t ti)-(3.14)

p p
)O

P =( 0 "if gg(TR- T), &0

!
undetermined, =0.

It is a simple matter to show that the last case in
Eq. (3.13) is. not possible on a finite time interval
since it would lead to a time-independent state of
the system.

Thus there are four classes of optimal arcs
which may be used to construct the optimal tra-
jectory.

(1) Adiabatic branches:

p =p0, c„=p0(TR/T„—1), TR = T„or T~,
(3.18)

T(t)=T„P(t)=P(t )+c,(t —t,),

where the subscript ~=h or l when R=H or L,
respectively. T„and c„are constants.

(4) Boundary or constant volume branches:

p=pp C=O, TR=TH or T~,

T(t)= T„-[T„—T(tq)]e '0' ~, P=0 or P„.
(3.IV}

Note that the control variables p and TR only
take on their extreme values along optimal branch-
es. Thus we do not need a continuum of heat
reservoirs but only the hottest and coldest ones
available. The third control variable c only takes
its extreme values in cases (1) and (2) abave;
however, in the third case there is a relation
between c and the temperature of the working
fluid which is an immediate consequence of Eq.
(2.8) and the constancy of T. It is obvious that
there are other solutions to Eqs. (2.8) and (2.9)
which satisfy the constraints, but these solutions
do not contribute to the maximum-power cycle.
The isothermal and boundary branches correspond
to singular cases of Eq. (3.11). In Appendix A

we argue that the optimal trajectory cannot obtain
adiabatic branches. Thus the maximum-power
cycle maybe constructed from isothermalbranches,
maximum-power branches, and boundary
branches of the types shown above.

The maximum-power branch is unfamiliar to
most people, so in Appendix B we have analyzed
the thermodynamics of the process in the spirit
of Ref. 15. We note that these processes differ
from adiabatic processes because the cylinder
remains in thermal contact with a reservoir dur-
ing a rapid expansion or compression. When p0/
!c!« I, the difference between a maximum-power
process and an adiabatic process is negligible, '

however, if p0/! c! is not too small then the dif-
ference is significant. In order to determine how

many times each branch occurs, in what sequence
the branches occur, and the duration of each
branch, it is necessary to return to the variation
of Eq. (3.6) and consider the corner conditions
that must be satisfied at points where the branches
join.

A A

T(t) P0 T +!T(t )
P0 T !

rg+00Xt tg&

C+P0 k C+PO J (3 I )
P(t) =P(4)+c(t 4)-.

(3) Isothermal branches:
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C. Corner conditions

Consider now the variation of Eq. (3.6} with

respect to the state variables, this time letting
the end points of the arcs vary and also letting
the t~ vary.

dJ= [L(t„,g) —P/w] d~

+g [(&pi»), + (&ABP), —(~),dt, ],
yaP

(s.is)

dd = [H(t„,g) —P/v] dv

+ Z [(&0,),dT(t, )+ (&g),dp(t, ) —(~);dt, ],
(s.20)

where the periodicity of the system has been used

to set dT(tp) =dT(t„,&) and dP(tp) =dp(t„&). At all
corners where G & 0, the differentials of T, P,

t, are arbitrary which implies that gz, Q, and

H are continuous at these points. In particular,

gq and Q are periodic with period ~. The varia-
tion of the period ~ is also arbitrary which then

implies that~

H(t„,,) =P/~. (s.2i)

An immediate consequence of Eq. (3.21) is that
H is a constant along the optimal trajectory and,

therefore, is certainly continuous across the cor-
ners. This follows from the periodic nature of the

trajectory and the fact that H(t„,z) can be evaluated

at any point along the trajectory by a simple shift
of to the initial time.

It is now necessary to examine the corners
which are entry and exit points of the boundaries
determined by G =0. These points must be cor-

where (&f)& f(t, +}——f(t& --) for j= 1, . . . , n, (&f}p

=f(tp+)-f(t„,q-), and t, + means that t& is ap-
proached through positive or negative values, re-
spectively. To obtain Eq. (3.18), Eqs. (3.8) and

(3.9) have been used to eliminate the variations
along the arcs and dt„,& has been replaced by dto

+ dl.
The differentials of T and P at the corners are

given by

d T(t~) = BT(t, +) + T(t, +)dtJ,
dP(t;) = BP(t, +)+P(t, +)dt's .

Recall that the variation in a function f, Bf(t}, cor-
responds to displacing f at fixed time, while the
differential df(t, ) corresponds to the shift in the

location of the corner which originally occurred
at time t, The conditions on the differentials
ensure the continuity of the varied trajectory.

Substituting Eq. (3.19) into Eq. (3.18) yields

ners because c changes at such points and c only

changes discontinuously. First, observe that if
dT is arbitrary $& must be continuous at the entry
or exit point. Because of the constraint (3.5}, dP

is not arbitrary but must satisfy dG = (BG/BP)dP
& 0. Thus dJ & 0 if

ng = vaG/aP, (3.22)

where p, which may be different at each entry or
exit point, is a non-negative constant. Here and

in the following BG/BP is evaluated at the boundary.
At an exit or entry point Eq. (3.11}implies that

(3.23)

where p' is a non-negative constant. To see why

this is so, suppose P=P&, then at the entry point

c(t -) & 0, and c(t +) & 0 where the equality holds if
the optimal trajectory includes a boundary arc
and the inequality holds if the trajectory just
touches the boundary at one point. In this case
&[(1/~ —g&}T + Q] & 0, which is conveniently ex-
pressed as -v'BG/Bp. A similar argument holds

at the exit and entry points of both boundaries.
Finally, since T and Pq are continuous, Eq. (3.23)
implies that &g=-v'BG/BP and with Eq. (3.22) in

turn implies that v' = v = 0 or that t)tp is continuous

at the boundary corners.
The argument just given depends on the contin-

uity of gq which followed from Eq. (3.20) and as-
sumed the arbitrariness of dT. It is not always
true that dT is arbitrary at the entry point of the

boundary. To see how this complication may

arise, refer to Fig. 1 where the arc a-b is a seg-
ment of the optimal trajectory which strikes the

boundary P =P„. Suppose —as is in fact the case
in problem under study —that a-b is a minimum

time arc, that is, for the allowed controls all
other arcs take longer to go from a to b than the

optimal arc. Furthermore, suppose that all arcs
hit the boundary at higher temperatures than T„'
then for all variations dT, ~ and dt, ~ 0. Thus,
in general, the requirement that dJ ~ 0 implies
that (nt)q)p ~ 0 and (M},& 0. At the entry to the

other boundary (&Pq) ~ 0 and (~)& 0 because there
dT & 0 and dt & 0. For the problem treated in this

paper, it is again possible to show that P~ and Q
are continuous. The continuity of H follows from

Eq. (3.21); however, for a periodic system the
continuity can be proved directly. The proof
that gq and Q are continuous follows from Eq.
(3.23}. First, to take into account both bounda-

ries, it is convenient to write &gq =-v "BC/ap
where v" ~ 0. Then the left-hand side of Eq. (3.23)
becomes (Tv'+ v')BG/Bp. Since Tv" + v'~0 and

the right-hand side of the equation is not positive,
~r = v' = v" =0 and gq and Q are continuous.
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TABLE I. Switchings.

a or b

a

4c=0 and /&=0.
ET' = 0 and (1/& —gg) T + $2= 0.' Forbidden switchings.

FIG. 1. T-P and time-P sketches of the minimum time
arc ab. The dashed lines represent an allowed neighbor-
ing arc. Such an arc meets the boundary at a higher
temperature than T& and is of a longer duration than t&-
tge

In summary, in this rather long section it has
been shown that Qe adjoint variables and the Ham-
iltonian are continuous along the optimal trajec-
tory. Eq. (3.21) shows that H is in fact constant.

ary P=o or P=P&. For example, 2& is a maxi-
mum-power- expansion process with 7.'„=TH.

The switchings are determined by Eqs. {3.11)-
(3.13) and are summarized in Table l. Certain
switchings would require both c and T„ to change
simultaneously which would force H to vanish, but
Eq. (3.21) and the constancy of H along the optimal
trajectory forbid this. For example, the end
points of isotherms are determined by the fact
that Eq. (3.11) implies that (1' —gq)T+ g vanishes
along an isotherm. Since H is not zero, Eq. {3.2)
implies that gq cannot vanish along an isotherm;
consequently, TR must remain constant at the
corner which leads to the possible switchings in-
volving isotherms listed in Table I. Analogous
arguments generate the remainder of the table.

The maximum-power cycle is shown in Fig. 2
and is presented in detail in Appendix C. It may
be constructed by starting at the minimum volume
and considering the possible paths which are al-
lowed. As will be discussed in Sec. IV, it is

.sometimes necessary to resort to numerical cal-
culations to eliminate certain possible cycles.

D. Switchings 0

To construct the optimal trajectory it is neces-
sary to find which branches can be connected to-
gether at the switching times t&. In doing this we
also find the duration of each branch and the period
of the cycle. Arguments like those given in Ref.
4 show that the possible switches between pairs
of branches are limited. To make the discussion
of the switchings more compact it is convenient to
label the allowed arcs by denoting the basic type by
their number given in Se.c. IDB, using subscripts
& and I- to denote whether the system is in con-
tact with the high- or low-temperature reservoir
and using superscripts + to denote the sign of c
along the maximum-power branches. For the
boundary branch the superscript labels the bound-

FIG. 2. T-P diagram of the maximum-power cycle.
The arcs 6-6', 0-2 correspond to the cyclinder being in
contact with the hottest reservoir and arcs 2-6 corre-
spond to contact with the low-temperature reservoir.
1-3 and 4-6 are, respectively, expansion and compres-
sion maximum-power lines.
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IV. MAXIMUM-POWER CYCLE

A. Maximum-power cycle description

The maximum-power cycle is composed of eight

branches. In Fig. 2 we sketch the T-P diagram
for the m primum-power cycle and in Appendix C

we give the mathematical details of the cycle.
Recall that Eq. (2.10) implies that the area under

an arc in the T-P plane is proportional to the work

done by the corresponding process. We will now

describe the eight branches starting at 0, where

the volume of the cylinder is at its minimum and

the working fluid is at its maximum temperature

T„. The arcs 6-0-1-2 represent processes for
which the cylinder is in contact with the high-tem-

perature reservoir, while along the remaining

arcs, 2-6, the cylinder is in contact with the low-

temperature reservoir.
The 0-1 branch of the cycle represents an iso-

thermal expansion. This is followed by two maxi-

mum-power branches. During the next interval
heat is withdrawn from the working fluid until the

minimum temperature T, is reached.
The compressional part of the cycle is composed

of an isothermal branch followed by two maximum

power branches which terminate at point 6 when

the cylinder has reached is minimum volume.
Finally the branch ends with heat being added at
constant volume to raise the working fluid tem-
perature to T„.

As explained in Appendix C the constancy of H

along the trajectory gives a relation between T„
and T, . This relation leads to a one parameter
set of cycles parametrized by & [see Eq. (CI)].
For &= 0, the boundary arcs reduce to points and,

in general, H ~ P/7, violating Eq. (3.21}. As 6
increases, & decreases, ~ increases, and I' first
increases and then decreases. The equality is
satisfied at the maximum value of I'.

Once & is fixed, as shown in Appendix C, the

durations of the maximum-power arcs are deter-
mined, which in turn fixed the switching points 2

and 5 of Fig. 2. Finally, the conditions P(t~) =P„
and P(t~}= 0 fix the length of the isothermal branch-
es and, consequently, yield ~.

It is actually possible to construct a cycle with-

out isotherms. For P&~ 0.40 such cycles do not

produce the maximum average power and in gen-

eral do not expand enough for P to reach P&. How-

ever, as P& decreases the isotherms for the opti-
mal cycle decrease and for sufficiently small P&

(between 0.40 and 0.39) the low-temperature iso-
therm vanishes. Since this corresponds to a very
small compression ratio, I have not bothered to
work out the details of such a cycle.

One unexpected feature of the maximum-power
cycle is the existence of two constant volume

arcs. This may be understood by noting that the
amount of work per cycle that the engine does
increases with decreasing T, /T„I.n contrast
lengthening the cycling time of the engine tends

to decrease the power generated. Increasing T„
and decreasing T, increases the period of the

engine for two reasons. First, the heating or
cooling along the constant volume arcs increases
the period, and secondly, the isothermal proces-
ses slow down as TH-T„and T, -TI. decrease due

to the changes in T„and T, . The balance between
the increasing work and the lengthening cycling
time determines the duration of the constant vol-
ume arcs in such a way as to maximize the aver-
age-power output.

Finally we note that the replacement of adiabatic
branches by maximum-power branches is simply
a matter of increasing the work done at no cost
in time.

B. Power generated by the maximum-power cycle

If we first introduce a dimensionless quantity
P = P/C'vpoT„, then

P = (I T„/T„)', (4.1)

where T, is the temperature along the high-tem-
perature isotherm in the cycle. It is convenient

to write

T„/T„=-,'(1+x} +xS, (4.2)

where x=(T~/T„) . When n vanishes we obtain

the Curzon-Ahlborn result'

Pc~=,(1-x) (4.3}

1. The Curzon-Ahlborn limit

In their paper Curzon and Ahlborn calculated the
maximum average power output for a class of heat

engines similar to those discussed here for which

the cycling time was fixed. In their engines the
working fluid was assumed to undergo a Carnot
cycle with the duration of the adiabatic transfor-
mations assumed to be proportional to the dura-
tion of the isothermal transformations. They ob-
tained the result given in Eq. (4.3) when the adia-
batic transformations occurred in a negligible
time. Their work was extended in Refs. 2-4 and

it was shown more generally that in the limit that

As discussed in Sec.' IVA the equation determining

the value of & can only be solved numerically, '

however, the limiting form of ~ may be obtained

in the case of 1 rge compression ratio and in the
case of small z [recall Eq. (2.11)]. We shall re-
fer to the small & limit as the Curzon-Ahlborn
limit. We treat the latter, more physical case,
first.
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TABLE II. The large-compression-ratio behavior of the maximum average power cycle
for &=0.10 and Tz/T&-—0.36.

r (y=1.4) I 0.0') POT

0.80
1.00
1.50
2.00
2.50

7.39
12.2
42.5

148.4
518.0

3.95
3.97
3.98
3.99
3.99

0.390
0.394
0.397
0.398
0.399

3.05
4.54
8.39

12.33
16.29

& vanishes, Eq. (4.3) yields the maximum average
power output.

In the case of fixed compression ratio, we find

the same result. , In particular, if e„=po/c„and
e =po/c are both much less than one,

P =P „[I—4x/(I —x) &, + O(e') ], (4.4)

where

&i = (~~+ ~D

x[1—x+ (1 —x) ln —,'(I +x) + x lnz]/2x(p„ i Inx) .
For reasonable compression ratios and reser-
voir temperature ratios the correction term is
quite small. For example, if the compression
ratio is10, y = 1.4, Tz/T„=0. 36, and&„=e
the second term in the brackets in Eq. (4.4) is
0.10&.

The fact that P&„~P is a mathematical conse-
quence of relaxing the constraint of Eq. (2.6). The

new maximum average power must be greater than

or equal to the old P because the space of allowed

cycles has been incr'eased in such a way that all
the previously allowed cycles are included.

2. Infinite compression ratio limit

As claimed in Ref. 6, P goes to P« in the in-
finite-compression-ratio limit. In that paper the
authors show that if one assumes a cycle compo-
sed of two isotherms and two adiabats which occur
in fixed finite time then one obtains Pc+ in the
infinite compression limit. Of course, in this
limit the process is not a finite-time process.
The authors of Ref. 6 further show that their cycle
is optimal for large but finite compression ratio
with respect to small variations around the iso-
therms. Since these authors restrict their con-
siderations to a specific type of cycle the maxi-
mum power they find is smaller than that given
by Eq. (C2). In Table II the result of a numeri-
cal calculation of the large compression limit is
presented. It is seen that the average power ap-
proaches its limiting value very slowly because
of the logarithmic dependence of P& on the com-
pression ratio r.

V. SUMMARY

TABLE III. Results for the maximum average power
oycle.

a 0.0')

0.50

0.25

0.10

0.01,

0.6
0.8
1.0
0.6
0.8
1.0
0.6
0.8
1.0
0.6
0.8
1.0

3.70
3.81
3.87
3.80
3.89
3.92
3.90
3.95
3.97
3.99
3.99
4.00

0.343
0.366
0.376
0.361
0.378
0.387
0.378
0.390
0.394
0.396
0.399
0.399

2.75
4.03
5.43
2.21
3.51
4.95
1.71
3.05
4.54
1.07
2.54
4.06

13.0
8.01
5.46
8.44
4.61
3.35
4.19
2.09
1.42
0.60
0.23
0.14

The simplest way to summarize the results of
this paper is to refer to Fig. 2 and Table GI.
Table III contains numerical results which convey
some idea of how the power generated depends on

the parameters that enter the problem. The re-
sults in the Table are for e„=e =e and Ti/T„
= 0.36. If y=1.4 the values of P& correspond to
compression ratios of roughly 4.5, V.4, and 12.2.
& is defined in Appendix C, Eq. (Cl) and P is
given by Eq. (C2).

In the limit that & vanishes, & vanishes and P
becomes Pc„For. T /TI„= 0.36, this leads to
Pc„=4.00x10 and the efficiency p« ——0.40. 'It is
evident from Table II and Sec. IV that P approaches
P«rapidly as & decreases, the working fluid tem-
peratures along the isothermal branches of the
cycle approach the values found in a CA cycle,
and the efficiency increases to p«.

If E is held constant at a moderate value and P&

is allowed to increase, then, as discussed in Sec.
IV, P approaches P«slowly. This is illustrated
in Table II. Because P& depends logarithmically
on the compression ratio, it is necessary to reach
enormous values of the compression ratio before
P& becomes very large.

It should be pointed out that in the usual way we
have found our cycle by using necessary conditions
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0.10 0.50 -0.10 -0.50

TABLE IV. The comparison of the ~te of work done along maximum-power lines and
adiabats. Positive values af e correspond to expansions and negative values to compressions.
The bvo cases correspond to a cyclinder in contact with reservoir at higher and lower tem-
peratures than the working fluid.

f

T/TR = 0.8
T/TR -1.33

R
R

2.6 x10-
2.5 x10

0.14
-0.11

2.5 x 10
2.42 x 10

5.9 x 10
6.61 x 10-'

for a maximum, ' we have not proven that this cycle
is unique. ( TR

" ' ——constant,R (B2)

APPENDIX A

In this Appendix it is shown that no adiabatic
branch occurs in the maximum-power cycle. To
begin, consider Eq. (3.10) with c, =c, p=0, and

p, & 0:

H —H, = p~p, (T-R, T) & 0—. (Al)

This imples that if tt)q & 0, T~ T~ and if tt)g & 0, T
& TI, , since TR may take any value allowed by
Eq. (2.3). Thus an adiabat may occur only if the
working fluid temperature T lies outside the
range of reservoir tmperatures [T~, T„]

In Sec. III it is shown that H is a positive con-
stant, so if p=0

H* =c[(1/~- gq)T+ g] & 0, (A2)

=-T+—(T„T).—dT p
dp R (Bl)

Since p, c, and T„are all constant, we may inte-
grate this equation'.

which in turn implies that c =c& or -c„. Further-
more, it is impossible to switch from one case to
the other since according to Eq. (3.11) this would
require the vanishing of H*. This argument and
the equation of motion for T, Eq. (2.8), show that
along anadiabat T is monotonic, T&0 if c=c„,
and T&0 if c=c .

It is now simple to see why there are no adia-
batic branches in the optimal cycle. The only
working fluid temperature at which such a branch
canbegin is either T& or Tl, . If the branch
starts at Tl, (T„) then c=c„(c= c), T-decreas-
es (increases) monotonically and there is no exit
from the branch.

APPENDIX B

It has been shown in Ref. 15 that it is possible
to derive potentials for finite-time processes.
In this Appendix we shall derive the potentials for
a maximum-power process.

We begin by deriving the equation for maximum-
power lines in a TV diagram. We obtain a differ-
ential equation for these lines by dividing Eq.
(2.8) by (2.9):

where we have used Eq. (2.5) to replace P by V

and we have introduced & =p/c. If p=0 this re-
duces to the equation for an adiabat.

Since for an isentropic transformation (dT/dP),
=-T, Eq. (Bl) states that for an expansion, c & 0,
the slope of the maximum-power line is greater
(less) than an adiabatic line at the same point if
Ta & T (Ta & T). For a contraction the opposite
is true.

The work done along a maximum-power branch
may be written as the change in a finite-time
thermodynamic potential. ' This may be seen by
integrating

B B

W„~ =Cv cTdt=Cv TdP.
A A

Using Eq. (Bl) we find W~a = (Pa —6'„where

Cv T+ TRln —— 1+& B31+ t-'TR 1+E

We may of course add an arbitrary constant to 5'.
If p=0, 6'=6'~ ——-CvT=-U which is correct for
an isentropic transformation. In order to get an
idea of how the work for a maximum-power trans-
formation compares with the work along an adiabat
we consider

d(P c T T
dd', I+~ T„T„ I+a& '

In Table IV we give some sample values of R. We
see that R is very small unless the ratio of relaxa-
tion times, &, is large in the sense of being of or-
der one.

It is now a simple matter to write the heat flow
into a fluid as a change in the potential (P =6'+ U
and from this to obtain the change in the entropy
of the fluid by integrating dS = ds' /T. We find
AS& z —0& —0& where

T 1 E ~T

1+& TR 1+& I+& T

As expected o vanishes if p=0. Finally, for com-
pleteness we note that the total increase in en-
tropy for a maximum-power transformation may
be written as ns„, =&(a- |P /TR).
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APPENDIX C

In this Appendix we present the detailed form of the maximum-power cycle starting from the minimum

volume and the maximum internal temperature, point 0 of Fig. 2. It is convenient to introduce the vari-
ables:

x=(Ts/T„)'", y„=T„/T„=—,'(1+x)+zb. , y, =Tg/T~ = —,'(I+I/z} —a,
cg + PO, & =c Pft

- PO ~

~»=Pp/c» + =Ppic

Z» ——6»/I + 6», z~ = E /I + E~ .

(Cl)

In the following, all functions will be expressed in terms of the quantities given in Eq. (Cl}. All these
quantities are given except &. The fact that T, and T, depend on 4 in the way given above follows from the
constancy of the Hamiltonian along the optimal trajectory. This result applied to the two isotherms im-

plies that T»(1 —y„) = Ts (y, —.I} . It is then convenient to parametrize y, in the manner shown in Eq. (Cl)
and the form of y& follows.

All the other quantities given below follow from the solutions to the equations of motion and the continuity

of the state and adjoint variables at corners. In particular, the continuity of gs at points 3' and 6' of Fig.
2 are used to solve for the rather complicated expressions for gq(ts) and gq(ts) given below. The time sub-

scripts correspond to the labels of Fig. 2, where for convenience I have set t(}
——0.

The control variable T~ is given by

Tq 0&t &t2, t6&t &te, ,
TR T, t, &t&t, .

p equals p(} for the entire cycle, and the control variable c is given by

cp =pp(I/yp —I»
c„, t& &t&t,

cd 0 ts- t- ts ts&t- ts
ci ——-pp(l —1/y, ), ts & t & tp

g-c, t4& t&tg.

The state and adjoint variables are given by

0&t &t~.'

t&& t& t2.

t, &t&t,:

where

T=T„, P=c„t, $, =(l-yp)/~, g=-ypT»/4.

T/T» —z»+(y„—z„)e "'", P=cptf+c»(t tf),

g=[z„/&„+(z»-y„)e "'"]/4, Q=-y„T»/~.

T/TI ——z»+ (ys —z»}e ' ', P = cp t~+ c»(t —t&),

(e " '" -I)/~(1+~-»), g=-y'„T»/v,

ys= T(tp)/T»=z»+ (yp —z») (1+&») ~

ts&t&ts: T/Ts =1+(ys —1)e 3" '3', p=p» 4&=A(ts)e'

t}3=-(I/~- A)T,

where

ys —T(t,)/Tl: I —( yf I) /Tgg(ts) y

yg(ts) =-(I/x —1+2h/x —[4n(1 + n)(1/x —1)] ]/2~ .
ts & t & tp'. T = T» p =p» + c& (t —ts) i

ties

=-(yt —I)i~ ~ g =-y& Ts/~ ~

tp & t &tp.' T/Ts -—-z + ( &
y+)ez-' 4, P=P»+c&(tp —ts) —c (t- tp),

A=[z /& -(y +z }e -' "]/ 6= yrTi/~ -~
tp & t & ts.' T/T» =-z~+ (ys+ z~)e '3, p= -+p»)(tcpt )-3(ct —tp),

g=(I —e -" 3')/~(1-z ), g=-y,'T, /~,
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where

yp=T(tp)/Ti= z +(yr+zJ'(I «).
tp~ t ~ tp ——~. T/T„=l —(1—yp}e 'p" 'p', tI=0,

I

$g = gi(tp)e P" 'P', Q =--(I/~ —gq}T,

where

&p= (4)/TH =1—(y —I)'/~A(4)

and

g&(tp) =(I —x+2@x' —[4nx(1 —x')(1 —nx) ]'~}/2

The duration of each arc may also be expressed in terms of &. t 2
—t& and t& —t~ are determined by the

continuity of gz at tq and t4, respectively:

tp-4=-(I/&. ) In[yp- «N(l-yp}],

4 —4=(1/o'-) In[Sr —«(XI —1}1~

t3 —t2 and te- t& are determined by the continuity of $~ at ts and te, respectively:

t, —t, = (I/o, ) in[1 —q, (t,)v(1 + «„)],
t, —tp

—-(I/n. ) in[1 —gg(tp) v (I —«~) ] .
t3 —t& and t6 —t6 are determined by the continuity of fq at t3 and t6, respectively'.

1 In(y, —1)
Pp [-~A(tp)] '

1 ln(1-y„}
Pp &6(4)

Finally, tq and tp t,' are d-etermined by P(t, ) =P„and p(t, ) =0, respectively.
The last step in the complete determination of the solution is to determine the value of & that maximizes

P, This is done by using Eq. (3.21). To do this P must be expressed in terms of 6 since H and v are read-
ily evaluated in terms of & from the foregoing. By direct evaluation Eq. (2.10), it is straightforward to
show that P= P/C„ppTz —is given by

P=((I-y, )[h-x(tp-t, ')]+ [(tp —tx)+x'(tp tp)]/(I+«z)'
+[(t,—t,)+x'(t, —t4)]/(I «.)+(y„-x'yp)/(I+«„) —(yp x'y, )/(I «.)}/~, (C2)

where y3, y&, and the time intervals are given above. For completeness, we have

H=Cv ppTz(I —yp)'/ .
Equation (3.21) was solved numerically to generate Table III.
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