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A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through
perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are
compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a
way consistent with enhanced "long-time tails. "

I. INTRODUCTION

Fluid flow can be treated at a variety of levels'
by including only some of the difficulties asso-
ciated with compressibility, viscosity, heat con-
duction, entropy production, gravity, and turbu-
lence. In discussing shockwaves, only the last
two of these complications can be ignored. The
unique feature of shock compression' is the abrupt
transformation of a fluid or solid from one equi-
librium state to another. In a dense Quid this
transformation can take place in approximately
one atomic vibration time. ' The details of this ir-
reversible transformation process depend upon the
transient transport of momentum and energy within
the shockwave front. With pressure jumps of tens
of kilobars occurring in distances of only a few
atomic diameters it is not clear a priori that a
continuum point of view is appropriate to shock-
waves at all. Nevertheless, it is known that the
predicted shockwave profiles from the simplest
reasonable continuum model —the Navier-Stokes
equations, with compressibility, viscosity, con-
duction, and entropy production included —agree
fairly well with profiles from atomistic computer
simulations. ~

Viscosity is the physical property which domi-

nates shockwave structure. Viscosity describes
the extra work required when deformation takes
place rapidly, rather than slowly and reversibly.
General deformations include both changes in
shape and in size so that two different viscosity
coefficients, shear (for shape) and bulk (for size}
are required to describe the dependence of work
on deformation rate.

In many Qow problems changes in shape, involv-
ing only shear viscosity, are much more important
than changes in size. In shockwave problems the
bulk viscosity is equally important. Because the
Quid density may change by a factor of two, the
viscous irreversibility associated with rapid com-
pression must be included. Because the only op-
erational theory for bulk viscosity in dense Quids,
the Enskog theory, is inadequate, we have under-
taken a study of dense-Quid bulk viscosity. We
have developed a new method for simulating Quid
deformation, and here compare it with previous
bulk-viscosity calculations. The new method can
.also be applied to shear flows, and has some in-
teresting connections with the more usual Green-
Kubo methods for calculating transport coeffi-
cients.

Green and Kubo showed that the transport coef-
ficients describing nonequilibrium Qows of mass,
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momentum, and energy can be expressed in terms
of the decay of equilibrium Quctuations of velocity,
stress, and heat flux. ' Numerical decay calcula-
tions have been carried out for both hard' and soft'
interparticle potential functions. Motivated both

by the long times required for accurate equilibrium
Quctuation calculations, and by the desire to de-
velop an independent computational method as a
check, several groups' ' have carried out direct
measurements of the transport coefficients using

nonequilibrium molecular dynamics. In these di-
rect approaches steady or oscillatory hydrody-
namic states are maintained by performing exter-
nal work. Phenomenological hydrodynamics is
then used to relate the resulting mass, momentum,
and energy Quxes to transport coefficients. The
direct calculations are often more efficient than is
the indirect approach of fluctuation theory, but

suffer from the drawback that the results of the
calculations must be extrapolated to the small-
gradient limit of macroscopic hydrodynamics.
The direct calculations make it possible to gen-
erate nonequilibrium distribution functions and to
study nonlinear effects.

Shear Qow and heat Qow have both been simu-
lated by carrying out molecular -dynamics calcula-
tions with 'reservoirs" which maintain constant
velocities and temperatures at the boundaries. "~
The reservoirs themselves were kept at fixed
velocities and temperature by external forces.
Such forces do work on both the reservoirs' cen-
ters of mass and on the half-width of the reser-

voirs' velocity distributions relative to the center-
of -mass velocities. These reservoir calculations
provided estimates for the thermal conductivity
and for the shear viscosity g which appears in
Newton's phenomenological model~ for stress in

a Qowing fluid:

&=[&, +XV'~]T+g[Vu+ Vu']. (I)

In (I}the stream velocity u varies in space and

time. The viscous contributions to the stress ten-
sor i, over and above the equilibrium stress, are
proportional to the symmetric tensors & uT,
where T is the unit tensor, and Vu+vu', where t
indicates transpose. The "second viscosity coef-
ficient'" A, can be expressed in terms of the bulk

viscosity q„=X+ —,q.
The bulk viscosity describes the extra stress

due to dilation in the absence of shear. Because
this effect depends upon volume change —a change

of thermodynamic state —bulk viscosity cannot be
measured in a steady-state-reservoir experiment.
If the volume is cycled over a small range, with a
frequency ur, the constitutive relation (I) implies
that in addition to the elastic stress, proportional
to the strain and the adiabatic (frequency-depen-
dent} bulk modulus B, there will also be a viscous
stress proportional to the strain rate and the bulk

viscosity. The bulk viscosity can be obtained

either by determining the strain-rate component

of stress, or by averaging the work done, by the

forces cycling the volume, over a complete cycle
of dilation and compression:

dW= OdV= d~t 3)Vpcos+t 0 +3B)sin~t+3p„f& cosset =9m) V pQpQ+.

0

(2)

In (2) $ is the maximum one dimensional strain
amplitude. In a complete cycle, the elastic part
of the stress does no work.

We have developed a method for simulating such

a cyclic process by using nonequilibrium molecu-
lar dynamics. e The viscosities resulting from
such nonequilibrium simulations can be compared
with Green-Kubo results and used to interpret the
shockwave profiles from computer experiments. '
The new data should also stimulate improvements
in two areas of dense-fluid transport theory —the
data show that the Enskog theory of transport is
inadequate for soft potentials and that the mode-
coupling ' estimates of transport-coefficient fre-
quency dependence are much too small'4 near the

triple point.
In the present work we first indicate the relation

of our numerical method to the Green-Kubo theory.
We then apply the method to a dense-Quid state

near the triple point. For this numerical work we

have chosen to study the Lennard-Jones potential

p(r) = 4e [(o/r)" —(o/r)'], (3)

at the same reduced density Ne'/V = 0.8442, and

reduced temperature kT/e = 0.722 studied by
Levesque et al. ' Notice that in (3), in Sec. IV of

the text, in the tables, and in the figures, o and e

represent potential parameters rather than stress
and strain.

II. HAMILTONIAN FOR ADIABATIC DEFORMATION

Any mechanical flow can be described by specify-
ing the space and time dependence of the "strain-
rate tensor" V'u. The tensor describes the rate
at which any macroscopic coordinate q changes
with time:

Q=Q Vu. (4)
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j5=-6X/a/= F- vu |I. (7)

The microscopic representation of the pressure
tensor for a Quid with pairwise additive forces:

VP= $o F))+ (j5P/m), (8)

can then be used to establish that the coupled equa-
tions of motion (7) satisfy exactly the first law of
thermodynamics for adiabatic Qow:

E= -VP: Vu, (&)

where E is the internal energy 4 + (p2/2m) ~

Thus the Hamiltonian (6) has the desirable fea-
ture of providing equations of motion consistent
with thermodynamics. This Hamiltonian has other
applications too. Anderson" has just arrived in-
dependently at the same equations of motion (7).
In his work, the pressure is treated as an inde-
pendent variable to which the strain-rate responds.
In our work the roles of pressure and strain-rate
are reversed. Before proceeding to numerical
applications of the equations of motion, we discuss
the connection of the Hamiltonian and Green-Kubo
Quctuation theory.

III. CONNECTIONS WITH GREEN-KUBO THEORY

There are two different ways to relate our per-
turbed Hamiltonian to conventional Green-Kubo
theory. Let us consider first a treatment resemb-

The two simplest such flows are homogeneous
plane Couette flow (with du, /dy the only nonzero
element of Vu, for instance) and homogeneous
dilation (with V u proportional to the unit tensor I }.
If we consider a microscopic collection of N par-
ticles with coordinates g (now, and in what follows,
using q to indicate a set of coordinates) and poten-
tial energy 4, the application of the purely mech-
amcal deformation (4} for a short time changes
the potential energy: 4 = -VP~: V'u, where P ~ is
that part of the pressure tensor which depends up-
on the interparticle forces. In a thermodynamic
deformation we expect to do work against the kine-
tic part P~, of the pressure too: K= -Vf'»: V'u.

This work is done exactly if we choose to vary the
momenta in a way parallel to (4):

p= -Vu jj. (5)

A microscopic Hamiltonian which incorporates not

only the coordinate and momentum changes from
(4) and (5}, but also the usual changes from iner-
tia and interparticle forces, is

X=@(g)+K(p)+fiji:vu. (6)

The microscopic equations of motion derived from
(6) are

f= BK/ajar= (p/m)+Q Vu,

ling one of the several sketched by Zwanzig. ' For
simplicity we choose a particular strain-rate ten-
sor V'u= H; this choice describes a homogeneous
isotropic dilation. An analogous treatment applies
for shear flows. Because the perturbed Hamil-
tonian describing this system includes a velocity
gradient proportional to e, we expect that in the
limit of small strain rates ~ -0, a thermodynamic
system described by the Hamiltonian

3C=4+K+e@hl,

could also be correctly described by Newton's
phenomenological model (1):

(PV)„„=(PV), —367t„V

= —,'( q„F„+(p'/m)}„.

(10)

If we introduce the Hamiltonian (10) into the ordi-
nary canonical probability distribution

f„~,/f„= exp[ iig:T/k-T], (12)

we find a simple expression for the bulk viscosity
~V

3eq V-=-', ([~lj p/N'][q„F„+ (P'/m)]} . (13}

The virial theorem' can then be used to express
the instantaneous pressure in (13) in terms of the
dot product g'j5, giving

3PV= qe F&+ (p2/m)= 3PV+(d/dt}(if p}, (14)

where P is the long-time-average pressure. Be-
cause the average value of g P vanishes at equi-
librium, (13) and (14) can be combined to give

g„=—VRT((d/dt)(q jIP), (15)

This last relation can then be converted into the
usual Green-Kubo autocorrelation form by writing
the g p as integrals of pressure fluctuations:

g„=lim ds dt 5P s i' t
0

V eo

dt (5P(0)5P(t)}~, (16)
0

where 5P is P -P. An essential step in this heur-
istic derivation is the smoothed, or coarse
grained, evaluation of the time derivative in (15).
The derivative approaches the value given by New-
ton's phenomenological model only at times ex-
ceeding microscopic relaxation times.

We next consider a more convincing derivation
of (16) from (10), based on linear response the-
ory. " This treatment resembles Kubo's calcula-
tion of the electrical conductivity. Linear re-
sponse theory considers the effect of adding a per-
turbation -A(q, p }a(t) to the Hamiltonian, where A

is a function of the coordinates and momenta and

a(t & 0) is a function of time. The theory expresses
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t
(R(q,p))„„=— ds a(s)(A(0)R(t -s)),

0
(17)

If we select for the response function the time de-
rivative of the trace of Doll's tensor,

the time behavior of the (arbitrary) response func-
tion R in terms of the correlation of dA/dt and R
at different times:

Vu is chosen to correspond to a shear flow, a
similar calculation provides the Green-Kubo for-
mulas for the shear modulus G(&o) and the shear
viscosity g(&u). Although the bulk and shear rela-
tions are "well-known, " the methods used here to
derive them are remarkably direct. In the next
section we consider numerical applications of the
Hamiltonian for adiabatic deformation.

R = —(q p) = SPV(t) —SPV(t),
dt

(18) IV. LENNARD-JONES TRIPLE-POINT CALCULATIONS

where the long-time-average pressure P [=P(0)
—SB'e(t)) is evaluated at the volume V(t) and in-
ternal energy E(t), ' and if we use the phenomen-
ological viscoelastic equation of state, ~'" valid
for small strains and strain rates, we have

(R(t))„~= 9[B' —B((o)]Vs(t) -9q„((o)VE(t)

p2 g

ds 9i(t —s)( 5P(0)5P(s)), (19)

y ee

q, (&u) = &
dt cosset(5P(0)5P(t))

0
(21)

Thus we obtain the Newtonian liquid model from
the microscopic equations as a direct long-time
limit of linear-response theory. In the case that

where e is the strain, e = $ since, and 5P =P -P.
The short-time limit of (19) reproduces Zwanzig
and Mountain's relation 3 between the infinite-fre-
quency bulk modulus and equilibrium pressure
fluctuations. For long times the upper limit in
the integral can be replaced by infinity; (19) can
then be separated into two -independent equations,
one for sin~t and one for cos&t. These establish
the well-known results for the frequency-dependent
bulk modulus B(&o) and bulk viscosity q„(&u):

y eo

B(&u) B'=—— d&u tsin&ut (5P(0)5P(t)), (20)
0

The Lennard&ones thermodynamic state No'/V
= 0.8442, kT/e= 0.722 has been studied exhaus-
tively. ' This state corresponds to liquid argon
near the. triple point if a and e/k are given the
values 3.405 A and 119.8 K. The published
Green-Kubo shear viscosity' has recently been
supplemented by unpublished calculations carried
out by Levesque in France and Pollock in America.
We have also extended the earlier steady homo-
geneous-shear calculations, ~ which treated suc-
cessively wider systems of 108, 2 x 108, and
3 & 108 particles, by carrying out a calculation
with a width eight times that of a 108-particle
cube. These results are all summarized in Table
I. The unpublished results of Levesque and Pol-
lock for 108 to 500 particles agree fairly well with
each other and with the experimental shear vis-
cosity for liquid argon, expressed in terms of the
atomic mass m, 0, and e. The French 864-parti-
cle data, both published and unpublished, deviate
from the rest. The directly calculated reservoir
calculations are also summarized in the table, and
agree with all but the 864-particIe results. The
two homogeneous-shear calculations for the shear
viscosity use slightly different (steady versus
oscillatory) algorithms —Denis Evans will publish
details of his calculations (Table II) separately.

We have verified that the present perturbed-
Hamiltonian method reproduces correctly the

TABLE I. Green-Kubo, reservoir, and homogeneous-shear values for the Lennard-Jones
shear viscosity in the vicinity of the triple point. These calculations were carried out at a
reduced density Na /V of 0.8442 and typically include 105 time steps.

va /(me)~~2 Type Source

108
256
256
500
864
864
108-324
108x 8
108

0.728
0.715
0.722
0.722
0.722
0.722
0.722
0.715
0.722

2.97
2.92
2.6+ 0.1
3.2 + 0.2
3.85
4.03
2.95+ 0.2
3.0 + 0.15
3.18+0.1

GK
GK
GK
GK
GK
GK
R, H

H
H

Levesque
Levesque
Pollock
Pollock
Levesque
Ref. 9
Ref'. l2
Present work (steady shear)
(Table II) (oscillatory)

Experimental estimate: 3.0 Ref. 25
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TABLE II- Lennard-Jones shear viscosity' near the
triple point obtained by applying homogeneous oscilla-
tory isothermal shear. These results were all obtained
with Lennard-Jones's potential truncated at 2.5 0 and
with a timestep of 0.007 cr(m/e}; N =108, No /V
=0.8442, and kT/e =0.722. Amplitude times frequency
$~, frequency ~, and number of shearing cycles are
listed.

)&ac(m/s) / &oa(m/s) / Vc /(ms) /2 Cycles

0
0.10
0.20
0.20
0.20
0.20
0.20
0.20
0.30
0.30
0.30
0.30
0.30

0 cl

8.98
1.12
2.24
4.49
8.98

11.98
14.96
1.12
2.24
4.49
8.98

11.97

3.18+0.1
1.2V

2.70
2.18
1.74
1.22
1.10
0.90
2.41
2.33
1.72
1.25
1.14

770
25

100
100
200
533
333

32
80

100
200
267

Extrapolation from Ref. 14.

shear viscosities already obtained using external
reservoirs. To enhance the importance of the
kinetic contribution to the shear flow (almost
negligible at the triple point) we carried out a
shear-flow simulation at a reduced density of 0.45
with a reduced temperature of 2.16. Both this
perturbed-Hamiltonian calculation and the exter-
nal-reservoir calculation give 108-particle vis-
cosities of (0.45+0.02) (ms)'I'/o', with nearly
equal contributions from the kinetic and potential
parts of the momentum flux. A trial calculation
was carried out to assess the importance of the
perturbation force F„= (du, /dy)p, ;-when this
essential term was omitted the kinetic contribu-
tion to the shear viscosity was reduced from
0.23 (me)'~'/o' to nearly zero.

For bulk viscosity the only previous calculations
used the Green-Kubo method —there is no bulk-
viscosity analog for the reservoir calculations

used to simulate shear flow. The Green-Kubo
results are summarized in Table III. Again we
have included recent. unpublished calculations car-
ried out by Levesque. We have carried out a
series of lengthy calculations using the equations
of motion

q=(p/m)+sq, p=F-sp. (7')

It is convenient to solve these first-order equa-
tions using a standard packaged routine. '4 We
also add to the set of 6N equations the adiabatic
equation for conservation of energy:

E= -3eVP.

The integrated energy change over a cycle of di-
lation and compression can then be compared with
the change in the internal energy over the cycle,
calculated from 4 + K with the initial and the final
coordinates and momenta. We chose a timestep
such that these two independent estimates of the
hysteresis agreed to about one part in ten thou-
sand. At the end of every compressional cycle
the particle momenta p were rescaled so that the
next cycle would begin with the desired initial in-
ternal energy. After completing most of the cal-
culations we found that the computation could be
made considerably faster by adding a small term,
proportional to r", to the pair potential to make
the forces vanish continuously at the potential cut-
off.

Each calculation began in a body-centered-cubic
initial state with a Maxwell-Boltzmann velocity
distribution chosen to give the same thermal (i.e.,
relative to a perfect crystal) energy per particle
as that found for 864 particles by Levesque et al.'
Melting was enhanced by the bcc structure and a
check of the temperature indicated that there was
no difficulty in melting to form a liquid state. Al-
though only the first cycle appeared obviously
anomalous we took the precaution of discarding
the first ten cycles.

The adiabatic external work for each cycle can
be separated into potential and kinetic components,
but these have no particularly simple significance

TABLE III. Comparison of Green-Kubo bulk viscosities for the Lennard-Jones potential
with the present calculations. ' The densities and temperatures for Levesque's unpublished
calculations correspond to those given in Table I.

q, H/(me)'/'2 Type Source

108
256
864
864

54

Experimental estimate:

1.13
0.89
1.04
1.05
1.55

2.0

GK
GK
GK
GK

Levesque
Levesque
Levesque
Ref. 9
Present work

Ref. 25
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for the Lennard-Jones potential. R is interesting
to point out that for the simpler inverse-power po-
tentials, the virial-theorem relation between the
pressure and the energy,

3PV = 2K+me, (22}

TABLE IV. Perturbed-Hamiltonian bulk viscosity
for the nearest-image Lennard-Jones potential at
No /V =0.8442 and kT/e =0.722. The amplitude (,
frequency ~, and number of dilation-compression
cycles are listed.

allows us to calculate separately the strain-rate
dependence of the potential and kinetic energies
and to relate these two terms to the strain-rate
dependence of the pressure, which is still given
by (22). In general the potential contribution to
the bulk viscosity is =,n times the kinetic con-
tribution for an inverse-nth-power pair potential.

The link between the potential and kinetic parts
of the (constant-energy) pressure fluctuations
leads to interesting conclusions. For the inverse-
nth-power potential, the ratio of the 'potential"
to 'cross" to "kinetic' terms in the Green-Kubo
bulk viscosity integrand is exactly 4n' to -n to 1.

For a general force law, linear-response theory,
applied to the many-body Hamiltonian (10), can
be used to show directly that exactly half the
cross term contributes to the kinetic part of the
bulk (or shear) viscosity; the remaining half con-
tributes to the potential part. Thus, in the in-
verse-12th-power "soft-sphere case, the poten-
tial "long-time tail" for bulk viscosity is 36 times
larger than the kinetic one. The simple relation-
ships betweenthepotential and kinetic parts of the
pressure fluctuations have been verified numeri-
cally for the inverse-12th-power soft-sphere po-
tential in a series of bulk-viscosity calculations.
A numerical analysis for the Lennard-Jones poten-
tial should be carried out.

The numerical results of our Lennard-Jones
triple-point calculations are given in Table IV

3w

y ~
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(see also Fig. 1}. Each calculation depends upon
three separate parameters; the number of parti-
cles N, the strain amplitude $, and the frequency
co. The data show that the number dependence is
small, at least at high frequency. The dependence
on strain amplitude is harder to assess. Small
amplitudes give large fluctuations in the hysteresis
per cycle, while large strain amplitudes include
a wider range of densities. For the most part our
calculations were limited to a single maximum
amplitude f = 0.02.

The bulk and shear viscosities vary similarly
with frequency. The homogeneous-shear data
(see Fig. 1) were calculated with both the tempera-
ture and the frequency held constant. These shear-
viscosity results, for the range of frequencies and
strain rates corresponding to our own bulk-vis-
cosity calculations, can be described by the em-
pirical relation

go /(me) '-3.18-0.65(m/e}' 4(o(g}' *. (23}

If this dependence actua/ly holds in the MHz to
GHz range of laboratory experiments, it should be

54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.02
54 0.01

128 0.02
250 0.02

1
2
3
4

6
7
8
9

10
10
10
10

1.10+0.06
0.82 ~ 0.04
0.71x 0.02
0.61+0.02
0.52 + 0.02
0.51+0.01
0.50+0.02
0.45 + 0.02
0.48+ 0.02
0.45 + 0.02
0.48+ 0.03
0.45 + 0.02
0.45+ 0.01

800
500

1000
1000

200
1000

500
500
500
200

1000
200
200

~ 0(m/e) 2 q,o /(me) ~ Cycles 0
0

I I

4 6
a.&u $mye

I

IO l2

FIG. 1. Computer-generated homogeneous-shear
isothermal shear viscosities and perturbed-Hamiltonian
bulk viscosities are shown as filled circles. Experi-
mental estimates of the low-frequency viscosities for
liquid argon are indicated by the horizontal arrows. The
phenomenological fit (23) is shown for the shear viscos-
ity. In the bulk-viscosity case the L line gives the fre-
quency-dependent viscosity from a numerical integration
of Levesque's data as shown in Fig. 2. The L+tail line
indicates the effect of an enhanced long-time tail corre-
sponding to Eq. (24) of the text. The intercepts for both
the shear and bulk fits are shown as open circles.
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0.4 0.6
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FIG. 2. Equilibrium fluctuation correlation functions
calculated by Levesque. The nonequilibrium calculations
described in the text suggest a long-time tail at about
the level indicated by the arrow (0.26 for shear, 0.22
for bulk).

possible to observe noticeable frequency-dependent
effects.

The bulk-viscosity results have a form similar
to the shear data. If we use the same square-root
dependence of viscosity on frequency, the extra-
polated hydrodynamic bulk viscosity lies close to
current experimental estimates. " At the same
time, this extrapolation

q,v'/(m&) j~ -l. 55 —0.55(m/e}'~'(o(o)'~*, (24}

lies considerably above the Green-Kubo (zero-
frequency) estimates. It is difficult to settle the
question of the long-time or low-frequency de-
pendence of the viscosities by numerical calcula-
tion. Levesque's and Pollock's Green-Kubo data
indicate considerable number dependence at long
times and our own results cannot be pushed to
lower frequencies without substantial improve-
ments in the efficiency of numerical simulations.

Nevertheless, a self-consistent picture of the
long-time and low-frequency behavior does emerge
if we combine Levesque's bulk-viscosity inte-
grand —his data are shown for 108 and 864 parti-
cles in Fig. 2—with the long-time tail consistent
with the low-frequency relation (24). The coef-
ficient required, 0.55/(2w)'I'= 0.22 in the units
of Fig. 2, is only slightly less than the 0.65/(2v)'~*
='0.26 required by Evans's shear-viscosity data.

The result of adding the tail correction to the
Green-Kubo data is shown in Fig. 1. The tail
changes the overall curvature of the plot from
negative to positive and brings about excellent
agreement between the equilibrium and nonequi-
librium data. The calculated bulk viscosity, 1.55
in the units of Fig. 1, is not too far below the ex-

perimental estimate" for liquid argon 2.0. The
good agreement linking the Green-Kubo correla-
tion function to our nonequilibrium simulations and
to experiment is gratifying. It suggests that the
present methods can be used with confidence for
other thermodynamic states and for other force
laws.

The shear-viscosity results are less consistent.
Integration of the large-system (X= 864) Green-
Kubo integrand, with or without an appended long-
time tail, gives viscosities substantially higher
than either the small-system or experimental esti-
mates.

V. DISCUSSION

The perturbed-Hamiltonian approach to nonequi-
librium deformation is aesthetically pleasing be-
cause it is so closely related to thermodynamics
and equilibrium fluctuation theory. This same
Hamiltonian should prove to be useful in attempts
to understand theoretically the frequency and am-
plitude dependence of the viscosities.

It would be useful to find an analogous formula-
tion for diffusion and heat conduction, but our at-
tempts to do this for conduction have failed. It is
easy to use an extra force proportional to each
particle's energy fluctuation to drive a homogen-
eous isothermal heat current with nonequilibrium
molecular dynamics. It is not so easy to find a
simple isochoric (as opposed to adiabatic) analog
of the first law of thermodynamics. Nevertheless,
we expect that the heat current resulting from the
perturbation just described, will provide a perfect-
ly useful approach to thermal conductivity. We
expect to carry out such calculations for compari-
son with the earlier reservoir and Green-Kubo
work. ""

The present bulk-viscosity results show once
again' that the Enskog theory is a poor approxima-
tion for potentials as soft as x ~. The hard-
sphere prediction, underlying that theory, that the
frequency changes in the bulk and shear moduli
are similar at high density fails for soft potentials.
For soft forces the high- and low-frequency bulk
moduli are similar, so that the bulk viscosity is
relatively small. The present data underscore
the need for theoretical understanding of dense-
fluid transport. In particular, the mode -coupling
predictions, "even if they turn out to be correct
for frequencies below those which can be studied
in computer simulations, are grossly in error for
the frequencies studied here. Because even a
relatively crude theory would be welcome, it
seems possible that models based on cell theories
incorporating perturbed equations of motion will
turn out to be useful.
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Notes added in proof .(i} The Doll's-tensor Ham-
iltonian can also be used to obtain equilibrium
fluctuation expressions for nonequilibrium dis-
tribution functions. See D. J. Evans, W. G. Hoo-
ver, and A. J. C. Ladd, Phys. Rev. Lett. 45, 124
(1980). (ii) Bill Wood and Bob Dorfman kindly
pointed out to us that in Ernst, Hauge, and van
Leeuwen's work [J. Stat. Phys. 15, 7 (1975)], the
kinetic part of the pressure fluctuation is defined
to be zero. We alert the reader that this peculiar
choice is different from ours, as described fol-
lowing Eq. (22).
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