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X-ray scattering study of the critical exponent q in argon
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A new technique for evaluating the critical exponent q, which governs the rate of decay of the pair-
correlation function with distance at the critical temperature, is described. In this method, q is obtained
from plots of the reciprocal of the intensity as a function of the square of the scattering angle in the inner
part of the small-angle scattering curve. The new procedure has the advantage of making use of the data at
scattering angles at which the intensity' is relatively high and thus is quite insensitive to effects which may
distort the scattering curves. For argon, the value q = 0,03+0,02 is obtained. The analysis of the scattering
data also provides evidence for the need for corrections to the limiting scaling behavior which fluids exhibit
very near the critical point.

I. INTRODUCTION

Although the results from small- angle x- ray
scattering studies' 3 of the equilibrium properties
of argon near its liquid-vapor critical point agree
within the experimental uncertainty with the pre-
dictions of the scaling theories4' which have been
very useful for describing the properties of fluids
and other systems in the critical region, recent
experimental investigations6 ~ have shown that
corrections to the limiting behavior given by the
scaling theories are larger than was expected pre-
viously.

These new results suggested the advisability of
re-examining the small-angle x-ray scattering
from argon in the critical region, in order to look
for the effects of corrections to scaling. As these
corrections do not have a large effect on the scat-
tering curves, it is not surprising that the need
for corrections was not evident in previous analy-
ses of the scattering data in the critical region.
Since our earlier data were not in a form con-
venient for observing the effects of corrections to
scaling, we have re-examined some of our more
recent small-angle x-ray scattering curves from
argon in the critical region. Because of the ex-
perience acquired in our first scattering studies,
the precision of the new curves is higher than
was possible previously. Some results from the
new analys is are reported below.

As we explain in Sec. II, we have developed a
new method for using the small-angle scattering
data to evaluate the critical exponent g, which de-
scribes the rate of decay of the pair-correlation
function with distance~' at the critical temperature
T,. This new technique for calculating g has the
advantage of using scattering data from the inner
part of the scattering curve, where, for a fluid
near its critical point, the small-angle scattering
is most intense. The scattering data therefore
are recorded under conditions for which any ef-

fects which may distort the scattering curves can
be expected to be small. (The inner part of the
scattering curve is defined to be the interval of
scattering angles for which q$ is not large, where
q =4m& ' sin(8/2), X is the x-ray wavelength, 8 is
the scattering angle, and $ is the long-range cor-
relation length. )

Our calculations also have shown that the value
of g computed from the scattering curves by our new
method is quite sensitive to corrections to scaling,
so that these corrections produce a much larger
relative change in g than in other quantities ob-
tained from the scattering data. Our new tech-
nique therefore has the advantages both of evalu-
ating g under especially favorable conditions and
of providing a particularly sensitive test for cor-
rections to scaling.

From our analysis of the scattering curves, we
have found that g=0.07+ 0.01 if corrections to
scaling are neglected, while if allowance is made
for these corrections, r1=0.03+0.02. (The uncer-
tainties in quantities determined from our scat-
tering curves are the standard deviations calculated
in our analysis of the data. ) The exponent 7) ob-
tained without corrections to scaling thus is ap-
preciably greater than the values g=0.056+ 0.008
and g = 0.031+0.011 calculated by high-temperature
expansions" and renormalization- group meth-
ods, ' 4 respectively.

Thus, besides providing a way to determine g
under very favorable conditions, our new technique
also shows that the exponent computed from our
scattering curves is in agreement with the theo-
retical calculations only when allowance is made
for corrections to scaling.

II. CALCULATION OF q FROM THE
ORNSTEIN-ZERNIKE PLOTS

The Ornstein-Zernike approximation' for the
scattered intensity I(q) in the critical region can
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be written

I„„(1+ t)
I(q) = I"+q2(2 x

where

T is the absolute temperature, T, is the critical
temperature, I00 is a constant which depends on
the experimental conditions,

x= (p/p, ) KrP, ,

p is the density of the fluid, p, is its critical den-
sity, K~ is the isothermal compressibility, and
I', is the critical pressure.

According to (I), [I(q)] ' is a linear' function of
(qg)2. The scattering data can therefore be con-
veniently analyzed by an "Prnstein-Zernike plot, "
in which the reciprocal of the scattered intensity
is plotted as a function of the square of the scat-
tering angle. (In the small-angle region, q is es-
sentially proportional to the scattering angle. )

The scaling theories state that near the critical
point, for T& T, and p=p (i.e. , on the critical
isochore above T,),

(2)

and

(3)

X=I't "(I+at '+ ~ ~ ) (8)

giving the corrections to scaling for X0. The sys-
tem-dependent constant a in (8) thus is equal to
I', . Equation (7) can be rearranged to give the ex-
pression

1
f„(I+t)I t"

I+Dol'it '
2. 2"(((+r, (*~ '((+ ~,( i)~q q '(q")

(9)

III. CORRECTIONS TO SCALING

As (6) does not allow for any corrections to
scaling, we have estimated these corrections by
use of the approximate scattering equations which
Chang et al. ' obtained from %egner's calcula»»
tions. '8 The resulting scattering equation, which
is valid when qt' is not large and which includes
approximate corrections for scaling, can be
written as

t(q)=l»(1+()It (('~"q2(2 („»q2(2(l

where g = got ", as in (3), and Do and b,
&

are uni-
versal const'ants for all systems of the same uni-
versality class, while the constant I'& is system
dependent. For q=0, (7) must be consistent with
the expression"

where y, $0, v, and I' are constants, and also
that

r= (2 —2))v (4)

where

(D, —1)'I, t '
(I+ I'( t~&)2[1+ I'(t~&+ (D2+I'(t~&)g ]

hen these relations hold, that is, when correc-
tions to scaling can be neglected, with the approxi-
mation 1+t=1, Eq. (I) can be written as

When E(qE) and terms proportional to powers of
higher than one are neglected, with the ap-

proximate value22 6& = —,
' and with (8) and the scaling

equation (4), (9) can be written as
ty $2t qv

[E(q)] '= + " q2.
00 00

Equation (5) states that the slope

(5)

where
g2 t q(»

s= '
Ioo~

(6)

of the Ornstein-Zernike plot is proportional to t "".
Sirree log$ is a linear function of logt, gv can be
calculated from the slope of a plot of log$ as a
function of logt. As the uncertainty in v is much
smaller than that in g, after gv has been computed
from the experimental values of S obtained from
the scattering curve, the theoretically calculated
value'4 v=0.63 can be used to obtain g without an
appreciable increase in the uncertainty. As far as
we know, the temperature dependence of the slope
S of the Qrnstein- Zernike plots has never been
used previously to evaluate the critical exponent

Qo

S,(t) =at-~"/(I+bt»2),

A = to /I0(&1

and

b =(2-D0)1, .
According to (10), [I(q)] 2 is a linear function of
q2 even when corrections to scaling are not neg-
ligible.

IU. RECORDING OF DATA AND ANALYSIS
OF THE SCATTERING CURVES

The scattering data discussed here were obtained
with the apparatus and techniques described pre-
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viously, ~ except that the new measurements were
recorded with wider slits, in order to provide a
greater scattered intensity. Corrections also were
made for the effects of the slit widths on the scat-
tering curves.

Scattering data were recorded for a sealed argon
sample with a density within about 0.1% of the
critical density. ~ The data were considered to
represent conditions on the critical isochore
above T,. Two sets of scattering curves, called
Series J and Series D, respectively, were mea-
sured at 9 temperatures in the interval 0.12'
~ T —T, ~3.53'. The critical temperature was
located' with a precision of +0.005 . For our
samples T, = 150.68 a 0.02 K as measured by the
techniques described in Ref. 1.

As in Ref. 1, the statistical uncertainty in a scat-
tering measurement was set equal to 0.675.V' ',
where X is the total number of counts recorded
at this scattering angle. Propagation-of-error
techniques'~ were then employed to estimate the
uncertainties in the corrected intensities and in

quantities comput, ed from these intensities. The
uncertainties given with our results are the stan-
dard deviations obtained in the propagation-of-
error calculations.

For each scattering curve, we made a linear
least-squares fit of [I(q)] ' as a function of q',
with weights proportional to the inverse square
of the statistical uncertainty in [I(q)] '. From
each fit we'obtained the slope and the intercept of
the Qrnstein-Zernike plot. Figure 1 shows a
typical Qrnstein-Zernike plot. All linear and non-
linear least-squares fits were made both by a
modified Curfit program~0 and by the nonlinear
least-squares fitting procedure NLIN of the Statisti-
cal Analysis System. ' Both programs gave the
same results.

Since the Qrnstein-Zernike equation is only an
approximation, and because there may be errors
in the measured intensities, the values of the
slope and intercept computed from the least-
squares fit can depend on the interval of q$ used
in the calculation. gn order that the slopes and
intercepts would be affected as little as possible
by our choice of the interval of qE, after estimating
$ for each temperature from Fig. 4 of Ref. 1 and
computing the largest angle 6i 0 for which the con-
dition q( & 6 was satisfied, we calculated the slope
and intercept of an Qrnstein-Zernike plot which
used all intensity values for angles 8~ 6,. We
then discarded the intensity at 6), and computed
the slope and intercept from all other intensities
considered in the first fit. We continued this
process by dropping the intensity for the largest
angle used in each previous fit and computing the
slope and intercept for the remaining values till
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FIG. 1. The Ornstein-Zernike plot for Series I for t
= 0.0165.

only those values for which q] &1 remained. For
each temperature we were able to find a range of
q$ for which the slope of the arnstein-'7ernike
plot was unaffected (within the standard deviation)
by the choice of the largest scattering angle 6i

employed in the fit. We also found that when the
slope was independent of the choice of 8, the
value of the intercept was also unchanged within
its standard deviation. In all analyses of quantities
obtained from the scattering curves, we used the
slopes and intercepts from the Qrnstein-Zernike
plots in which the slope was unaffected by the
choice of 8 . Calculations with (3), (4), and (5)
showed that for all temperatures, when the slope
did not depend on 0, q$ was in the interval 3 &q$
&5.

As the incident scattered intensity was not the
same for the two series, a scale factor had to be
calculated before the slopes and intercepts from
the two series could be compared. We obtained
this factor by averaging the ratio of the slopes
from the two series at each temperature. After
this scale factor had been used to normalize the
two series of curves, we had 18 slopes and 18
intercepts which were available for studying the
temperature dependence of the slope and the inter-
cept.

With the least-squares fitting programs we cal-
culated y in (3) and v and $0 in (3). We were unable
to detect any effects of corrections to scaling on
the values of y, v, and $0 obtained from our data,
since the precision in the intercept was not high
enough, and we did not have values of the slope
and intercept for a sufficient number of tempera-
tures.

We calculated y, v, and $0 for each series and
also for the set of 18 slopes and intercepts ob-
tained by use of the normalizing factor. The re-
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TABLE I. Values of y, &, and $0.

High-temperature
expansions
(Ref. 12, p. 6p5)

Renormal ization
group (Ref. 14)

Argon-from
Series I

Argon-from
Series II

Argon-from
the combined
results

2.p6 + 0.09 A

1.32+ 0.14 A

1.70+ p.13 A

1.250+ 0.007

1.241 + Q.Q04

1.08+ 0.02

1.25 + 0.05

1.14+ 0.04

0.6430+ 0.0025

0'630+ 0.002

0.56 + Q.QI

0.64 + 0.02

0.59+ 0.02

Calculated from (4) and the values of y and & from Ref. 12.

suits of the calculations are given in Table I. The
values of y, v, and $0 from the two samples differ
by more than their standard deviations, but the
exponents calculated from the combined results
from the two series are in fair agreement with the
corresponding exponents calculated for each series
and also with the quantities given in Ref. 1. e
are unable to explain the reason for the different
results obtained from the two series. Vfe expect
that the quantities from Series II are more reli-
able, as they are in best agreement with the theo-
retical results. As we measured only the angular
distribution of the scattering and did not evaluate
the scattering cross section, we could not calculate
the constant 1" in (2).

With (6) and (11) and the slopes of the Ornstein-
Zernike plots, we made least-squares fits to
evaluate q both when corrections to scaling are
neglected and also when they are considered. In
the calculations we made use of the result v

0.65— I I I I I I I I I [ I

0.60

=0.630+ 0.002 from the renormalization-group
calculations. '4 Our calculations of g are listed in
Table II. For comparison we show the values of

q obtained by substituting the exponents y and p

from Table 1 in (4). We also give the q values
from the theoretical calculations. In Fig. 2 we
show the temperature dependence of the slope and
the curves obtained from the least-squares fits of
(6) and (11).

The uncertainties in the y's and v's used in (4)
are so large that this equation does little more
than provide an estimate of the magnitude of g.
The exponents q obtained from (6)—that is, with-
out corrections to scaling —are much larger thari
the values calculated by renormalization-group

TABLE II. The critical exponent g.

Theory
LLI

~ 0.55

High-temperature
expansions
(Ref. 12, p. 605)

0.056 + 0.008

0.50

Renormalization
group (Ref. 14)

0.031+ 0.011

From (11)
From (6)
From (4), with

y and & from
Table I

Argon
Series II Combined data

0.03 + Q.02
0.07+ 0.01

Series I

0.04 + 0.04 0.02 + 0.02
0.07+ O.O1 O.08+ 0.01

0.07+ 0.04 0.05+ 0.10 0.07+ 0.08

~o' IO

REDUCED TE MPERATURE t

FIG. 2. Relative values of the slope S~ (t) of the Orn-
stein- Zernike plots for several values of reduced tem-
perature t . Circles and crosses show slopes calculated
from the scattering curves of Series I and Series II,
respectively, and the dashed and solid lines were ob-
tained by least-squares fits (6) and (ll), respectively,
to the combined set of slopes.
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TABLE III. The constant & in Eq. (11).

From the slopes
from Series I

From the slopes
from Series II

From the combined
set of .slopes

0.57+ 0.75

1.10+0.38

0.84 + 0.43

methods and also are almost certainly inconsistent
with the g from high-temperature expansions. Qn
the other hand, (6) gives exponents quite near
those obtained3 when scaling corrections are
neglected in the calculation of q from the part of
scattering curve for which q$» 1. The q values
from (6) also are only a little smaller than those
found in a small-angle neutron scattering study
of neon in the critical region.

The exponent q obtained with (11) is much
smaller than that calculated with (6) and is in good
agreement with the value obtained by Chang et al. '
and with the results from renormalization-group
theory. It also is not inconsistent with the high-
temperature- expansion calculations.

As the results in Table D show, the exponent g
calculated from the scattering curve agrees with
the results from renormalization-group and high-
temperature- expansion calculations only when
corrections to scaling are considered. If these
corrections are neglected, q is clearly too large.
The evaluation of q from the small-angle-scat-
tering curves thus provides additional evidence
for the need for corrections to scaling.

Moreover, our proposed technique for deter-
mining g provides a very sensitive test of the mag-
nitude of corrections to scaling. For example,
from our values of y and v, we were unable to esti-
mate how much the scattered intensity was affected
by corrections to scaling, since the magnitude of the
change is relatively sma11. Qn the other hand, the
relative change in g as a result of corrections to
scaling is quite large, and thus the calculation of

g from the scattering curves promises to be a
particularly sensitive test for estimating the mag-
nitude of corrections to scaling, as well as being
an especially convenient method of evaluating q.

Table III lists the values of the constant b in (11)
determined from the least-squares fits to the scat-
tering data from each series of scattering curves
and from the fit combining the results from the
two series.

The ri values calculated from (11) and (6) depend
only on the slope of the Qrnstein- Zernike plots
and thus are not affected by errors in the intercept.
To determine y and v, on the other hand, both the
intercept and the slope must be known. While the

standard deviations in the slopes which we cal-
culated were of the order of 2%, the corresponding
deviations in the intercepts were about 10%. It
thus is not surprising that the uncertainty in the
values of q obtained from (6) and (11) is less than
that in the q's calculated from (4) with the expo-
nents y and v from the Qrnstein-Zernike plots.

When both the conditions q(»1 and qa «1 are
satisfied, where a is the average intermolecular
distanc e, and if corrections to scaling can be
neglected, the scattering is proportional 3 to q"
In Ref. 3, we described an investigation of the
small-angle x-ray scattering from argon when q$
&) 1. Qur data showed that if corrections to scaling
are not applied, q=0.08. This result, though in
essential agreement with the exponent g found in a
small-angle neutron-scattering study of neon, 2~

was significantly larger than the theoretical values
listed in Table II. In Ref. 3 we suggested that the
high value of g could be the result of lack of con-
sideration of corrections to scaling. Qur most
recent analysis of the scattering data from argon
conf irms this conclusion.

Qur new procedure for determining g obtains
this exponent from the quantity gv, while the
technique employed in Ref. 3 gives the quantity
2 —g. Calculation of q from experimentally de-
termined values of (2 —q) has the disadvantage
that since g almost certainly is no greater than
0.06, the rerative precision with which g can be
obtained from the quantity 2 —q is considerably
less than the relative precision with which 2 —g
itself is known.

The technique used in Ref. 3 for determining g
requires both that q(» 1 and that qa«1. To test
the degree to which the determination of q was
affected by the fact that the latter condition may
not have been satisfied, in Ref. 3 we calculated
a factor which gave the first correction for the
fact that qa was not negligible. %e found that the
estimated correction produced a change of about
0.01 in the calculated value of g. The change thus
was of the same magnitude as the uncertainty in

The correction will be even less important
when q is evaluated from (6) or (11), since these
equations use intensity values for scattering angles
at which the correction for the effects of qa is
smaller than for the conditions of Ref. 3, and also
because (6) and (11) employ scattering data for
which qg is not large and for which the scattered
intensity thus is higher than the intensities used
in Ref. 3.

As the first corrections to scaling are usually
proportional to f ', Eq. (11) can be expected to
give the first correction to scaling even if the
details of the scattering theory developed by
Chang et al. ' do not apply to our data,
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The quantity X~ provides a measure of how well
a theoretical expression fits the results of an ex-
periment. '4 [There is no relation between y„' and
the reduced susceptibility )i introduced in (8).]
The values of X~ obtained from our least-squares
fits of (11) are only slightly smaller than when q
is obtained from (6). For example, for the series
combining the results from the two samples, y~

was 0.67 and 0.84 for the analysis with (11) and

(6), respectively.
The strongest evidence which our latest analysis

of the scattering data from argon can provide for
the necessity for corrections to scaling is the fact
that without these corrections, the values of g
which are calculated from the scg,ttering curves
are clearly larger than the results from high-
temperature- expans ion and renormalization-
group methods.

We would like to emphasize that Eqs. (5) and

(10), and thus also (6) and (11), are based on the
validity of the scaling relation (4). This depen-
dence should be kept in mind, even though all
available evidence indicates that (4) is valid.

The exponents y and v which we obtained for
argon agree within the estimated uncertainty with
the values y=1.20+ 0.02 and g =0.045+ 0.010 which
Anisimov et aE. recently determined25 by analysis
of the light scattering data from a nitroethane-
hexane critical mixture.

The quantity -E(q()/[Ioo(1+ f) I't "] in (9) is the
major part of the error caused by approximating
(7) by (10). Quantitative estimates of this error
are difficult because of the somewhat complex
form of E(x) and because as yet no information
about the value of Do is available. At least tenta-
tively, however, it is perhaps not unreasonable to
expect that Dp is positive and has a magnitude not
large compared to one. Under these conditions,
for small x the magnitude of the coefficient of x4

in E(x) will be primarily be determined by the
factor I'&t ~, which has been assumed to be small.
When x is large, E(x) is proportional to x, and in

the large-x limit, (9) is again a linear function of
x2, but with a different slope from that in (10). The
difference in the slopes of the large-x and small-x
limits is proportional to t ' and thus is small.

Since (9) thus can be approximated by nearly the
same linear function of (qg)2 for large and small
qg, the approximate equation (10) can be expected
to be useful for aj.l qg for which the data can be
analyzed by an Qrnstein- Zernike plot.

In the analysis of our data, we used intensities
only for scattering angles for which the slope of the
Qrnstein- Zernike plots was essentially independent
of the choice of 8 . The fact that we were able to
find conditions for which the slope of the Qrnstein-
Zernike plots did not depend on 8 provides evi-
dence that (10) can be used with our data.

As (7) itself is only approximate, attempts to
find a better approximation to (9) than (10) are
probably not worthwhile.

An equation like (10) for the first corrections to
scaling is reasonable from quite general considera-
tions. Since the first eorreetions to scaling are
usually proportional to t ', and since both terms
in (10) can be obtained by adding these corrections
to the two terms in (5), an equation like (10) can
be obtained intuitively, without the use of a detailed
scattering theory like that developed by Chang et
al."

The use of (11) to determine q from the slope of
the Qrnstein- Zernike plots provides a simple,
convenient, and relatively precise method, never
suggested previously, for evaluating the critical
exponent g from small-angle scattering curves.
The technique has the advantage of using scattering
data near the central maximum of the scattering
curve, where the intensity is near its maximum
value and thus is quite insensitive to distortions of
the scattering curve produced by the apparatus
and also to effects which may not be negligible
for large values of qg.
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