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The two-dimensional (2D) crystal and the 3D smectic-4 liquid crystal are examples of Landau-Peierls
systems, where long-wavelength fluctuations wash out long-range order of the order parameter. However,
the decay of the order-parameter correlation functions is of the power-law type, rather than exponential.
The result is that in x-ray scattering characteristic power-law singularities appear instead of the usual Bragg
peaks. The details of these singularities, which have recently been observed experimentally in a smectic-4
liquid crystal by Als-Nielsen et al., are analyzed for the smectic-A case. A new scaling property of the
structure factor is derived as a function of the momentum-transfer components parallel (k) and
perpendicular (K,) to the smectic layers. Very close to the Bragg points, finite-size effects become
important, including a new and unusual effect when K, is proportional to the inverse square root of the
finite thickness of the specimen. The crossover in the Bragg peaks due to order-restoring effects of an

external magnetic field is presented.

1. INTRODUCTION: LARGE FLUCTUATIONS IN LOWER-
DIMENSION LANDAU-PEIERLS SYSTEMS

As early as the thirties, Peierls' and Landau®
argued that bodies whose density is periodic in one
or two dimensions cannot exist. This is due to the
important role of large long-wavelength fluctua-
tions which, in a sense, wash out the assumed
long-range periodicity. Similarly, Bloch had
shown earlier® that ferromagnetism does not exist
in two-dimensional (2D) Heisenberg systems. In
modern terminology one knows quite generally*
that strict long-range order does not exist at and
below two dimensions for systems where the order
parameter has a continuous symmetry. In the case
of the 2D lattice or the smectic liquid crystal® (a
liquid having a 1D density wave) the fluctuations
are such that each atom performs a motion around
its assumed equilibrium position whose extent is
much larger (and is in fact weakly divergent in the
thermodynamic limit) than the average periodicity
length. However, these large motions are still
performed around well-defined equilibrium posi-
tions and it turns out that macroscopically large
parts of the system move almost in unison. Al-
ternatively, it follows that macroscopically large,
finite systems can show an effective long-range
ordering.® Related to this is the fact that the dis-
placement correlation functions decay weakly
enough as functions of distance, so that the appro-
priate susceptibilities may diverge.” Those weak-
ly decaying fluctuations result in anomalous singu-
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lar scattering around the Bragg positions of the
assumed lattice® as well as in dynamic effects,
such as a Mossbauer spectrum®®”? and sharp
peaks in the inelastic neutron-scattering cross
section.® These effects have been treated for the
case of the 2D lattice!? as well as quasi-1D and
quasi-2D lattices'! and experiments have been
made for 2D overlayers.”? The case of the smec-
tic-A liquid crystal, which is analogous but not
identical to the above because the 1D density wave
involves macroscopic layers, deserves careful
study. Caille® has given some results for the
static structure factor, and a beautiful experi-
mental demonstration of the anomalous thermal
diffuse structure has been recently given.!*

It is the purpose of this paper, after a short re-
view of the 2D lattice, to present a theory of the
static structure factor near the Bragg points of the
smectic-A liquid crystal. Caillé’s results for the
static structure factor S(K) will be augmented:
Finite-size effects will be taken into account. The
effect of an external magnetic field will be dis-
cussed. And finally, though a closed form for

~ S(R) will not be given, S(K) will be shown to ex-

hibit certain scaling properties. We do not dis-
cuss dynamic effects, which should also exist.

II. SUMMARY OF THE RESULTS FOR THE TWO-DIMEN-
SIONAL LATTICE

The 2D harmonic lattice?(¢»8-10 is the simplest
Landau-Peierls 2D system which, although not

1733 © 1980 The American Physical Society



1734 LEON GUNTHER, YOSEPH IMRY, AND JOSEPH LAJZEROWICZ 22

having strict long-range ordering due to large
fluctuations, displays a slow decay of the appro-
priate correlation functions. This slow decay re-
sults in many observable properties which differ
only slightly from those of strictly ordered sys-
tems. These slight differences are well defined
and uniquely characterize the quasi-long-range
order of such 2D systems. One of these impor-
tant observable quantities is the static (e.g., x-
ray) structure factor, which does not have strict
Bragg peaks for an infinite 2D lattice. However,
it turns out that strong thermal diffuse scattering
exists near the Bragg positions with a characteris-
tic singular structure. High resolution experi-
ments are required to distinguish between these
singular structures and the usual Bragg scatter-
ing. In addition, true Bragg peaks also appear, on
top of the above singularities, for realistic finite-
size systems. It can also be shown”‘»810 that the
harmonic approximation in 2D is useful for real
systems in spite of the large fluctuations. This
result, which seemed surprising at first, follows
from the fact that the large fluctuations occur over
long distances, while the short-range fluctuations,
which determine the validity of the harmonic ap-
proximation, are not anomalously large in 2D.
Here we briefly review the results for the struc-
ture factor of the 2D lattice. (Analogous, but
more complicated results follow for the smectic
liquid crystal, which will be considered in Secs.
I and IV.)

The static structure factor S(E) is given in the
harmonic approximation by

S®)= Yexp{lik - (R, -&,)]

n,m
-3 (R - @,- 5P}, 2.1)
where §, signifies the displacement of the nth atom
from its equilibrium position R,. The displace-
ment-displacement correlation function is given by

h,= (K. (&, - Tp)])—constant+In»27/Tx = (2.2)
7o

where 7= |R,-R|/a, and a is the lattice spac-

ing. In the Debye approximation,

kpTy =4mmc?/a®K?, (2.3)

¢ being the sound velocity and m the mass of an
atom. Since &, does not tend to a finite hm1t as
IR,-R,| = for an infinite system, no “true”
Bragg scattering exists. However, due to the
weak power- -law decay in (2.1) obtained by using
(2.2), S(K) behaves singularly around the Bragg
positions K =G. For T<T,, defining k=K -G,
with 1X] < g™ ,

S(k) ¢ 1/k21-T/Tg) (2.4)

Relevant expressions can be found in Ref. 10.
Some representative curves are given in Fig. 1.
[This figure corrects Fig. 4(a) of Ref. 11.] Notice
that T, decreases with G as 1/G?. Therefore, the
anomalous scattering around higher-order Bragg
points becomes observable at lower temperatures.

The picture which emerges is that the lattice, in
principle, exhibits Bragg peaks with singularities
of all orders at absolute zero. As the temperature
is raised, the singularities disappear, one by one,
in order of decreasing reciprocal-lattice vector.
The last one corresponds to a reciprocal-lattice
vector |G | =27 /a and disappears at a temperature
T,.x Of order mc?, corresponding to a tempera-
ture of a few thousand degrees Kelvin in a typical
case,

Two important processes modify the above pic-
ture: First, and most obviously, anharmonic
effects will become important well below T,..'°
Second, Kosterlitz and Thouless’‘®’ have pointed
out that dislocations play a special role in the
melting of 2D lattices: Below and not too close to
the melting point, the above picture is adequate.
Dislocations tend to pair off and produce only qual-
itative modifications in the correlation functions.
However, as we approach the melting point, the
dislocations tend to dissociate and the weak power-
law behavior is modified: Above the melting point
it decays exponentially.'®* Recently, Halperin and
Nelson'® studied the melting of the 2D crystal med-
iated by the dissociation of paired dislocations.
Melting was found to occur in two stages, with an
intermediate phase having only orientational or-
der. They also found that the dislocation pairs
affect a renormalization of the elastic constants,
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FIG. 1. S(K) near the Bragg position of the 2D har-

monic lattice. [This figure replaces the erroneous Fig.
4(a) of Ref. 11.]
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and hence of T;, without changing the basic power-.

law structure.

Equation (2.4) is valid for the infinite lattice.
For a finite lattice with a characteristic linear
size L > a, (2.4) is valid only for k> L', On the
other hand, the correlation function (2.2) is finite
for |R, ~Ry|~ L, and therefore, a Bragg peak, with
a typical width of O(L™') exists. This can also be
looked at®®)%10 35 a3 manifestation of the finiteness
of the Debye-Waller factor due to the 1/L lower
cutoff on E-space integrations which limits the
logarithmic infrared divergences.

It is worthwhile to note that in Ref. 8(b) it was
believed that the simple power-law behavior of
Eq. (2.4) broke down for temperatures T<T/4.
This result stemmed from the divergence of the
integral corresponding to Eq. (2.1) in this temp-
erature regime [Eq. (B5) of Ref. 8(b)]. The os-
cillatory behavior of S(K) which we obtained in this
regime [Eq. (B8)] is indicative of the need to in-
sert a factor exp(—eR,) into the integral. We may
then let the range of R, extend to infinity and
afterwards let € - 0. When this is done, the power-
law behavior is found to hold all the way down to
absolute zero.!»!¢ Physically, this factor may
represent the presence of perturbations (e.g.,
for some types of coupling of the 2D lattice with a
substrate) which weaken the InR, behavior so little
as not to affect the power-law behavior of S(K),
but are large enough so that exp(-€L)< 1. In our
treatment of the liquid crystal, a similar diver-
gence occurs in the integral expression of S(K).
In addition, we will see that finite-size effects can
occur for values of transverse momentum trans-

S(K)

= =
G K

FIG. 2. The true Bragg part S; of S(K) and the ther-
mal diffuse quasi-Bragg part S, (schematic).

fer K, > L,

In sum, a very high resolution experiment should
display the structure schematized in Fig. 2, with
the characteristic singular “thermal diffuse” part
S,(K) and the “true Bragg” part S,(K). The inten-
sity of the former is O[(T/T;)(ka)?"*~T/T¢] for
TX Tg, while that of the latter is on the order of
N@-T/Tg) and thus becomes dominant at very low
temperatures. Note that the above picture does
not take into account finite experimental resolu-
tion. It can also be observed with k-space resolu-
tions that are much better than 1/L. For exam-
ple, to observe S, distinctly from S, for T< T,
one would need a resolution AK satisfying (AKa)?
<1, which means that AK has only to be very
small on the scale of 1/a.

II. SCALING PROPERTIES OF THE STRUCTURE

FACTOR OF THE INFINITE SMECTIC-A LIQUID
CRYSTAL

A smectic-A-type liquid crystal is presumably
characterized by an array of layers of elongated
molecules one molecule thick. The axes of the
molecules are perpendicular to the layers. We
will denote the spacing between the layers by d.
We will further align these layers parallel to the
xy plane, denoting positions in the plane by the
coordinate E =(x,y). The significant fluctuations
are in the 2 direction and are characterized by the
displacement function u,,(B) for the nth layer. We
will let a® be the mean area per molecule within a
given layer.

The x-ray scattering intensity for momentum
transfer K is proportional to the structure factor

S(K)= E fda—?exp(iK,nd+ iK,* D)
x ( exp{iK,[u,(p) - u,(O)), (3.1)

where we decomposed K into its parallel (K,) and
perpendicular (K,) components relative to the di-
rection of the layer displacements. The bracketed
term represents a thermal average which we de-
note by G,,(E).

Since the most significant details of S(K) depend
upon long-wavelength fluctuations, we can well
replace the sum Z,, over the layers by an integral
d! [dz. G,(p) is then expressed as a function
G(r= (E,z)). The K, in exp(iK, nd) must be ex-
pressed modulo a reciprocal-lattice vector.

In the harmonic approximation,

G(p, z) = exp - 3K 2 (|u (D) - u,(0) |2)], (3.2)

where in the Debye approximation,
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-, / 1/a 14
@) -0 =5 [, [, [ as,a- Ryl (3.3)

and, in turn,

A — (3.4)
Bgi+Kgi

The parameter B is the interlayer “spring con-
stant” and vanishes at the smectic-nematic phase
transition temperature 7, y. K, is the Frank con-
stant. The interlayer distance d is typically
~20 A while a is on the order of the intermolecu-
lar distance and is typically ~5 A. The character-
istic length \= (K,/B)'/? is typically ~d, but di-
verges at T, y.

For z>d, we find

)~ uo<0)|2>=—ﬂ—Ti[1n(§ﬁ) +E,()

- f(ﬂi:-z-)] s (3.5)

where Iny=0.577- - is Euler’s constant, E,(x) is
the exponential integral function

“ e
E 1 (x) = f dt T’
x
and the function f(Ad/m&?) is given by

flx)== f a2, (3.6)

It is in this function where our result differs
essentially from that of Caillé. Typically,
Ad/ma*=0(1) and so is f(\d/ma?). However, as
T—=T,x, A==, and f diverges logarithmically:

f(\d/ma?) -~ In(xd/ma?) . (3.7

We obtain for the correlation function

S(R) = (%) f d;(z_“ )2’ explire+ ik, p - E,(¢?/422)]

G(T)= (?)2, exp (-2M) exp [—-xEl(Ze:—;)], (3.8)

where

xEx(T)=%z‘%;,‘3lZ (3.9)
and
2M = x(T)[2 Iny -f(Ad/1a?)]. (3.10)
The asymptotic behavior of G(T) is given by
a%/xz «< (Az)1/2
O, e O

As Caille 13 has shown, this asymptotic behavior
of G(r) results in singularities of S(K) about
K,=2mm/d=K,, wherem is an integer. With
k=|K,~-K, I, we have

S(K)x == 2_, when K, =0, (3.12a)
in agreement with Caille’3; and
S(K )0c = when k =0, (3.12b)

a result®® which disagrees with Caillé.!® (How-
ever, see the discussion of Sec. IV.) When
K< a™, we may evaluate x(T) with K =K,

The scaling property of S(K) results from the
peculiar scaling property of G (;). Let us introduce
the new variables of integration

2'=kz and w=p?/4rz

into the integral expression of S(K) in terms of
G(r). We obtain

1%, =28  ® «© r\1/2 .
_ (ma/d)(4r/a)'"e f dzleu'z/(l-x)f de"Jo(ZKL()":’CZ) )e-sz,_(w). (3.13)
—e0 (]

(Ka)z-x

The integral over w is a function only of the
variable AK2z’/k. Therefore, the integral over
2’ is a function only of the variable (\K3/k). We
can thus write

S(R)= %e*”F(Z{:—i). (3.14)

r

Thus Kz"S(I?) is a function of the single variable
(AK2%/k). As y-0, F(y)-constant; as y - %,
F(y)- (constant)y*-2. This behavior of F(y) ac-
counts for the singular behavior of Egs. (3.12).
Note, finally, that Eqs. (3.12a) and (3.12b) are al-
so valid in the cases MK3<«< k and MK2> Kk, respec-
tively.
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IV. FINITE-SIZE EFFECTS IN THE STRUCTURE FACTOR
OF SMECTIC-A LIQUID CRYSTAL

In Sec. Il we discussed G(p, z) for an infinite
system. Likewise, we discussed S(K) for the case
that the x-ray beam samples the entire infinite
system. In practice, experiments are made on
finite samples and the x-ray beam may sample the
whole system or a subvolume thereof. The gen-
eral case is relatively complicated to analyze. We
will consider in this section, the case when the
subvolume sampled is much smaller than the size
of the entire system. In this case, we can use
G(p, z) for an infinite system, but restrict our in-
tegral for S(K) in Eq. (3.1) to that subvolume.

1t is to be expected that to sense the finiteness
of the subvolume, one needs x> (subvolume di-
mension) when K, =0, and K> (subvolume dimen-
sion) when k=0. As we will see in this section, an
wnusual finite-size effect appears when (K21)™>
(subvolume dimension). It is reasonable to expect
that the results we present will be qualitatively
valid for the case of a beam sampling an entire
finite sample having the dimensions of the sub-
volume. The qualitative reason for this expecta-
tion is that the correlation functions for the finite
system should not be very sensitive to the small
wave vectors (wavelengths much greater than the
size of the finite system) that exist only in the in-
finite system.

While we are not able to obtain exact results for
a finite sample, we can obtain the leading terms
when k< d! and K, < @', We may, therefore, re-
place our sum over z by an integral. We will con-
sider a subvolume whose dimensions are L along
the optical axis and L’ X L’ along the two other
directions. Then,

S(k)= (daZ)-le-zll
L L . - ’
xf dz f d?pexp(ikz+iK,* p)G(p,2), (4.1)
-L

with G(p, z) defined by Eq. (3.2). For our pur-
poses, it is sufficient to replace G(p, z) by

(2a/p)*, p=(4r2)'/?

(@22, p<(@rz)/z, 4.2)

G(p,z)~
The integration over p is then carried out in two
corresponding parts, followed by the integration
over z. Our results are summarized below.

(a) K,=0, k#0. We have

AN 6(K)L’ (2-2x) , X <1

S(k, 0) ~—55+ 4.3)
S(K)(L)™, x>1.

qu

The first term is the anomalous thermal diffuse
part [cf. Eq. (3.12)] characteristic of the quasi-
long-range order of the system. The expression

is valid only when k> L=, When k- L™, the first
term “saturates” at AA!*L2%*, where A is a nu-
merical constant of order unity.

In the second term &(k) represents a peak of
height L and a width L', This is a “true;}’ albeit
weakened, Bragg peak.

The word “weakened” refers to the fact that a
conventional Bragg peak for a 3D crystal behaves
as L’26( k). While the exponent of L’ is reduced
in this case [as well as in the case of the 2D crys-
tal, cf. Refs. 8(a) and 8(b)], this Bragg peak is
observable at very low temperatures, when x << 1.

S(k,K,=0) looks schematically like the sketch
in Fig. 1. We see that for x<1, S(k,0) is domina-
ted by a “true” Bragg peak of width L™ and maxi-
mum value LL’?%?%) with a relatively weak ther-
mal diffuse part whose maximum value is L @™,
When x << 1, this result can be compared with the
ordinary separation of a Bragg peak in a three-
dimensional crystal into a sharp part of height
L3 and width L™ and a thermal diffuse part of
height L2, However, as we will point out later
in this paper, under typical experimental condi-
tions, finite resolution results in the diffuse part
of the peak dominating over the “true” Bragg
peak.

While the true Bragg peak appears to be larger
than the thermal diffuse part (due to the L’2®%
factor), it turns out that this results from our
setting K, =0. For finite K,, the relative strength
of the two parts is changed radically.

(b) k=0, K, > L', This case is more compli-
cated than case (a). Results depend upon whether
K, is larger or smaller than (A\L)?/2. We find
for the leading terms

Wifz;y for I(l >> ()\L)-I/Z (4.43)
1

S(0,K,) < L/K??*, x<1

Al-:Lz-x, x>1

for K, <«<(AL)1/2,

(4.4b)

When K, s L', K, must be replaced by L’ in
Eq. (4.4b) so that S(0,K,)<LL’2%* for x<1 when
K, < L'« (AL)?/2, Note, further, the sharp
drop when x increases through unity.

The result for K, > (AL)™/2 corresponds to the
infinite sample result of Sec. III. Caillé’s!® paper
has S(0,K,) <K2*™2  but without the factor L. de
Gennes®® corrected this result with S(0,K,)
och:-na.

The correct state of affairs is, however, that
both results, LK ?*% and K ?*™, apply in their re-
spective ranges of validity—K, < (AL)™/2 and
x<1 on the one hand, and K, > (AL)?/2 on the
other. This is an interesting finjte-size effect,
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characteristic of a Landau-Peierls system which
is, on the average, periodic in one direction;
quasi-long-range order is achieved through the
soft (via the ¢ term in the free energy) interac-
tion in the 2D lateral dimensions. As far as the
authors know, this sort of effect has not been
obtained before. When both « and K, are nonzero,
we must consider two regimes.

(¢) L'sK,<«(k/)'/2, L’is replaced by K™
in the Bragg part:

AN\ b(k)/K22*, x<1

S(k,K,) ~—=+
S(k)(AL)Y™, x>1.

(4.5)

(d) L"s k<MK We have K, > (AL)™/? and
Eq. (4.4a) applies.

If k<L, S(k,K,)=S(0,K,) and either Eq. (4.4a)
or (4.4b) holds in the appropriate regimes. The
scaling relation (3.14) holds as long as k> L™
and K, > L’™, When either of these strong in-
equalities breaks down, the scaling relation does
not hold and size effects are significant.

There is also a crossover at x=1 in the inte-
grated peak intensities measured by experiments
as a result of finite resolution. See Sec. VII for
its relevance on the observability of higher-order
peaks. Results when K, > L’™ can be summarized
as follows:

A*/g2% when k> (K22, L™)
1/K?* when K x> (k,L™)

L2'x/xl‘x, x >1
L/Klz-zx’ x<1

S(K) e (4.6)

when L™ > (K2), k).

V. VALIDITY OF THE “HARMONIC” APPROXIMATION

Exactly as in the case of the 2D lattice,*!° the
condition for the validity of the harmonic approxi-
mation is not that each of the displacements u,
be small, but that the relative fluctuation in the
displacements of neighboring layers be small
compared to the interlayer spacing d. Now
(o4 4 (0) =, (0) [*) L BT f 4%

Ik T q

q:
=~ 5.
n Xoq® Kmey > (5.1)

where x,, is the value of the exponent x for K, =K.
Therefore, the condition for the validity of the
harmonic approximation is that

Kper <10 (5.2)

This is reminiscent of the analogous condition'®
for the 2D lattice. The result for {|u,., —%,|?
can be understood physically in terms of an effec-
tive harmonic spring between adjacent layers with
a force constant AB. As T~—T,y, ¥, diverges and

the harmonic approximation must become invalid.
However, as the temperature is lowered enough
below the transition to the nematic phase, the
harmonic approximation gains validity. In prac-
tice, of course, the material may, prior to that,
make a phase transition to a more ordered phase
than smectic-A. It is possible that, in analogy
with the failure of the usual Gaussian approxima-
tion for critical phenomena, the scaling proper-
ties of S(K) may still be valid, with changed ex-
ponents, even in the critical region.

VI. THE EFFECT OF AN EXTERNAL MAGNETIC FIELD

The presence of an external magnetic field H
(sometimes used to align the director of the smec-
tic-A liquid crystal) introduces a “strong” cou-
pling between the layers®®: In Eq. (3.4),

(Bg2+K,qt) = (Bg’+ X Hqi+ K \q)) .

The anistropy susceptibility x, is 0(107cgs).®*
As noted by de Gennes,’® the extra term brings
about full long-range order. We expect to have
a true Bragg peak [of width O(L™) and of height
L?®]. The Debye-Waller factor for these true
Bragg peaks is given by

e-2W= exp [- Kvﬁ<un(5)2>] H (6'1)
which can be expressed as
e W= (ct,/d)*. (6.2)

Here, t,=(K,/x,H?)"/? is the magnetic coherence
length®® of O(1 (cm)/H (gauss)) and ¢ is a dimen-
sionless constant of order unity. Thus, the Debye-
Waller factor vanishes as H?* as H—-0. It also
vanishes, as expected, when T~ T, (since x— ),

In practice, the effect of a small magnetic field
is analogous to the effect of weak coupling between
stacked 2D harmonic lattices, a system which was
treated in some detail in Ref. 11. It is also analo-
gous in some ways to the stabilization of the fluc-
tuations of the surface of a liquid by gravity, with
K, being the counterpart of the surface tension and
XH 2 the counterpart of the weight density. It is to
be expected that the H=0 results of the body of
this paper hold for finite k and K, outside a small
region about K =0 which vanishes as H-0. First,
we have a true 3D Bragg peak at K=0. In the
perpendicular direction of a liquid crystal, sta-
bilization by the magnetic field occurs over dis-
tances greater than £,. Thus, we expect

S(k=0,K,) ~1/AK42% = g2/

when K, <« £!, In the direction of the optical axis,
stabilization occurs over distances greater than
£2/x. Therefore, we expect

S(k, K, =0) ~\1%/g?* = g2/
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when k < A/£2. In the former case, the width

of the crossover region is proportional to H,
while in the latter case, the width is proportional
to H? and is much less accessible.}”

VII. DISCUSSION OF OUR RESULTS FOR SMECTIC-4
LIQUID CRYSTALS

The principal results of this paper are the scal-
ing form of the thermal diffuse scattering and the
clarification of the behavior of S(K) as a function
of K [which differs according to whether K,
> (AL)1/2 or K, << (AL)™?/2), Systematic experi-
ments to check these predictions would be ex-
tremely desirable. The inverse-power-law de-
pendence of S(k,K, =0) has been observed in re-
cent experiments!*—but only for the first-order
(m =1) peak. Though the experiment was carried
out very close to Ty [(T yx = T)/T 4= 0(107%)],
independent light-scattering measurements pro-
vide values of B and K, which lead to a value x
=0.12. This value of 2 - x, close to two, is con-
sistent with theoretical estimates.'**‘® The fac-
tor exp(-2M) is, therefore, of order unity. It is
also reasonable (cf. Sec. V) to expect the harmonic
approximation to be adequate.

It is important to understand the absence of
higher-order peaks in the experiments of Ref.
14: There was no evidence for a peak at either
m =2 or 3 on a relative intensity scale of 107,
For m=2, x=4(0.12)=0.48. The factor exp(-2M)
is, therefore, still of order unity. In addition,
there is no reason to expect that the molecular
form factor is so sharply peaked as to make the
higher-order peaks unobservable. While anhar-
monic effects are expected to be quite significant,
we have no reason to expect the m =2 peak to be
so completely washed out on that account.

It might have been thought that the nonappear-
ance of higher-order peaks in the experiments
of Ref. 14 was due to the smectic density wave’s
being purely sinusoidal. We would like to point
out that there exist two factors, each of which
should substantially reduce the intensity of the
higher-order peaks.

First, it should be noted that even the absence
of higher-order peaks in the scattering does
not imply the absence of higher-order Fourier
components in the density. (In fact, the theory
presented in this paper predicts the disappear-
ance of the mth-order peak when x,>2.) On the
other hand, a major source of reduction of the
intensity of the higher-order peaks is the small
amplitude of the higher-order Fourier compo-
nents of the density close to T,y: A Landau free-
energy functional of the density is expected to

have cubic terms in the density. In the mean-
field approximation, the 27/d component of the
density will be proportional to (T, - T)*/2. The
higher-order components are “induced” by the
27/d component via the cubic and higher-order
terms. As a result, it can easily be seen'® that
the 47/d component of the density will be propor-
tional to (T 4,5 - 7). In the temperature range

(T px = T)/T 5x~107 of the Als-Nielsen et al. ex-
periment,'* the second-order component will have
an amplitude of order [(T oy - T)/T sxJ'/?~ 45 times
the amplitude of the first-order component. Since
the scattering intensity is proportional to the
square of the density, the ratio of the intensities
of the corresponding m =2 and m =1 peaks will

be O[(T 5= T)/T 4]~ 107 due to this factor alone.

A second important source of reduction of the
intensity of the higher-order peaks, which might
be relevant in the Als-Nielsen ef al. experiment,
follows from the results of Sec. IV. Suppose the
experimental resolution in K is A with \A < 1,
LA>1, and ALA%>> 1. [This would hold true if
A=10 A, L=1 cm, and A=10° cm™.] Then the
experimentally observed peak value is an infe-
grated intensity over K. We find that the inte-
grated diffuse part of the peak behaves as AL/
@)'*/A for x<1 and (\/a®A)*™*/A for x>1. This
contribution to the integrated intensity dominates
over the Bragg contribution, [a®?*A%(AL)*]?, for
all x, for both x<1 and x>1. Furthermore, the
integrated diffuse part drops sharply as x in-
creases. Taking x,.,=0.12 would make x,,.,=0.48
and x,.,=1.1."° This effect would result in inte-
grated intensities of the m =2 and 3 peaks smaller
than that of the m =1 peak by factors of 10? and
108, respectively. Smaller reductions would be
expected with different experimental resolutions.”®

Improvements in experimental techniques which
would allow for studies at lower temperatures
(and hence smaller values of x) would be very
useful. Theoretical work on anharmonic effects
is clearly very much needed. One may speculate
that the scaling form for S(K) might still hold in
the “critical region” where anharmonic effects
are important, albeit with modified exponents.
This speculation is based only on an analogy with
other critical phenomena and the results of Ref.
15.

Any real experiment will have a finite resolving
power which should be taken into account. An
important example is the ratio between the Bragg-
type and the singular thermal diffuse parts of
Eq. (4.3). While the former is dominant if K, =0,
the discussion of Sec. IV shows that the latter
part can be dominant for resolutions much worse
than O(L™). Finally, in order for the magnetic
field to have a significant effect, the resolution
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must be better than the inverse magnetic coher-
ence length £
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