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Structure of krypton gas: Monte Carlo results, virial expansions, and real experimental data
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We have made Monte Carlo calculations of the pair correlation function g(r) of a dense gas along the 297 K
isotherm using a published pair potential for krypton. Eleven states were simulated, and then, using the pair
potential plus the Axilrod-Teller triple-dipole potential, seven states were simulated. The effect of the triplet
potential was very small except near the principal peak of g(r). We compatre, in real and Fourier space, these results
to the virial expansion of g(7) at low densities to test its range of validity. This work provided the background for the
interpretation of the experimental data of Teitsma and Egelstaff on real krypton gas, and examples are given
involving the extraction of the pair- and triplet-potential terms.

I. INTRODUCTION

The computer-simulation method has been used
widely to study model fluids.! In this paper we
report calculations of the pair-correlation func-
tion g(7) for a dense gas as a function of density
along an isotherm, This program had several
empirical objectives, namely, to discover the
useful range of the virial expansion® for g(») if it
was cut off at several terms, and to investigate
the effect of the long-range three-body (Axilrod-
Teller®) potential on the short-range part of g(7).
In addition we have carried out parallel investi-
gations in Fourier space in order to design dif-
fraction experiments and to interpret experimen-
tal data.*®

We have employed the krypton potential of
Barker et al.,® but the difference between this po-
tential and other possible choices™® is not signi-
ficant for our purposes. For later comparison
with experiment*® we chose an isotherm at 297 K
and densities between 2 and 15 x 10” atomsm ™
(the critical density of real krypton is 6.5 X 10%
atomsm™), This range covers the virial expan-
sion region, densities comparable to the critical
density, and a density range where hard-core in-
teractions are important.

Section IT outlines our Monte Carlo calculations
and summarizes the data reduction. Sections III
and IV compare the data with the virial expansions
in real and Fourier space, and have provided the
background against which the diffraction data on
real krypton gas has been analyzed.*® An example
showing the extraction of the leading pair- and
'triplet-potential terms from the experimental
data is discussed.

II. MONTE CARLO CALCULATIONS

The calculations using the pair potential were
carried out with a 128-particle system located in
a dodecahedral cell to minimize the excess vol-
ume.® AnN.V.T. ensemble’ and periodic boundary
conditions were used, and the program was run
on a Nova 2 minicomputer. The initial locations
were on an fcc lattice; a run of ~10° configurations
being used to equilibrate them to the initial fluid
configuration., For significant changes in density
a short run of 10* configurations was made, start-
ing from an acceptable configuration for the old
density in order to find a starting configuration for
the new density. Eleven states having densities
between 2 and 15X 107 atomsm™ (Table I) and a
temperature of 297.5 K were simulated, using the
pair potential of Barker et al.® Barker et al, de-
duced the constants in an empirical function for

TABLE 1. Linear corrections applied to the first
series of Monte Carlo calculations. The formula used
was g(r*)=gr*)y/la+ b r*), where »* was in reduced
units of 7* =1 corresponding to 7=4.0067 A1,

P a b
2.0 0.993 -0.0038
3.0 0.992 ~0.0045
4.0 0.991 -0.0051
5.0 0.992 -0.0056
6.0 0.995 -0.0061
7.0 0.997 -0.0065
8.0 0.999 -0.0069
9.0 1.002 —0.0073
10.0 1.003 -0.0077
12.5 1.007 -0.0086
15.0 1.008 -0.0094
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the pair potential by fitting to all the experimental
data on krypton available to them. The agreement
between their results and those of others™® tends
to confirm that this potential is close to the real
two-body potential. We refer to these as the first
series of runs.

In a second series of runs at densities of 3, 4.5,
6, 8, 10, 12.5, and 15X 10*" atoms m ™3, the Axilrod-
Teller® potential was added to the potential of
Barker et al. using their parameters (for p=6 we
did a run at the beginning and another at the end
of this series). For these calculations we used
the N.V.T. ensemble, a dodecahedral cell and a
64-particle system, using a program written for
an IBM 370 computer. The two- and three-body
potentials are cut off at a distance 7, which rep-
resents the radius of the largest sphere which
can be fitted inside the dodecahedral cell. For
three-body potential runs a list of particles within
7w Of particle 7 is kept to speed up the calculation
of the three-body potential. Still, the three-body
potential runs are about three times slower com-
pared to two-body runs. At each density of this
series two runs were made, one using the pair
plus triplet potentials and one using the pair
alone. The number of configurations run for each
case was between 1 and 1.5X 10°, and the signifi-
cant results are the differences between each pair
of calculations in this series; that is, we use the
second series to test for the changes caused by
adding the Axilrod-Teller potential, and we use
the first series for the best data on g(7).

We observed that the oscillations in g(7) were
damped to a level comparable to the statistical
fluctuations at » ~3 (box size), except for p=>10
x 10¥ atomsm™, The values of g(7) were
smoothed by fitting the function y(»), where
¥(7) =eP*") g(r) and u(r) is the pair potential, to
an nth-order polynomial where n was chosen so
that deviations from the polynomial were due to
statistical fluctuations only. Two corrections were
required to these data. First, for all runs except
the final four of the second series, there was an
error in the application of the periodic boundary
conditions, which had the effect of delaying by
one cycle the return of those particles which left
by the corners of the dodecahedron. We believe
this did not affect low values of 7 but led to a
small depression in the values of g(») at large 7;
and we noted that the observed limiting value of
g(7) showed almost the same deviation from unity
for all runs except the final four. Secondly, for
an N.V.T. ensemble the limiting value of g(7) at
high » should be (¢T/N) (8p/3 P)|,, where p and
P are the number density and pressure, respec-
tively. The value of the compressibility was
taken from the virial series'®!! for p<4x 10~%

atoms m™ and from real experimental data for
krypton for larger values of p. We have assumed
that the latter correction may be applied for all
values of 7, but that it is masked by the first cor-
rection at high . Thus we combined both correc-
tions into a factor (a@ +br) which varied linearly
with 7, and chose the two parameters (a and b) by
fitting to the first correction at high » and to the
second correction at 7 corresponding to the major
peak in g(7). These coefficients are shown in
Table I, for the first series of runs, and it can
be seen that the parameters behave systematically
and are close to their ideal values (a=1 and b =0).

Examples of the results obtained in this way are
shown in Fig. 1, where data for p=3, 6, 8, and
10X 1077 atomsm™ are plotted. The first series
of runs are shown by the full lines, and when the
differences observed in the second series of runs
were added to these data we obtained the dashed
lines (both lines are drawn by “eye” through the
Monte Carlo points). We note that the average
effect of the Axilrod-Teller term is “repulsive”
and is largest near the major peak in g(7) for
p~6x 107 atomsm™, The maximum effect is
only ~5%.

The maximum value of » was a function of den-
sity since N was fixed and the volume of the cell

q(r)
2.0+ E

I 1 [ 1
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r*(1.0=4.0067 A )

FIG. 1. Examples of the pair-distribution function
g(r) from the two series of calculations. The full lines
are the series-one pair-potential calculation, and the
dashed lines show the effect of adding the differences
between calculations using pair and pair plus Axilrod-
Teller potentials from series two. Results are shown
for 3, 6, 8, and 10 x10%" atoms m=.
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was varied. Values of g (7) larger than this limit
were set to 1.0; an approximation which was good
at low densities but poor at high densities, The
resulting numerical functions were Fourier trans-
formed to find the structure factor S(®), where

S(@) =1 +p[ e‘a'?[g(‘r) -1ldr.

The numerical errors in the transformed data
were estimated to be ~0,01 for @ ~5 nm™ and less
at higher-@ values. Because of the small box
size, data on S(Q) for @ <5 nm™ were not reliable.

III. COMPARISON WITH A CUT-OFF VIRIAL
EXPANSION IN r SPACE

The virial expansion for g(7) in a system of
particles interacting with a pair of potential u(7)
is

gr)=f(r)+1
wol ) +1] [ FUIF-BDAs)E+0(),
(1)
where f(r)=e~8 ") _1, We shall write this series
in the form

gr)= 2 P"gn(7). (2)
m=0

The terms up to 72 =2 have been evaluated by
Groome!'® for the Barker ef al.® potential. A.com-
parison between the virial series cut off at m =1
and 2 with the g(7) data for p=2-6 X 107 atoms
m™ is given in Fig. 2. It can be seen that the

2.0 T T T T

PAIR DISTRIBUTION FUNCTION g(r)

1.0 1.5 2.0 o 2.5 3.0
r*(1.0=4.0067A )

FIG. 2. Comparison of the Monte Carlo calculations
to the virial expansion of g(7) for two and three terms.
The full line is the Monte Carlo calculation; the short
dashed line is the virial expansion for two terms, and
long dashes indicate the virial expansion for three
terms.

two-term virial series is satisfactory for densi-
ties €3, and the three-term virial series is satis-
factory for densities <4 but becomes less satis-
factory at p=6. At higher densities we noted sig-
nificant deviations from the three-term virial.

If the Axilrod- Teller potential® is added to the
system then terms g,(») and higher must be modi-
fied. The correction to the g,() term, which we
write as g, is

gotr) = [ 1) +11[7(5) +1]

x [f(|F-8])+1]e-BsG9d5, (3

where %,(T, $) is the three-body potential. This
term, using the Axilrod-Teller potential, has
been evaluated by Groome.!° We compare it to
the difference between the pairs of results from
the second series of data in Fig. 3. Since the
magnitude of this term, compared to the leading
term of Eq. (2), is small at low p we observed
only small differences, and because of poor sta-
tistics on these small differences we neglected the
lowest two densities and have averaged the two

-0.04} o O

-0.08

-0.12

-0.16

FIG. 3. Comparisons between the Axilrod-Teller
term [Eq. (3)] given by the full line, and the differences
[Ag(»)/p]l betweenthe series-two calculations. The aver-
ages of three runs at p=6, 6, and 8 x10%" atoms m~3 are
shown by the crosses and the averages of three runs at
p=10, 12.5, and 15 x10% atoms m-3 are shown by the
open circles. The data taken at p=3 and 4.5 x10%
atoms m~? showed a small difference, with relatively
large errors, which were enlarged when dividing out
the factor p in the quantity Ag(»)/p. Thus these data
were not meaningful and are not shown.
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runs at p =6 with the single run at p =8 to give a
mean at p =6.7. Also we averaged the runs at
p=10, 12,5, and 15 to give a mean at p=12.5. It
can be seen from Fig. 3 that terms with m>1
must reduce significantly the g, () term for
p=12,5, and some reduction occurs at higher »
for p=6.7. In addition, in order to extract the
&, () term from experimental data it would be
necessary to work with p<5X 10 atomsm™3,

IV. COMPARISON WITH VIRIAL EXPANSION IN
FOURIER SPACE

In Fig. 4 we have plotted the results of Fourier
transforming the pair distribution functions for
the five densities (lettered a-e) 2, 3, 4, 5, and
6x 107 atomsm™, We see that the transform of
the g(7) virial series is inadequate for p>4x 107
atoms m™ for values of @ less than 0.8 A™!, as
expected from the discussion of Fig. 2. Also
shown on this figure, for the three densities 4,
5, and 6 X 107 atomsm™, are S(Q) values ob-
tained through the virial series of the direct
correlation function ¢(Q):

S(Q)=1/[1-pc(Q), with c(Q)= P"ca(®).

m=0
(4)
This series was truncated at m =1, where

e @= [ Fe¥iar,
and

0,(Q)=fff(r)f(s)f(|f-§|)e‘6'?d§df.
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[The three-body correction to c,(Q) is given by
the Fourier transform of Eq. (3).] These two
functions were computed for two model poten-
tials®” by Wertheim,!! and it can be seen that they
fit S(Q) reasonably well over the range shown in
the figure. For @>2.5 A~! only the ¢,(Q) term was
found to be significant.

To demonstrate the density range over which
Eq. (4) and the Monte Carlo results are in agree-
ment, we show in Fig. 5, the variation of ¢(®Q)
with density for several values of €. The full line
corresponds to the potential of Barker et al.,® but
if the Aziz potential’ is used, only minor changes
are found. For p<5X 10*" atoms m™ the data lie
along the line within the errors shown but fall
away at higher p especially for the lower-@ val-
ues. The function shown by the full line in Fig. 3
has been Fourier transformed yielding a curve
which Pas a maximum at @ =0, and which falls to
about 7; of the maximum value at @ =0.56 and
passes through zero at 0.65 A™', These data give
the change of slope expected from the Axilrod-
Teller term, and for  =0.5 A™! we show by the
dashed line, the effect of adding this term to
Wertheim’s'! results for ¢(Q). The series-two
Monte Carlo data are consistent with the new
slope for p<5X 10?" atomsm™ although the pre-
cision is worse by a factor of 2 than the series-
one comparison.

The experimental results for real krypton® are
shown by the circles in Fig. 5, and their errors
are similar to those of the series-one Monte
Carlo data. It is clear that for several of the
cases shown these data do not agree with the

s(Q)
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1 ! ] 1 1 1 1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Q (A ")

FIG. 4. The structure factors obtained from Fourier transforming the pair-distribution-function calculations
obtained from the Monte Carlo calculations (because of the small box size the data are valid for @>0.5 A-! only). Also
shown are the results of transforming the virial expansion of g(r) (dashed lines) and results of calculating the first two
terms of c(Q) (dotted lines).
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FIG. 5. The direct-correlation function for chosen values of @ plotted as a function of p. The crosses are the Monte
Carlo data and the circles are the experimental results, with error bars corresponding to an error of + 0.005 in S(Q).
The full line is the expression ¢y (@) + pc,(Q) and the dashed line for =0.5 A-1is this expression plus the Axilrod-Tel-
ler term (obtained from the Fourier transform of the full line in Fig. 3). ‘

Monte Carlo data, even after the Axilrod-Teller
term has been included. Experimental intercepts
at p—0 were obtained by extrapolation over the
linear range (defined above) and are shown in
Fig. 6 as a function of @. They are close to the
predictions of either the Aziz’ or Barker et al.®
potentials, but significant differences are seen
especially for @ values near 0.7 A1, These may

arise through the inability of the analytic repre-
sentations of u(r) to cover adequately the merging
of an ™" expansion, valid at large 7, into another
function at  ~6 A. The slopes of the experimenal
data give the transform of Eq. (3) and have been
discussed in Ref, 5. Since they differ from the
slopes obtained above there must be a significant
contributionfrom shorter-ranged three-body forces,
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ff(r)e'°"df (102 mPatom™ )

FIG. 6. The Fourier transform of the Mayer f(r) func-
tion for krypton at room temperature. The experimen-
tal points were obtained by extrapolating the neutron dif-
fraction data (Ref. 5) to p—0, and the line was calculated
using the Aziz potential.

especially for @ ~0,7 A™,

We have noticed that the Monte Carlo data for
¢(®@) are linear in pto p>10X 107 atomsm™ for
Q>1.5A"!, and that for @>2 A~! they are almost
independent of p. The departures from linearity
between p=5 and 10, are most noticeable at the
principal minimum of S(Q) where |S(Q)-1] is
large.

The Monte Carlo structure factors at densities
of 5, 8, 10, 12,5, and 15X 10" atomsm™ are
shown in Fig. 7. At the highest density the trun-
cation of g(r) -1 is expected to give rise to sig-
nificant errors, the effect of which can be ob-
served near @=2.5 A™!, In this density range the
major peak in S(Q) shifts to higher @, in contrast
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to lower densities (Fig. 4) where its location is
constant. This is due to the movement of the peak
in g(7) to smaller 7 corresponding to the onset of
“liquidlike” behavior.

V. SUMMARY

We have made Monte Carlo simulations of a sys-
tem of atoms at room temperature interacting with
the krypton pair potential, and the Axilrod-Teller
triple-dipole potential. The object has been to
provide data against which to test virial expan-
sions of the pair-correlation function, to deter-
mine the magnitude of the triple-dipole contribu-
tion to g(7) and ¢(Q) and to interpret experimental
structure factor data.

The triple-dipole term lowers the major peak
in g(r), and for low densities this effect is a few
percent of the peak value. At higher densities it
has a relatively smaller effect. In Fourier space
it gives a significant contribution at @ =0 but this
falls away rapidly with increasing @ and is diffi-
cult to detect at the @ values at which good Monte-
Carlo data were obtained by us.

We have found that a three-term virial series
for g(7) works quite well for densities below
4 X 107 atomsm™ but is poor at higher density.

In addition, we examined numerical calculations
of the structure factor obtained from Fourier,
transforming the sum of the first three terms of
Eq. (2), or using Eq. (4) for the direct-correlation
function. A comparison of Monte Carlo data and
the expansions confirmed that (4) is more satis-
factory as expected. It is illuminating to compare
the conclusions drawn from Figs. 2 and 4 for

S(Q)
1.5+
1L.O+
0.5
0.0 | 1 | | | |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
o.
Q (A

FIG. 7. The structure factor from the series-one data for densities 5, 8, 10, 12.5, and 15 X 10?" atoms m"3 labeled
a, b, ¢, d, and e, respectively. The truncation of g(r) by the finite box size has an increasing effect as p is increased
and probably accounts for the anomalous shape near Q=2.5 A-1,
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p=6, since the errors in g(7) accumulate at the
lower-@ range in S(@).

The above data were used to show that the di-
rect-correlation function over a @ range of inter-
est in a diffraction experiment is linear in p for
densities extending up to 5X 10 atomsm™, to
within the precision of the Monte Carlo data. This
is an important conclusion which has already been
used in the interpretation of diffraction data*® and
was used here to extract the transform of the
Mayer function from the experimental data. Also
we have shown that for any of our densities a
simple virial expansion of ¢(), using only the
leading term in Eq. (4) works satisfactorily at
high @. The work reported in this paper is an

example of the way the Monte Carlo technique for
the study of the structure of fluids can be used to
design and interpret real experiments on a dense
gas.
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