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We study by computer simulation the behavior at low energy of two-dimensional Lennard-Jones systems,

with square or triangular cells and a number of degrees of freedom N up to 128. These systems exhibit a

transition from ordered to stochastic motions, passing through a region of intermediate behavior. We thus

find two stochasticity borders, which separate in the phase space the ordered, intermediate, and stochastic

regions. The corresponding energy thresholds have been determined as functions of the frequency co of the

initially excited normal modes; they generally increase with co and appear to be independent of N. Their

values agree with those found by other authors for one-dimensional LJ systems. We computed also the

maximal Lyapunov characteristic exponent X~ of our systems, which is a typical measure of stochasticity;

this analysis shows that even in the ordered region certain stochastic features may persist. At higher

energies, y~ increases linearly with the energy per degree of freedom e. The law y~(e) has been determined

in the thermodynamic limit by extrapolation. The values found for the stochasticity thresholds fall in a

physically significant energy range. The, behavior of the thresholds as a function of co and N is compatible

with the hypothesis on the existence of a classical zero-point energy, advanced by Cercignani, Galgani, and

Scotti.

I. INTRODUCTION

It is well known that in general the phase space
I' of a classical system of coupled oscillators is
decomposed, at least roughly, into regions charac-
terized by very different dynamical properties. '

On one hand, around the point of I' which repre-
sents the minimum of energy and close enough to
it, one finds the so-called ordered region, char-
acterized by the presence of quasiperiodic mo-
tions. These motions were first observed by Fer-
mi, Pasta, and Ulam in their celebrated model, '
and were subsequently found in other systems with

many degrees of freedom, in one' ' or two dimen-

sions. " Such dynamical behavior is in evident

contrast with the ergodic hypothesis on which clas-
sical statistical mechanics is usually based.

On the other hand, far enough in I' from the point

of lowest energy, in any direction, one finds a
"good" statistical behavior: the system loses ra-
pidly the memory of its initial state, the energy is
well distributed among all normal modes, etc.
The region where this happens is called stochas-
tic; it is separated from the ordered region by the
so-called stochasticity threshold. In fact, stoch-
asticity is not a very precise and defined concept,
so that neither is its threshold well defined. A

more realistic description of I' can be the follow-

ing: three regions (ordered, intermediate, and

stochastic) exist in i', separated by two borders.

In the intermediate region the behavior of the sys-
tem looks ordered or stochastic depending on the

point of view; this fact is evident when using dif-
ferent criteria of stochasticity to analyze the same
orbit. Moving in I from the equilibrium point in

a given direction (that is, raising the energy of
the system) one thus expects to find two threshoids
corresponding to the crossing of the two borders.
Such structure of I' will play a relevant role in the

present work.
In order to preserve the assumptions of classical

statistical mechanics, some authors suggest that
only the stochastic region should persist when the
number of degrees of freedom is sufficiently in-
creased. " However, some numerical experi-
ments with one-dimensional models, and a num-

ber of degrees of freedom up to several hundreds,
have given a different indication, i.e., that also
ordered motions persist. "'

In the paper at hand we analyze in detail the dy-
namical behavior of a two-dimensional system of
identical particles, in order to get a better insight
into this open problem. The particles are sup-
posed to interact via a Lennard-Jones potential;
this has been chosen both for its physical rele-
vance and to allow direct comparison with other
numerical experiments. A two-dimensional sys-
tem exhibits a qualitative behavior which is more
similar to that of a real physical system than a
one-dimensional chain. Furthermore, in particu-
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lar conditions it has the peculiarity that its nor-
mal modes are naturally divided into groups of
equal frequency, thus making our stochasticity
tests easier and clearer.

An impressive interpretation of the persistence
of the stochasticity threshold has also been pro-
posed, "according to which ordered motions are
nothing but motions at zero temperature; i.e.,
there exists a classical zero-point energy. Fol-
lowing this line of thought, it has been conjectured
that if only a group of normal modes of close fre-
quencies is initially excited, one should find a
stochasticity threshold at an energy which is an

increasing function of that frequency, possibly a
linear function. Such hypothesis has been tested
on a one-dimensional model of particles interact-
ing via a Lennard-Jones potential. ' The results
are not conclusive, but appear to support that con-
jecture. This question is also studied in the pres-
ent work.

We describe in Sec. II the model and in Sec. IG
the kind of numerical experiments we performed
on it. Sections IV and V are devoted to the pre-
sentation of the results of our computer experi-
ments; these results are discussed in Sec. VI. In

Sec. VII we give some concluding remarks togeth-
er with an indication for further developments of
this research.

ing particle.
Let
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where the sums Q, . are extended over all par-
ticles (l 'm') which interact with particle (l, m).

The normal-mode coordinates are defined by
L
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where Q,', is extended over all pairs of inter-
acting particles. From this Lagrangian we obtain
the equations of motion

II. THE MODEL

The particles of our system interact through a
Lennard-Jones potential

V(r) =4~
I

— -1 — +& ~

E~ E~

V(r) has a minimum at r, = 2'I'o, where it takes
the value zero; ~ is the depth of the potential well.
For such a short-range potential the triangular
lattice, that is, the most compact one, is the most
stable. We used it for a few numerical experi-
ments, as described in Sec. V. However, in or-
der to perform a simple normal-modes analysis
of the dynamics of the system, we used in most
computations a square cell lattice with only near-
est-neighbor interaction, and fixed boundary condi-
tions (such a lattice is also stable).

To be more definite, consider a square lattice
of (L + 2)' sites, with a square cell of side d.
Each site can be labeled by a couple of indices
(l, m) with 0 & l, m & L + 1. The boundary sites
are occupied by fixed particles; the other L' par-
ticles oscillate around their equilibrium positions
(for sufficiently low energy), each being coupled
with four neighboring particles. We denote by
x', =ld and y', =md the coordinates of site (l, m),
and by x, , y, the coordinates of the correspond-

(~»d ~». +'''
q»» = -(~»»~&»»+ "' (2)

where the ellipses represent higher-order terms.
The terms of higher order in the coordinates in

Eqs. (2) are small at low energies. Our system
is then equivalent to a set of weakly coupled har-
monic oscU. lators. The energy E of the system
can be written as

L

E = E~q+ Eq~ +E',
h, &1

where

&»»= 2MHe»») + (~»»e»») 1

E»» = »M~(&»»)'+ (~»u»»)'~

are the energies of x and y oscillators, re-
spectively, and E' is the energy of the coupling.
E' is negligible when E is small. The angular
frequencies are given by

2 . h/r . km'
"~'™ I, +1 I, +1 L, +1

In these coordinates, the equations of motion be-
come
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TABLE I. Frequencies ~„of the groups of normal
modes, for two square cell lattices.
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III. NUMERICAL EXPERIMENTS

Most of the computations have been performed
on a square cell lattice with L = 6 or 8, that is,
with N=72 or 128 degrees of freedom. The nu-

merical integration of the equations of motion (1)
has been carried on by means of a standard numer-
ical algorithm (the so-called central-differences
method), shortly resumed in the Appendix.

Typically, we chose the initial conditions by giv-
ing all the energy (as kinetic energy) to a few
modes belonging to the same group. Following the
orbit in I', we computed several quantities:

(i) The time averages E*„~and E„"~of the energy

K~ and K~ are the elastic constants for longitudin-
al and transversal waves, respectively, and are
given by

8'~ . 1 BV
Kz= a K~ ————

er' „,'

K~ vanishes for d =~,. As a consequence, in this
case there are only L distinct frequencies, and the
normal modes are naturally divided into L groups,
each including 2L modes of equal frequency (L x
modes and L y modes}. Actually we set d=r„
Concerning the various constants characterizing
the model, we set a=1, a=1, M=48; this corre-
sponds to the choice (standard in molecular dy-
namics) of &r as a unit of length, e as a unit of en-

ergy, and (Mo'/48&)'~' as a unit of time. With

these choices the angular frequencies turn out to
be

cg„*,=to~„=-~„=3' '2' 'sin[nv/2(L+1}j

for h, k, n =1,..., L. The frequencies for the lat-
tices with L = 6 and 8 are reported in Table I.

of each mode;
(ii) the time averages E„(n=1, ... , L) of the

energy E„ of each group:

L

E„= E„"k+ Eh„',
knl h=l

(iii) a parameter A. , measuring the oscillation
of the energy of the initially excited group of
modes: precisely, we set X=(E~" E"-)/E '*

where E " and E "denote the maximal and mini-
mal energies attained by the initially excited
group of modes during the evolution of the system.

X= 0 means that this group does not share its
energy with any other group. X = 1 means that
there is at least a time where this group has given
all its energy to some other groups. Our criter-
ion to determine the boundary of the region of high-

ly ordered motions is based on the measure of A..
In the spirit of the already cited Refs. 8 and 12, if
a sharp change in A. is observed at a given energy,
the latter could be interpreted as the zero-point
energy of the initially excited modes.

(iv) A parameter p, measuring the distance
from complete energy sharing axnong modes:
more precisely, if n' and n" are the indices for
which E„attains its maximum and its minimum,
respectively, then we set u = (E~ -E„.. )/E„. .

p, = 1 means that at least one group of modes has
not received any energy; p. = 0 means that all
groups shared energy equally. Thus, lower values
of p, indicate an approach to ergodicity. Our cri-
terion to determine the boundary of the stochastic
region is therefore based on the measure of p, .
Of course a small A. implies a large p, , but there
can be a region where they are both close to 1: in
such a case the initially excited group already
shares its energy with other groups, but not with

all of them. This is what we call the intermediate
region.

All the above quantities concern the behavior of
the normal modes. They are meaningful only if
the total energy is sufficiently small, so that the
anharmonic energy E' (see Sec. II) can be neg-
lected. In addition to these quantities, we com-
puted another parameter which does not depend on
the normal modes analysis, precisely:

(v} The maximal Lyapunov characteristic expo-
nent (LCE) y*. Its definition and significance will
be now shortly resumed, but only for our model;
for a more general description see Refs. 13 and

14.

Already in the first study of the stochastic tran-
sition, on the Henon-Heiles model, "it clearly ap-
peared that a property characterizing the stochas-
tic region is the exponential divergence of nearby
orbits. The LCE's permit giving a neat quantita-
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zq f)(z), ——i =1,~. ..K (3)

with suitable f, 's.
Let us denote by F,(z', t) the solution of the sys-

tem (3) with initial point z', and by d(z, z ') the dis-
tance in the phase space between the points z and
z'. As our phase space is Euclidean, it is d(z, z')
= llz'-zll, where II II denotes the ordinary Euclid-
ean norm. Properly speaking, the definition of
the norm depends on the units of length and velocity
that are chosen, and is not independent of a change
of coordinates. However, the relevant quantities
we are going to define will be independent of such
changes.

Let us now consider in the phase space two in-
itial pOintS Zo and Zo+ a,~o3 where a iS a real num-
ber and P' any given vector of norm one. For any
t & 0 we are interested in the quantity

d[F(z') t), F(z'+ el', t)]

where F(z', t) -=[F,(z', t), ..., Fz(z', t)]. Denoting

by A(z', t) the matrix [8F,(z, t)/Bz, ],a,o, it clearly
follows that

y(z', l', t) = IIA(z', t)t'll .
One says that the orbit originating at z is expo-
nentially unstable, in the direction of g', if the li-
mit

y(z', l') = lim(1/t)ln)g(z', t)t'}I (4)

tive definition of such divergence. They are a
useful tool in the numerical study of stochasticity,
being numerically computable.

Let z denote the position of the system in the
phase space:

z=(z„..., z )

= &u~ ~ ~ ~ szl ui'u~ ~ ~3 I zizui ~ ~ ~ ~ &t t )

with K=4L . R is well known that the system of
RL' equations of second order (1) can be rewritten
as a system of K equations of first order, of the
form

energy; however, if a given energy surface is di-
vided into invariant components, then X~ can as-
sume different positive values on them. An ex-
ample of such behavior, which is stochastic but
not ergodic, will be given in Sec. V.

As already remarked, the normal-modes analy-
sis does not enter into the definition of the LCE's,
It could be easily seen that they are also indepen-
dent of the choice of coordinates and units of mea-
sure, that is, the LCE's are parameters charac-
terizing intrinsic properties of a given dynamical
system.

The numerical computation of y* is based on the

property that almost all P' give the maximal LCE.
As a consequence, given z' and having chosen &'

at random, one has to compute for any t the vector
f(t) =A(zo, t)fo, in order to apply the definition

(4). Now, it is very easy to obtain for & the dif-
ferential equation

f = s(F(z', f))r,
where a(z) is the matrix [df, (z)/Bz~]; such an equa-
tion, which is called the variational equation, canbe
easily handled with a computer, provided a certain
care is taken to overcome some technical difficul-
ties. For a short discussion see the Appendix.

Let us finally make a comment about all the pa-
rameters (i)-(v) we have here introduced. It is
clear from their definitions that one should in
principle compute them over an infinite time. We
have carried on the computations typically up to
the time T= 104 in our units; at this time the above
quantities seemed rather well stabilized around a
limit value. This stabilization, however, is poor-
er in the transition region: indeed, it is typical
that, in the neighborhood of a border separating
regions of differ'ent dynamical behavior, the time
an orbit requires to exhibit its asymptotic behavior
diverges. This could be the main source of errors
in determining our thresholds. We recall that, in
our units, the shortest and longest periods of the
harmonic normal modes are 8.0 and 12.9, respec-
tively, for the lattice with L=6, to be compared
with T.

exists and is positive. Actually, this limit is
known to exist" for almost all zo (in the sense of
Lebesgue measure) and for all f' By var.ying t',
X can assume up to K different values, called
Lyapunov characteristic exponents. However, a
relevant fact is that almost all f' give the maximal
one that will be denoted by y*.

A vanishing X* indicates that nearby orbits do
not diverge exponentially, that is, no stochasticity.
It follows from the definition (4) of the I CE's that
y* is a constant of motion. As a consequence, for
an ergodic system, y* depends only on the total

IV. STOCHASTICITY THRESHOLDS

A. Stochastic parameter X

The dynamical behavior of the system has been
studied by exciting, in each experiment, a couple
of x modes and a couple of y modes of equal fre-
quency, that is, of the same group. We observed
that the energy initially given (E) is rapidly shared
among all modes of this group, so that indeed one
has excited them all, roughly to the same degree.
The relevant energy to be considered in the analy-
sis of the behavior of our system is therefore the
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energy initially given to the group of frequency &„,
divided by the number (2L) of the modes in that
group, that is, the energy per mode: e =E/2L.

We want to stress that even when the energy is
low and practically not transferred to other
groups, we observe a good energy partition
among all modes in the initially excited group.
This phenomenon suggests that also ordered orbits
may exhibit a certain degree of stochasticity: this
fact will be emphasized by studying the maximal
LCE, y* (Sec. V).

When the energy e of the modes of the nth group
is raised, we observe that a significant transfer
initiates, typically to the modes of the groups con-
tiguous in frequency. Raising further the energy,
the transfer process extends to the other groups.
As a consequence, the value of the parameter A.

increases from a value close to 0 to a value close
to,1. When A. is at its lower values, the group in-
itially excited has lost typically a few percent of
its initial energy. This fraction of energy is
shared, although in very different amounts, by all
other groups, both with even and odd indices. "

The results of the computation of A. , executed on
the lattice with L =6 and for different initially ex-
cited groups of modes, are reported in Fig. 1.
We see that the variation of A. takes place in an en-
ergy range which is narrow and clearly depends on
the index n of the excited group. To fix quantita-
tively the energy thresholds e„we have considered
the intersection of the curves of Fig. 1 with the
horizontal line X= —,. The profiles A.(e) are simi-
lar for the different initially excited groups, but
are shifted toward higher energies for higher fre-
quencies. Group 6 is an exception: the corre-
sponding curve is on the left of the curve of group

5, near the one of group 4. This is certainly re-
lated to the fact that co4 and &, are resonant fre-
quencies, with ratio —,

' (within 0. 2'%%u&). In such
conditions, the energy initially given to group 6 is
transferred to a great extent to the modes of group
4, thus lowering the threshold of the former group.
(The transfer of energy from group 4 also takes
place preferentially towards group 6, but the
threshold of group 4 does not seem to be affected. )

Also groups 1 and 2 give very similar thresholds
for A.. Looking at their frequencies, one observes
that they are resonant with ratio —,

' (within 2. 5/&)."
The parameter A. has been computed also on the

lattice with L=8, exciting subsequently, as for
L= 6, the different groups of modes, the frequen-
cies of which are reported in Table I. The be-
havior of A. is similar to that found for the lattice
with L = 6. The threshold energies are well de-
fined also in this case, due to the narrowness of
the energy interval in which A. grows from low to
high values. For three groups (2, 7, and 8) X was
always greater than —,', even at the lowest energy
which was considered (e = 4 x 10'). Therefore,
for these groups we set e, = 0.

The threshold energies e, for A. in the cases L
=6 and 8 are repprted in Fig. 2, as a function of
the frequency of the initially excited modes (lower
curves). In the case L = 6 the threshold increases
definitively with ~, with the exclusion of the last
group, as mentioned before. The curve found in
the case L =8 is nicely superimposed for most
values of co,'however, there is an anomalous low-
ering of the threshold for those groups which ex-
hibit resonances. The resonances of this system
are reported in Table II. The connection between
the presence of resonances and the lowering of the
threshold is evident but not transparent. Further-
more, it must be noticed that the above resonance
ratios are calculated only in the harmonic approxi-
mation. In any case, we want to stress that reso-
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FIG. 1. Stochastic parameter X for a square lattice
with L 6, as a function of the energy per mode iF. n is
the index of the initially excited group of normal modes.

FIG. 2. Energy threshold 0& for X and p, as a function
of the frequency co of the initially excited modes, for the
square cell lattices with L = 6 and 8.
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TABLE II. Reson~~ces between groups of normal
~odes for the square cell lattice with L=S. 4 is the
relative deviation of /he actual frequency ratio from the
reso~~~ce.

Frequencies Resonance

Q)2/(d)

s/ 2

s/ 4

607/Q) 5

2/1
3/1
3/2
5/4
8/7
8/7

0.015
0.040
0.020
0.020
0.005
0.010

nances give rise to energy transfer through well
defined "channels. " They do not produce energy
sharing among all modes, that is, completely dis-
ordered motion. On the other hand, the onset of
such a motion cannot be properly studied by the
parameter A.. This analysis has been performed
by means of the stochastic parameter p..

~4, in this case the threshold for group 6 is also
lowered.

The parameter p has been computed also on the
lattice with L = 8, and the threshold energies for
the different excited groups have been determined.
As for A. , p also behaves rather similarly to the
case L =6. The threshold energies for p, L = 8,
are reported in Fig. 2. Two features can be no-
ticed: the threshold is quite constant for the low
frequency modes and, although lowered, does not
go to zero for those frequencies which were shown
to be in resonance with others (groups 2, 7, 8).
The curve drawn through these threshold points,
found in the case L =8, is interlaced with the an-
alogous curve drawn for the case L=6.

The relative stability of the curves drawn for ~
and p. thresholds, when the number of degrees of
freedom is increased from 72 to 228, suggests that
this pattern should persist in the thermodynamic
limit. "

B. Stochastic parameter p

The results of the computation of p in the case
L = 6 are reported in Fig. 3. The profile of p, ,
for different initially excited groups, is sigmoidal,
as in the case of A.. In this case, also, the transi-
tion-from the value 1 to values close to 0 takes
place in a narrow range of energy. Thus, we can
define an energy threshold e, for p, as the value

e, such that p(P, )= 2, The .threshold energies for
p, are reported in Fig. 2 as a function of the fre-
quency of the initially excited group. One sees
that also for p the threshold generally increases
with co. Because of the resonance between &, and

1.0

08

06

Q2

0.0 02 03 Q4

FIG. 3. Stochastic parameter p as a function of the en-
ergy per mode 0, for the square ce11 lattice with L, = 6.
n is the index of the initially excited group of normal
modes.

V. MAXIMAL LCE X+

A. Square cell lattice

Beside the parameters A. and p, , and along the
same orbits in I', we have computed the maximal
LCE g*, as described in Sec. IV. We have al-
ready seen that for a sufficiently high energy, and

independently of the initial excitation, all normal
modes equally share energy. Correspondingly,
we found for X* values which also do not depend
on the particular initial excitation, but only on the
energy. This is in agreement with the idea that at
high energy the system has good ergodic proper-
ties. On the contrary, at lower energies the sys-
tem is very far from ergodicity, and different val-
ues are found for X* at the same energy, depending
on the initially excited group of modes. Exactly
the same behavior was found in Ref. 7 for a one-
dimensional Lennard- Jones system. This situa-
tion is illustrated in Fig. 4(a), which refers to
L = 6: by lowering the energy one observes a
branching, each branch corresponding to a given
group of initially excited modes. In Fig. 4(a)
the values of X* are reported as functions of the
energy per degree of freedom e =E/2L*. In fact,
for a given L, the choice of e or e as energy var-
iable is irrelevant. The results for L = 6 will be
compared with those for L =8 in the higher energy
region, where all the 2L modes share energy.
Therefore, we use in this section e as the appro-
priate variable.

Figure 4(a) allows one to draw two relevant con-
clusions: First, X* is positive even below the ~
thresholds. This means that the energy sharing,
which takes place among modes of the same group,
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which the groups ramify (1-8-2, 4, 8, 5-7-6 at y*
= 0.005) corresponds roughly to the order of in-
creasing thresholds for p (1-2-8-4, 5, 8, 7, 6,
see Fig. 2) and differs substantially from the or-
der of increasing thresholds for X. This differ-
ence cannot be observed in the case L=6, as
mentioned before. y*, as a measure of the sto-
chasticity of the system as a whole, seems thus
closely related to the stochasticity threshold p, ,
which is a measure of the degree of energy par-
tition in the system, or ergodic-like behavior.
One can also notice that the values of X* corre-
sponding to the p. thresholds e, fall in the same
range 7 &&10 -14 x 10 for both lattices.

Outside the branching region, X* is a function

only of e. It increases with e, and its behavior
is markedly linear in the energy range considered
here (for both L = 6 and 8). These two lines are
shown in Fig. 5 (dotted lines); their extrapolation
to y*= 0 leads to a "pseudothreshold" e* which is
similar in the two cases: precisely, e*=0.024
for L=6, and e*=0.018 for L=8. e*is the sto-
chasticity threshold one would find if the branch-
ing phenomenon would not occur. The problem
naturally arises whether the threshold e* ap-
proaches zero when the number of degrees of free-
dom N goes to infinity. To have an insight into
this problem, we performed some experiments on

a two-dimensional lattice with triangular cells.
As remarked in Sec. II, the triangular cell lattice

1 2 3 4

10 e2

FIG. 4. The maximal LCE X* as a function of the en-
ergy per degree of freedom e, for the square cell lat-
tices with (a) 72 and (b) 128 degrees of freedom. n is
the index of the initially excited group of normal modes.

0.12-

010-

is always of stochastic nature, even in the absence
of any energy sharing among groups. Second, by
comparison with Fig. 3 one notices that at a given

energy those modes which have a higher threshold
behave more stochastically. In other words, in
order to reach a given stochasticity of the sys-
tem, that is a given value of X~, a higher energy
must be given to groups with higher threshold.
Thus, for example, the value 0.005 of X* is
reached, in order, by groups 1-2, 3, 4, 6, 5;
this is just the order of increasing stochasticity
thresholds, both for A. and p.

The values of y* at low energies for the lattice
with L= 8 are reported in Fig. 4(b). The branch-
ing phenomenon is evident in this case as well.
Again, we find nonvanishing stochasticity below
the A. thresholds. Furthermore, the order in

Q06-

Q04—

Q02-

"00 0.1 0.2 Q3

FIG. 5. Maximal LCE y* for various square cell and

triangular cell lattices, as a function of the energy per
degree of freedom e. N is the number of degrees of
freedom. . square cell lattices; triangular
cell lattices; --——triangular cell lattice, extrapolation
for N



1716 BENETTIN, LO VECCHIO, AND TENENBAUM 22

is a natural one for a two dimensional Lennard-
Jones system. On the other hand, as we have

seen in Sec. IV, the computation. of the maximal

LCE y* does not require a normal-modes analy-
sis, and can thus be performed on any lattice.

X*= a„(e —e„*), (6)

where e„* is a pseudothreshold, as for the square
cell lattices. The N dependence of a~ and e„*

turns out to be rather well fitted (see Fig. 7}by

the relations

n„=0.42 -2.1N-',

e„*= 0.016 —0. 19N
(7)

On the base of relations (6} and (7) one expects the

relation

B. Triangular cell lattice

Several two-dimensional lattices with triangular
cells and periodic boundary conditions have been
considered, with N equal to 24, 32, 48, 72, and 96

(see Fig. 6). As for the square lattice, only

nearest-neighbor interactions have been taken into

account, so that each particle interacts with six
other particles. Periodic boundary conditions are
of common use in molecular dynamics: the system
is supposed to lie on a two-dimensional torus.
The cell side has been put equal to r„ in order to
have zero pressure as for the square cell lattices.

We computed the maximal LCE y* for different
values of e, by distributing randomly the energy
among all particles (thus exciting randomly all
modes}. For small energies, where one expects
to find the branching phenomenon, we actually ob-
tained different values for different random excita-
tions. An extended study, however, has been made

only in the higher energy region, where y* turns
out to depend only on e. The values of y* we have

found for the different lattices are reported in

Fig. 5. The linear behavior of y* in this energy
range is evident and is stressed by the straight
lines drawn through the computed points. For each
N we have then a law of the form

24-

2.2-
+ x

2.0-
O

&.6~C
1.6- 001 002 003 004

042

040

& 0.38

0.36

0.34

FIG. 7. Fit of the parameters of Eq. (6) for the tri-
angular cell lattices. N is the number of degrees of
freedom.

y*= &„(e—e„*)

to hold in the thermodynamic limit. Here a„
= 0.42 and ~„*=0.016. This limit line is also
drawn in Fig. 5 (dashed line). Of courae, the
numerical values just produced are indicative,
being affected by the numerical error entailed in
our computation of y*. However, we think that the
essential features of the phenomenon have been
correctly described, and that a more precise esti-
mate of the errors would not change substantially
relations (6) and (7).

Let us compare the behavior of y* for the tri-
angular cell lattice with that for the square cell
lattice. One notices that the pseudothresholds
are very close. The slope of the straight lines on

the contrary is sensibly lower for the triangular
cell lattice; that is, at a given energy this lattice
is less stochastic. This may be explained in the

following way: each particle in the triangular lat-
tice interacts with six neighbors, and consequently
is in a steeper potential well. This in turn pro-
duces a change in the spectrum of frequencies:
in fact, we checked numerically that frequencies
in the triangular case are sensibly higher than in
the square case. But, as we have seen in the pre-
ceding sections, higher frequencies give rise to
higher thresholds, and higher thresholds to lower
stochasticity. So these experimental results are
coherent with the preceding ones. "

VI. DISCUSSION

FIG. 6. Triangular cell lattice with periodic boundary
conditions; 24 degrees of freedom.

In this section we add some remarks on our re-
sults and make a comparison with other related
papers.
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We have determined the different stochasticity
thresholds by exciting in each experiment a given

group of modes. One could wonder whether these
thresholds hold their meaning and their values
when more groups are excited at the same time.
To answer this question, we performed an experi-
ment by exciting two groups of modes (4 and 6) in

the square cell lattice with L =6. The energy
given to each of the two groups was lower than the
corresponding A. threshold, while the total energy
was higher than the a thresholds of both groups.
With this initial condition, both excited groups
exhibited-a behavior typical for the ordered re-
gion. The values of A. found for the two groups,
although higher than the values found by exciting

separately each group, were significantly below

the value —,'. We therefore argued that the stochas-
ticity thresholds for the different modes persist
for more general initial conditions, although their
values may change slightly.

A second point we want to discuss is our choice
of the energy per initially excited mode 0 =E/2L
as the physically significant energy in determining

the X and p, thresholds (see Sec. IV). As already

seen, with this choice the curves for these thresh-
olds, in the cases L = 6 and 8, overlap significant-

ly (see Fig. 2). This would not happen if one

would consider either the total energy (E) or the

energy per degree of freedom (e=E/2L'). In

other words, the total energy E must be scaled
with the factor 1/L if one wants to put in evidence

the characteristic properties of the system which

are independent of N (i.e., the thermodynamic

limit). However, in the square cell lattice L not

only is proportional to the number of modes in each

group (2L) but is also the number of different

groups of the system. Thus, the question may be
raised if the degree of stochasticity of the system,
at a given total energy, is related to the number

of modes in the excited group or to the number of

groups of modes. A way to answer this question
could be the following: one can perform an experi-
ment analogous to ours on a suitable lattice, the

normal modes of which are divided into groups of

different multiplicities; in this case the scale
factor we would use would be different for differ-
ent groups. If our choice of the scaling factor is
the correct one, the stochasticity thi. esholds
should be regular functions of the frequency, as in

the paper at hand. An example of such a lattice is
simply a rectangular square cell lattice at zero
pressure.

Finally, we compare our results for the stochas-
ticity thresho1ds wit". «hose of two related pa-
pers. ' In Ref. 8 a stochasticity threshold was

computed for one-dimensional Lennard-Jones sys-
tems with 20 and 100 particles. This threshold

is very similar in definition to our A. threshold,
and has been found to be practically independent

of the number of particles. Moreover, the nu-

merical values of the threshold, transformed to
our units, are very close to our values at cor-
responding frequencies. This agreement between
the results in one and two dimensions seems to
us very relevant, and suggests the existence of an

analogous phenomenon also in three dimensions.
We want also to stress that the numerical values

of this stochasticity threshold fall in an energy

region (around 0. 1 e) which is physically signifi-
cant.

In Ref. 10 the low-energy behavior of a two-
dimensional Lennard-Jones square cell lattice,
with next-nearest-neighbor interaction, has been

studied. They considered systems up to 50

degrees of freedom; their results are in qualitative

agreement with ours. A quantitative comparison
is not possible because of the difference in the

computed quantities. Anyhow, we want to com-
ment on one conclusion there drawn, namely that

the stochasticity threshold diminishes when passing
from one to two dimensions. A possible explana-
tion of this fact is the following. &he inclusion, in

two dimensions, of the interaction with the next-
nearest neighbors (when d=r, ) makes the lattice
"softer, " i.e., lowers the frequency spectrum.
We have checked this by numerically computing

the frequencies in lattices of different sizes. '
Now, as shown in the present work, a lower fre-
quency corresponds to a lower stochasticity
threshold. We believe that their conclusion is due

to the comparison between lattices with different

frequency spectra.

VII. CONCLUSIONS

The main conclusions of the present work are the

following.

(i) A two-dimensional Lennard-Jones system,
when its energy is raised above the minimum, ex-
hibits a stochastic transition. Two criteria of
stochasticity lead to two different thresholds, A.

and p, which bound a region of intermediate be-
havior.

(ii) The two energy thresholds increase, in gen-

eral, with the frequency of the initially excited
normal modes. Anomalies in this behavior are
due to the presence of resonances between modes.

(iii) The values of X and p thresholds seem to
be roughly constant when the number of degrees
of freedom increases, with possible exceptions
corresponding to the anomalies just mentioned;

i.e., these thresholds seem not to vanish in the

thermodynamic limit, in agreement with the be-
havior of one -dimensional LJ systems. This
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agreement is also qumtitative, at least for the ~
threshold.

(iv) Even a system below the lower threshold
exhibits a certain amount of stochasticity, due to
the energy exchange among modes of close fre-
quencies.

(v) The estimated values of the threshold ener-
gies are in a physically significant region; there-
fore, a relevance of the stochastic transition to
the behavior of real systems can be expected. In

particular, the existence of the lower stochasticity
threshold A. , which increases generally with the
frequency of the excited modes and does not van-
ish in the thermodynamic limit, is compatible
with the hypothesis, quoted in the Introduction,
about a relation between this phenomenon and the
zero-point energy.

APPENDIX

We give here a short description of the algorithm
we have used to integrate numerically the equa-
tions of motion and to compute the LCE y*. We
restrict ourselves to the case of a single variable
x, with equation of motion of the form

x=y(x). (Ai)

The generalization to a system of equations for
many variables is straightforward.

Let 7' be a small interval of time. By means of
a Taylor expansion, we can write

x(i+r)=x(f)+rx(f)+ ', r*X(f)+ -'r'x-(f)+O(r'),

x(t —r) =x(t) —rx(t) + -,'r' x(t) -', r'x(f) + O(r') .
(A2)

Using Eq. (Al) in the sum of Eqs. (A2) one obtains

x(t + r) + x(t —r) = 2x(f) + r f (x(f)) + O(r );
the O(r4) term is neglected. By introducing the
notations

x„=x(nr),
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one finally obtains the very simple recursive re-
lations

D„„=D„+r'f(x„„), n = 0, 1, ... .
x, is the initial point, D, is found by an ordinary
Taylor expansion. Velocities do not enter in the
algorithm, except for the first Taylor expansion,
necessary to compute D,. When needed, they can
be obtained by means of the relation v(nr) = (D„

. + D„,)/2r + O(r'), as is immediately obtained by
taking the difference between Eqs. (A2). The
velocity is therefore less accurate than the posi-
tion, but this does not influence the dynamics
which are computed correctly up to the third order
in r. (We do not enter here into the problem of the
accuracy for long time calculations. For a discus-
sion, see Ref. 21.) This integration scheme is in
common use in the field of molecular dynamics.
Practically the same method can be used for the
integration of the variational equation (5), which

can be easily rewr&tten as a second-order equation
for the position components of t(t). There is,
however, one technical problem: when y*&0,
then ll&(t)ll diverges exponentially with time, and

a computer overflow is rapidly found. This dif-
ficulty is easily overcome; at arbitrary instants
of time t„one can divide each component of f(t)
by a coefficient C„ for example, the one neces-
sary to reset ll&(t)ll equal to 1. The computation
goes on after each reduction with the scaled g(t).
Due to the linearity of the variational equation one
has after the kth reduction to unity,

lulled'(t)ll = gtnC, ,

where, of course, g(t) is the unscaled vector.
This is sufficient to compute y*. For more de-
tails about the computation of LCE's in the general
case, see Ref. 22.

Most of our computations were performed with
the time step r = 0.05. The integration of a ty-
pical orbit up to time 10, with the L = 6 lattice,
requires about 500 sec on the CDC-CY76 com-
puter. About 30% of this time is spent in the in-
tegration of the variational equation.
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