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Geometric optics in plasmas characterized by non-Hermitian dielectric tensors
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This paper presents a generalization of the theory of geometric optics in plasmas where the local dielectric tensor
e(k~;P,t) is not almost Hermitian, as heretofore assumed. It is shown that for general e one can construct the
formalism so that the new theory is characterized by the same equations determining the rays, and the equation for
the amj)litude of the wave along the rays is unmodified in structure. The theory uses the quasidispersion relation
det(e(k~ +iv;F t) [e(kai .—iv;f, t)]» j = 0 to find the complex roots ai +iv, where when the approximation of short
wavelength compared with the scale length underlying geometric optics holds, the real part co serves to generate the
rays via f = co„-, and the imaginary part iv enters the transport equation for the amplitude.

I. INTRODUCTION

'The geometric-optics approximation is currently
widely used in studying electromagnetic pheno-
mena in inhomogeneous plasmas of various types
and dimensions. ' Most of the studies are based
on ray tracing although the general theory, "
which uses the properties of the local dielectric
tensor e(k, oi; r, t) of the plasma, also allows one
to find the amplitude of the electromagnetic field
along the rays. 'The theory developed to date, how-
ever, is limited to cases where the tensor e is
Hermitian or "almost" Hermitian, namely, it can
be written as a= a„+al„where a~ is Hermitian
and formally e„«a~. This restriction on the type
of the dielectric tensor was imposed in order to
provide a dispersion relation D(k, oi; r, t) =dete„= 0
with a real solution to= &o(k;r, t) for real k. This
solution plays the role of a Hamiltonian in con-
structing the rays of geometric optics via r= &„-,
along which k and the amplitude of the electric
field are found by integrating ordinary differential
equations, e.g. , k= -~&, etc. The anti-Hermitian
part E„ then contributes only to the equation for
the amplitude of the electromagnetic field and
usually leads to a weak energy dissipation along
the rays.

There are, however, cases where & has a large
anti-Hermitian part. This situation is character-
istic of a hot magnetized plasma in regions where
the frequency of the wave approaches the local
cyclotron frequency. The use of only the Hermi-
tian part of c here is not justified. The determi-
nant of the dielectric tensor is complex and there-
fore also cannot directly provide a real Hamilton-
ian for the ray equations. The problem in this
case can be solved by reordering the terms in the
expression for the determinant of E so that it

can be written in the form D=A(De+iD, ), where
D, and D, are real and D, «D, .' Then D, is used
in the ray equations and the small correction D,
serves to determine the transport of energy along
the rays. This way of constructing the real Ham-
iltonian is nontrivial in the general case, and in-
volves a study of all the terms in the expression
for the determinant. Moreover the possibility of
such a reordering is not clear a priori.

We propose in Sec. II of this paper a more
simple and general method of constructing the
real Hamiltonian for the ray equations in non-
Hermitian plasmas. The method does not require
the study of the determinant itself. In Sec. III we
will derive the general transport equation for the
amplitude of the electric field of the wave along
the rays.

II. THE RAY EQUATIONS

Consider a weakly inhomogeneous and time-de-
pendent plasma in which there propagates a small
amplitude electromagnetic wave described by the
Maxwell equations

QE

coax

B=4mJ+ —,
at '

QBcV'x E= ——.
et

Assume that the current density'J in (1) can be
written in the following form:

J(r, t)
t

dsr" dt" rr[r —r",t —t"; —,'(r+ r"),,'(i+t")]-
w ets

x E(ry ter) (2)
In analogy to the case of a homogeneous plasma
in our inhomogeneous time-dependent case, we
seek a solution of (1) in the form
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E(r, t)= a(r, t)e'v'~'",

B(r, t) = b(r, t)e'

wh@re if one defines

B+
k(r, t) = v+, (u(r, t) = ——, (4)

which on insertion into (9}results in

ic' - . aa
(de a= -4viK(a)+ k x (V x a) i——

(d at

tc ~
+icV xb+ —kx —,Bt' (12)

then the fractional changes in a, k, w, a and b,
when their arguments r and t change by

~

&r~

=2v/~k~ and &t= 2v/~, respectively, are small
and characterized by a small dimensionless pa-
rameter 5. We assume here that 4 is real, which
in turn. leads to the real values of k and +.

On using (3}and defining r'= r —r" and t'=t —t",
one can rewrite (2) in the form

cd' c2 ~~ 4ni
&=I 1-, +—2kk+ g.

(d CO (d
(13}

The form of (12), where on the left there are only
small quantities of the order of 0, suggests that
one writes

a=a +a~+a +

where E is the local dielectric tensor of the plasma

b = bo+ bc+ b2+ ~ ~ ~ (14)

x a(r —r', f —t')

x exp[ikl((r —r', t —t')]. (5)

where the terms in the expansion are ordered in

descending powers of 5. Then on equating terms
of equal order in Eq. (12) one gets the following
zero- and first-order equations:

Then assuming that cr is large only for small values
of r' and t', expanding o, a, and 4' in (5) in powers
of r' and t', and leaving only the zero and the first-
order terms in the expansion, one gets'

+f'a =0,

i(dt a = 47fK(a ) — k x (v x ao)+1 (d at

(15)

J(r, t) = o" ae' +K(a)e'

where

K( )=a'[~v -(v„-c)] a-i[(va)' V,]o'

(6)
c ab„-cV'x b ——Qx

at
'

By substituting the zero-order result

b, =ckx a, /(d

(16)

(17)

a (Bo~ . ao Ba
+tg 'a+t' at ~a~~ B~ at (7) obtained from Eq. (11), one can rewrite (16) in

the form

i(ck x b+ ~i+ 4' cr ~ a) = 4'(a) —cV' x b+ —,(9)Bt'

ab
i (ck x a —(k)b) = -cV x a ——.

Bt
(10}

x exp[i((k)t' —k ~ r')] (8)

is the conductivity of the homogeneous plasma
which has everywhere the same parameters as
those characterizing our inhomogeneous plasma
at the point r and time t. In contrast to Ref. 2

we are not assuming here that the conductivity
tensor can be divided into a large anti-Hermitian
and small Hermitian parts and allow 0 to be ar-
bitrarily non-Hermitian.

We use expressions (3) for the fields in the Max-
well equations (1) to get

8(&ue) sa, 1 6 ~(scag~)

B~ Bt 2 qat~a~ &~

-[(va,)' ~ v-„) (der-2 [v (v;&ue)] a, .

D = det(e) = 0 . (19)

If, however, the dielectric tensor is non-Her-
mitian, Eq. (19) in general cannot have a real so-
lution u&= &u(k;r, t} for real k, since D is then a
complex function and both its real and imaginary
parts must simultaneously vanish, which gives
two not necessarily consistent dispersion rela-
tions for ~ and k. Thus, in order to be consistent
we must modify our zero-order dispersion rela-
tion. This can be done in the following way. Let
us add the quantity

(18)

Equation (15) has a nontrivial solution only if

One can find from (10):

c ic t abb= —kx a-—V'x a- ——,
(d (d Bt'

,.„( )
a~

to both sides of Eq. (12). We assume that v in

(20)
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(20} is real and of order e. Then Eq. (12) becomes

e (oc~6+ tv ' a —(Ae) ' a

e(~g) . - ic'- - . Ba
=iv a-4viK(a)+ —

k x (Vx a) i-
9(d (d et 4„(~)=0 (32)

i4 (&u) }( 4„(u&) ' 24(~)
4„„(~}' ~&4„„(~} '4„„(~}

Therefore, since 4 (&u) & 0, v will be real if and

only if

~M
zc ~b

+icP' x b+ kx —,st' (21} and

(u))) 0. (33)
where we define

0= +iv

and correct to first order in 5

(22)
In this case

( 2O (a })
"'

v=+
il4..(~)

i =e(k, A;r, t).
Now Eqs. (15) and (18) can be replaced by

(Ae) ~ a =0,

(23)

(24)

e(~c) e(&oe) ea, 1 e /Burg
i Ai a, =-v ~ ao+ ~ + ——

] a
e&u ' eu} et 2 et l»,

[(Vso) Vf] (dt —g [V ' (VIV&()] ' ao ~

(25)

Note that the only difference between Eqs. (15)
and (24) is that in the latter we are formally allow-

ing the frequency 0 to have a small imaginary
part iv. This assumption introduces a new term
-v(e(&ua)/e &u) ~ a, in the first-order equation (25)
as compared to (18).

The modified dispersion relation is therefore

'The plus and minus signs in this solution corres-
pond to the zeros A= ~+iv of D"(A) and D(A),
respectively. Note that the real parts of the
zeros are identical. Note also that Eqs. (32} and

(33) define a minimum of the function 4(x) at the

point x= .
In addition to an expression (34) for the correc-

tion v, which is necessary if one considers the
first-order equation (25) for the amplitude, we

now have a real dispersion relation (32) for
real objects (u and k. Assuming that Eq. (32) has

a solution &u= ~(k; r, t}, we introduce the group
velocity V~= &„- and define trajectories via

dr—-V —~
dt

(35)

Then, since on cross differentiation of Eq. (4} one

has

D=det(e)=D(k, A;r, t}. (26)
Bk Bk

V(d+ —= (d-+ (Vk) ~ &-+-r at

On separating real and imaginary parts in (26),
one gets a set of two equations for two quantities

and v, and the aforementioned inconsistency is
removed. One can also use the smallness of v and

derive a real dispersion relation for & and k, in-
dependent of v. This can be conveniently done in
the following way. Let us rewrite (26) in the form

one gets

dk
dt

ek
= cu-+ ~f ~ (Vk}+—= 0r at=

Equations (35}and (37) together with

(36)

(37)

D(A) =D,(A)+iD, (A), (27)

D (A)=DO(A) iD, (A}, —

one gets

4(A) =DD = D~~(A)+ D~(A) = 0 .

(28)

(29)

where D, and D, are the real and imaginary parts
of the determinant D(&u) For sim. plicity the ar-
guments k, r, and t will not be indicated explicitly.
On multiplying (27) by

d& dk dr
Qp + Qw ~ ~+ Qeo ~

dt

form a set of first-order ordinary differential
equations, which are commonly known as the

ray equations. Qn implicit differentation of the

dispersion relation (32) one can also write the

ray equations in the form

dr 4„-
dt 4„„'

(38)

Correct to the second order in v, this equation
can be written

dk 4'�„»,

dt 4„„' (39)

4(A) = 4((u)+ iv4„(~) —~ v'4„(u) = 0.
On solving (30) for v we have

(30) 4
dt 4„„'
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which does not require explicit knowledge of the
solution (() = (()(k, r, t) and is therefore more con-
venient for computations. By solving Eqs. (39)
with the appropriate initial conditions, one can
simultaneously determine v from Eq. (34). The
smallness of v in comparison to will then give
an estimate of whether the geometric-optics ap-
proximation can be applied in a given case.

III. THE TRANSPORT EQUATION

We proceed now to the derivation of the trans-
port equation for the amplitude a, of the electric
field along the rays defined by Eq. (39). This can
be done by using the first-order equation (25). To
this end we use the singular value decomposition
of i.' As is well known one can always find two

sets of orthonormal, in general complex vectors
u„u„u, (u( ~ u&=5, ~) and v„v„v,(v," v&=5,.&), in

terms of which i can be expressed as
~~H ~~H ~~H

6 = c~v)u~ + c~v~u~ + &3v3u3

independent. Thus, &, = &,= 0 or ap +yUy Then,

on multiplying (25) by P, from the left and using

the fact that vH, ~ a = 0, one gets

v", — u, ' —P, .[Vn, ~ (V-„~c)].u, =P &, ,

(46)

where

8(()g 8(()g su 1, 8 (8(()g
8(() ' 8(() 8t 2 8t gs(()

+[(vu,)'.v;I ~ ~~'+-', Iv ~ (v;~ c)I u,I.
(4S)

On varying 8,' ~ (Qc) u, =0 with respect to k hold-

ing r and t fixed, one obtains

5(ov", ~
—.u, +v, .[5k ~ (v-~()].u, =0, (46}

BQ)

where the e, (i= 1-3) are real singular values of i
and the superscript H denotes transpose complex
conjugate. Note that the vectors u,. and v, satisfy
the equations

and therefore (46) can be written as

&of d 0!
~ (49)

'Vi fi (41)

(6 ' 6}' u( = e(u(

(f'c )'v;=e ~;(,v
(42)

ap —+~uj+ &pily+ &3u (43)

Then on using (40), Eq. (24) becomes

&~fgvg+ +gfgvg+ &3f3V3 = 0. (44}

According to (26),

det(i" ~ c) = c', c',c', = 0, (45}

and therefore, at least one of &, vanishes. In the
rest of the paper we will assume that z, = 0 and

4p f3+ 0. The theory for the degenerate case,
when more than one eigenvalue of g -a vanish
simultaneously, can be developed in a fashion
similar to that used in Befs. 2 and 3.

It follows from (44) that o(, e, = 0, since the vec-
tors v, are orthonormal and therefore linearly

and therefore, ui and v, are the orthonormal
eigenvectors of the Hermitian matrices e ~ e and

i ~ i", respectively. The quantities e,'(i = 1-3}are
the three eigenvalues of these matrices.

One can express the amplitude a, of the electric
field of the wave in terms of the base vectors u, :

84'k'= V'4, ~'=—
at

Then, similar to Eqs. (24) and (25), one can
write the equations for the zero- and the first-
order parts of the amplitude:

(51)

where the time derivative is taken along the ray
Qldt =sist+&a; ~ i}. By solving Eq. (49} in parallel
with the ray equations, one finds the amplitude of
the electric field of the wave along the ray and

gets a full geometric-optics solution of the prob-
lem.

Equation (49) for the amplitude has the same
structure as the one previously derived for the
Hermitian case.' The only difference is that when

the. dielectric tensor is Hermitian the base vec-
tors u, and v,. are identical, while in the non-

Hermitian case the two sets of the base vectors
are, in general, different. This lack of syrnme-

try in the non-Hermitian case leads to a new ef-
fect related to possible dissipation of electromag-
netit.'energy in the plasma. We illustrate this ef-
fect by constructing an analog to Pointing's
theorem. To this end let us formally consider a
dual Plasma with the conductivity tensor o". We

denote the geometric-optics solution for the elec-
tric field of a wave in the dual plasma by

E'(r t)=a'(r t)e """ (50)

and define
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(0'e'") P - 0

(
t ts) 2 d 8(2) e 8(2) f ao

iH IH g t
-z 0 a ~ a1=v .a0+ —, ~

ace' eco' &t

(s2) has

BG

at
+ V ~ ((2)-„G)= 2 [/G

2 (s9)

where

~ =& +iv,

-[(Vair V;.] .&o'("

-a[& ~ (&;&'e'")] a(), (s3)

(s4)

where

Q = o. '*n v ~ —.u = & ~o'
~ (d( BQ)f

1 1 1 g~ 1 1 1 (60) .

In the stationary case (BG/Bi = 0), one can inte-
grate (59) in the volume element &V= &Si m;ddt
of the infinitsimal flux tube of cross section ~S
containing the ray. Then on using Gauss' theorem
one gets

e '"= c"(k', &o'; r, t} and e'" = [e(k', 0'¹;r, t)]" .

Equation (54) implies

D" (k', 0'r, t) =0, (ss)

-[(va',") v;] ~c --,'a,'" [v ~ (vz&oe)].

(56)

Now it can be easily shown that if the amplitude
a,' is expressed in terms of the base vectors
v ~ a0 +1V1+ +2v2 + &,'v„ then &,' = , ' = 0 and there-
fore ao= c'.,'v, . Then, on multiplying (56) by u,
from the right, one gets an analog to Eq. (49):

8(d g d +1+
jdt

(sv)

where

z 8(2)e Bv2 8(2)e,+ 8 8(2)e

et 8~ ' &t

e[(vtd')'. v;]. 2" e-;(2' ~ [v ~ (v; e))I.e, .

(s8)

Finally, on multiplying Eq. (49) by ()'i¹, adding
it to Eq. (5V) multiplied by [)'„and using (48), one

where D" is the quantity already defined in (28).
Therefore, the dispersion relation for the real
quantities &2)' and k' is exactly the same [Eq. (32)]
as for ~ and k in our real plasma. Thus the rays
in the plasmas are identical if one starts the ray
tracing with the same initial conditions in both
cases. Then one has k'=k, ~'=~, and 4'=4
along the ray. In contrast v' = -v, as follows from
(34). Therefore, Eq. (53} can be written in the
form

s (fl-) s ~e ao a s

dI—=2vI
ydt (61)

Thus if the value of +' at the final point differs
from +, one gets a change in the flux due to the
factor &¹/o"¹,even if [/=0.
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where I =BSHE(2);iG. Equations (59) and (61) repre-
sent the analog of the energy- and flux-conserva-
tion equations in a plasma with Hermitian dielec-
tric tensor, where [)"=a and the object G/8v is
identified as the sum of the electromagnetic and
reactive kinetic energy densities averaged over
a period 2v/&u. ~ In the non-Hermitian case, G is
in general complex and is not related to the en-
ergy density in a simple way.

One interesting feature of a system in which
is that the absorption of the electromagne-

tic energy may not be due only to the presence of
the imaginary correction iv to the frequency. To
illustrate this, assume that we have a stationary
case and start a ray in a Hermitian region of the
plasma (in a vacuum, for example}. Then the
energy density flux along the ray at the starting
point will be equal to F,=I,/87[. Suppose now that
the ray passes through a non-Hermitian region and
then arrives at a point where the plasma dielectric
tensor is again Hermitian. One can also integrate
(61) and get at the final point f=f, exp(2 j,'ddt'),
where the time integration is along the ray. The
energy density flux at the final point, however,
will be

t
( d/a' a)((/22)= (a /a' )((,/22) exp{2 dt'} .

0

'For a collection of the most recent papers on the appli-
cation of the geometric-optics approximation in a va-

riety of problems see IEEE Tr. Plasma Science
PS-80 (1980).
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