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Statistical properties of an incoherently driven nonlinear interferometer
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A nonlinear interferometer driven with a partially coherent light field is analyzed. A limit on the
fluctuations permissible in the driving field to observe bistability is calculated. For a Gaussian, broadband
input field the transmitted radiation is shown to have enhanced intensity fluctuations.

I. INTRODUCTION

There has been considerable interest in optically
bistable systems where a nonlinear interferome-
ter is driven by a coherent driving field, resulting
in a bistable behavior between the input and output
fields. ' The nonlinearity may either be due to a
saturable absorber' or a dispersive effect. '4
Recently Chrostowski and Zardecki' considered the
transmission of chaotic radiation through an ab-
sorptive medium inside a Fabry-Perot interfer-
ometer. These authors performed a numerical
simulation of the system and showed that trans-
mission of light with enhanced intensity fluctuations
resulted. Previously Chrostowski and Krasinskie
had predicted that passing chaotic light through a
saturable absorber increases the intensity fluctu-
ations in the transmitted light. This effect has
been observed in a recent experiment by Krasinski
et aL. ' who measured the intensity fluctuations in
light produced by passing chaotic radiation through
a saturable dye cell. The mechanism for this
effect is clear. A saturable absorber will trans-
mit large intensity fluctuations yet not transmit
moderate intensity fluctuations, therefore enhanc-
ing the relative contribution of the large intensity
fluctuations in the transmitted light. The possi-
bility of producing light with intensity fluctuations
greater than thermal light was first predicted by
McNeil and Walls' for the process of two-photon
spontaneous emission.

In this paper we consider a medium consisting
of N two-level atoms placed inside a Fabry-Perot
cavity and driven with a-partially coherent driving
field. A limit on the fluctuations permissible in
the driving field in order to observe bistability is
calculated. For a purely chaotic driving field no
bistability occurs. An analytic solution for the
photon statistics of the transmitted light is ob-
tained.

II. MODEL EQUATIONS

We wish to calculate the response of a high-Q
interferometer with a cooperative fluorescent

+ &s&iat (2. I)

—j'= -g(uj'+ o"j ) —r„(t'-j ),at

where n is the amplitude of the cavity field mode,j' and j' are the expectation values of the atomic
polarization and inversion, j' is the initial atomic

medium (modelled as N two-levei atoms) to an
input field with Gaussian fluctuations. We there-
fore analyze a model in which the input field is a
mixture of a resonant coherent part with a part
having "thermal" (delta-correlated) statistics rel-
ative to the interferometer response time. It is
still possible for the input to be reasonably mono-
chromatic, even with a bandwidth greater than the
interferometer bandwidth, so a single-mode cal-
culation is reasonable, provided the interferome-
ter resonances are sufficiently broadly spaced
relative to the input bandwidth. In the limit of
completely Gaussian input statistics, this can
represent a model of a multimode laser input to
the nonlinear interferometer. A diagrammatic
representation of this system, and the relation
between input bandwidth and cavity spacings, is
given in Fig. 1.

We assume that because of the large fluctuations
in the input field, the effect of quantum fluctua-
tions (due to the nonlinear medium) is negligible.
We may then describe the system by the semiclas-
sical Maxwell-Bloch equations. The effect of
quantum fluctuations has been studied by Lugiato
and Drummond and Walls" who show that these
terms can be expressed in a, power series in I/N
Thus, for large enough numbers of atoms, the
quantum fluctuations will be negligible compared
to the Gaussian input fluctuations. We assume
we are in the region where the spatial mean-field
approximation is applicable, "and we also assume
homogeneous broadening and a traveling-wave
(uniform) mode function. In this case the Maxwell-
Bloch equations assume the form
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input is also regarded as filtered so that the in-
tensity at the frequency of other Fabry-Perot
modes is small relative to the principal excited
mode.

Thus it is required that a«Aid, «c/2L, where
K is the cavity bandwidth, &~, is the input band-
width, and c/L is the mode spacing for an inter-
ferometer of round trip length L. As the radiation
is relatively broadband, it is regarded as Gaussian
and delta-correlated on time scales comparable
to the cavity reciprocal bandwidth:
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FIG. 1. (a) Schematic representation of the driven
system. (b) Relation between the bandwidth of the driving
field and the cavity mode spacings.

inversion, E(t) is the driving field, and g is the
atom-field coupling parameter. The cavity decay
rate is ~ and the atomic decay rates are y,„and
y, . These equations have been used to describe
optical bistability when E(t) is a coherent driving
field. '4 We note that in actual experimental sit-
uations, inhomogeneous broadening can be signif-
icant. Further, a real laser beam has a Gaussian
profile so that the above represents a very simpli-
fied treatment of the field mode function. In theory
it is always possible to take such effects into ac-
count [c.f. Hassan et al. ~ and Carmichael'2].

For a high-Q cavity (z «yJ we can adiabatically
eliminate the atomic variables and obtain an equa-
tion for the field mode amplitude:

(E i (t)Ef (t')) = A5 (t —t'),

(E,(t)) = &E,(t)E,(t')) = o.
(2. 3)

The relative size of E„A can be estimated for
a given experiment as follows: The coherent input
power (for perfect mode matching to a single res-
onant mode) is LK&o IE, I'/c(1-R), where R is the
mirror ref lectivity and L is the round-trip path
length. Similarly, the incoherent input power per
unit frequency bandwidth is LhidA/c(1-R). In the
case of a standard (nonabsorbing) interferometer,
the coherent to incoherent transmitted power ratio
would therefore be of order IE, I'/Az.

III. BISTABILITY WITH A PARTIALLY COHERENT
DRIVING FIELD

We introduce a probability distribution P(a) for
the field amplitude a =(a, a~). Using standard
techniques" the stochastic differential equation (2.I
may be shown to be equivalent to the Fokker-Plane. '

equation

Bt ' ' 1+1a I'/n, 'a=EO(t)+E, (t) —ga —2C g ~, (2.2)

where the cooperativity parameter C=Ng /2zy,
Also, no ——y~y„/4g, where g, the atom field coupling
parameter, is defined by

g= I(2 Id Il) l(~/2«, &)'",

— .~(a, t) = ——E, —ra —2Cv
f a 0
at ' . aa ' 1 + Ia I'/n,

a2
+ A P(a) t) . (3.1)

4h

and d is the electric dipole operator. V is the
quantization volume and N is the number of atoms,
which are assumed to be distributed uniformly
through the quantization volume. The condition
for the spatial mean-field approximation to hold
is 2c(1-R)«1, where R is the ref lectivity of the
cavity mirrors.

The input field may be divided into a coherent
~ amplitude E, and a fluctuating amplitude E,. The

fluctuating amplitude E, is assumed to have a ther-
mal type of statistics (as might occur for a multi-
mode source, or from thermal fluctuations induced
in an optical transmission line). Therefore this
radiation is regarded as broadband relative to the
cavity bandwidth. However for simplicity, the

The steady-state solution of this equation may be
found exactly, since the equation obeys the poten-
tial conditions. ' This solution is given by

P(a) = %exp[(2/A)[-v I
a I'+E,a*+E~a

2c~, i.(I I'+ .)]}
= XP'(a), (3.2)

where is a normalization constant.
Thh distribution, plotted as a function of the

real and imaginary part of a, has twin maxima
in the bistable region, with each maximum being
locally stable. This has been demonstrated by
Schenzle and Brand, "who together with Bonifaco
et ul. ,"obtained this solution for optical bistabil-
ity for an equivalent situation where the thermal
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x=n/~n, , y=EJ»Vn, ,

D =A/»no,

which leads to

(3.3}

1a a 2C——P(x)= = y —x 1+
g Bt — Bx. 1+ IxP

ex* ~ 1+ lx

a2
+D P(Ã),axax*

(3.4}

with steady-state solution

P(x) = st exp[- p(x)],
where

@L»)=—[- f» [ +yx» +y*x —2C ln(1 + I» I ] ~

D

(s. 5)

The theory of Landauer and Swanson then predicts
a tunneling time for a transition from a stable
branch z, through a saddle point z, to another
stabel branch z, :

v=2(zD) ' (e & 2 te~s rz) '.- (3.6)

Here the "free energies" E&, E3 are defined in
terms of local potential integrals in the neighbor-
hood of the stable branch:

fluctuations are dominant over the quantum fluc-
tuations. This is completely different from the
pseudopotential suggested by Gilmore and Narduc-
ci,"which had a "sombrero" shape with no bist-
ability. The sombrero distribution is correct
for the laser with an injected signal"' but not
for the physically different situation embodied in

optical bistability.
An important factor in the observation of optical

bistability is the reduction of external fluctuations
to the point that bistability can exist on relatively
long time scales. Clearly the steady-state bimod-
al distribution is not bistable (a,s it is unique).
The crucial point is that bistability occurs as a
transient response. In order for it to occur, in

an experiment, the tunneling or equilibration time
should be much slower than the rise time of the
input wave form and the detector response time.
This tunneling time can be easily estimated in

the case of the present model for external fluctu-
ations because of the exact solutions obtained for
a potential function [Eq. (3.5)].

In this situation, the well-known technique of
Kramers" and Landauer and Swanson" can be
directly used to calculate the tunneling time. It
is useful to rewrite the Fokker-Planck equation
in the scaled variables:

F, , = —ln exp —(II) z d'z
g(y gs

(3.7)

whQe the effective "free energy" I", at the saddle
point is given by expanding the potential locally,
relative to the principal direction (x):

p (x) = Q(z2) —za4 Re(x) + 2 bn Im(x)

E,= P(z2—) +-,' ln(b/a)
(s. 6)

An order of magnitude estimate of ~ is simply
Inr =(g —g), where g, g are evaluated at the
transition midpoint. For the case of C»1 the
threshold point is at y =C, x =1 and the midpoint
is for y&C. A calculation of the potential differ-
ence (near the transition midpoint) shows that this
is of order C/D, as would be expected from Eq.
(3.4). Now in order for bistability to be clearly
observable, it is therefore necessary to have
C/D»1. In the case of C&D the potential height
of the saddle point is relatively small and the in-
ternal field responds by diffusion, without definite
threshold behavior. This places an upper limit
on the size of the background term for which bi-
stability can be observed, namely, A «8'„. A
numerical study of the effects of driving-field fluc-
tuations on optical bistability has been made by
Meystre.

It is an interesting problem to determine the
behavior of the nonlinear interferometer when

driven by an incoherent source with A~-,'N„. In
this case, bistability does not occur. Instead,
even for a completely Gaussian broadband driving
field, a threshold still occurs at A=-,' N1„. How-

ever, this is a completely different threshold from
that for bistability; it is a threshold for a change
in the correlation functions on statistics of the
transmitted radiation. We consider this situation
in the following section.

P(R) =%(R + no) 'exp(- R/n),

where

n=A/2»,

z =2Cn Jn =Ny„/2A .

(4. 1)

This distribution is a product of a Gaussian term
characteristic of thermal light and an additional

IV. PHOTON STATISTICS FOR A CHAOTIC DRIVING

FIELD

We shall now consider the case where the inco-
herent component of the driving field is large. To
simplify the analysis we assume a purely incohe-
rent driving field and set F, ~ =0. In this case the
steady-state, photon-number distribution given by
Eq. (3.2) becomes a function solely of the photon
number R = l n I:
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(ii) 1+j&p. For the higher moments the Gaus-
sian term in the distribution function equation
(4. 1}dominates and

I' '=)I RI 'e "~"dR=sn'I' "I'(j+1-p).
0

(4.4)

1
I ~ I I I I I I I I~M
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FIG. 2. Comparison of the distribution equation (4.1)
with the Gaussian distribution 1/niche j"th (solid line,
e ' "~/(x +1);dotted line, e ). ~=1, n0=1, n=10,
n&„=1.

power-law term. A comparison with the Gaussian
distribution for thermal light is shown in Fig. 2.
The system is no longer bistable; however, a
change in photon statistics occurs for a threshold
value of the driving field, as may be seen from a
calculation of the steady-state moments.

The distribution plotted in Fig. 2 is Eq. (4. 1)
with q =1, which gives a product of a Gaussian and
a Lorenzian. It is these long Lorenzian-type tails
in the distribution which gives large values for
the moments.

These moments of the photon distribution may be
calculated directly from Eq. (4. 1). We initially
compute the intensity moments of the un-normal-
ized distribution:

I' '=g RP'RdR
0

=)I J R (R+np) 'exp(-R)/n)dR
0

= 71 e'On~' '

The above results are true asymptotically for
A, N-~ withe finite.

From the unnormalized moments we may cal-
culate the nth-order correlation function of the
radiation field as defined by Glauber

~(n) I(n)/I (I ) (4.5)

We again consider the limit n-~. In this case
there are three distinct regions:

(i) j + 1 & p. g'I' = nIIj!r(p —j —I)/r(p —1) .

(ii) j+1 &p &1. g'I'=n' ' "np' 'I'(j+1 —p)(p —1) .
(iii) p &1. ()"'=nIr(j + I - )/pr(l -p). (4.6)

We note here that with decreasing q, which cor-
responds to increasing A, each correlation func-
tion is uniformly increasing. However, there is
a much greater rate of increase in the middle
range for large values of C (because n»np).
Therefore this region can be regarded as the
threshold. For the jth correlation function the
threshold point is at

2Cn0
2z (j+1}' (4.7}

For all the correlation functions the region (iii)
gives a saturation behavior in which none of the
correlations increase very rapidly. Instead the ef-
fective nonlinearity of the medium is reduced (as
50/p of the atomic population are approaching in-
version). The saturation point is at

j1"Q (- )'. .. , r(j+I-k-, }, (4.2)
n„,= "=2Cno &n, h, ~

2K
(4.8)

where I' is the incomplete gamma function" and

z() ——np/n =p/2C.
In order to obtain a physical understanding of

the behavior of these moments we first consider
the limit n -~. In this limit the behavior of the
moments depends on the size of e relative to the
order of the moment. We consider two regions:

(i) 1+j& e. For low moments the power-law
term in the distribution function equation (4.1)
dominates and

The scaling behavior of these correlation func-
tions may be seen in Figs. 3 and 4. Finally we
calculate the normalized correlation functions de-

])
n!-

I(j) ,dR
p (R + Ipp)'

(4.2) FIG. 3. 8 '") (0)/(II}" as a function of 3CIIp/)I in the
limit n —~.
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FIG. 4. ln f9'"~(O)J/)n(a) as a function of 2Csa/s in

the limit n -.
FIG. 5. ln [g ' 2 ~ (0)1 /lu (s) as a function of 2Ca 0/a in

the limit n -~.

fined by
In the asymptotic limit we therefore have all

correlation functions with a maximum at

(y) g' '(0)
(o}=[ (1i(0)]g ~ (4 9) n =Cno = y„N//8z . (4. 11)

In this case due to the normalization factor it is
necessary to deal with four individual regions.
These correspond to subthreshold, increasing
g'~'(0), decreasing g'~'(0) and saturated behavior,
respectively. In the asymptotic limit n-~ we have

Ama, = 2C)cnp,

[1%' '(0)] „=(j —1) lnC .
(4. 12}

The input field and value of the correlation func-
tion at the maximum will be approximately

(i) Subthreshold (s &j+ 1):

ln[g"'(0)] = O.

(ii) Increasing (j+1 &z &2):

ln[g' '(0)] =(j+I -t)ln(n/no).

(iii) Decreasing (2 & q & 1):

ln[g'~'(0)] = (z —1)(j —1)ln(n/no) .
(iv) Saturated (z & 1):

ln[g"'(0)] = 0.

(4.10)

Thus there is a very close relationship between
the cooperativity parameter and the degree of
intensity correlation with a Gaussian input field
(in the large C limit}. However, this relation is
expected to be only roughly true because the peak
value occurs between the regions where approxi-
mations (ii} and (iii) are valid, and neither of these
approximations will be correct there, except for
very large values of C. In Fig. 5 we show how

g't'(0) scales in the asymptotic limit. The exact
expressions for gU'(0) are given by Eqs. (4.2),
(4.5), and (4.9) yielding

Z(-zo) (~)I'(j + 1 —k -s, z ) [I'(I -e, z )]~+
g"'(0)= "

[I'(2-s, z )-z 1(1 -s, z )]~

g2 (0)

7.0

(4. 13)

In Fig. 6 we show g"'1(0) as a function of A/
A.„(=1/z) for various values of C. The enhanced
intensity fluctuations (g't'(0) & 2) in the region
1&&&3 (—,

'
&A/A, „&1)are very apparent, as is the

rapid saturation for A/A„, &1. Figure 6 is in
good qualitative agreement with the numerical re-
sults of Chrostowski and Zardecki, ' Chrostowski
and Krasinski, 6 and the experimental work of Kra-
sinski et al.~

Figure 7 shows the rapid increase in size of the
g'"'(0) as n increases. As the parameter C is
made larger this increase with n is so rapid that
if a linear scale is used, for a given n, only g~"~(0)
and g'"'" (0) can be compared conveniently. Fig-
ure 7 shows g~n(0) and gn (0) as functions of A/
A„t. In order to compare the gs" (0) over a wider
range of n, a logarithmic scale is required, and

6.0

5.0

4.0

3.0

2.0
0.1 1 10

A
&SiT

FIG. 6. g' (0) as a function of K/2Cn0 for C = 10,
20, 30, 40, 50.
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driving field for multiphoton processes with the
higher-order transition probabilities favored over
lower-order multiphoton and single-photon pro-
cesses. One limitation of this system is clearly
the reduction in intensity due to dissipation in the
nonlinear medium.

g( )(0)
6.0

5.0
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P( )=P(0)(—Pl]If()+I/ "'.
) (A2)

APPENDIX

We may also adopt a phenomenological master
equation approach to describe the saturable ab-
sorber, using a probability function P(n) for the
number of photons in the cavity:

(fP(n)
dt

= -8(n+ 1)P(n) + 8nP(n —1)

—gnP(n) + s(n+ 1}P(n+1}

n n+1-a)
/

P(n)+I)
( 1)/

P (n+1) .

(A1)

In this equation the terms in 8 and |.' represent the
coupling to the chaotic driving field. n =8/(6 —8)
is the steady-state mean photon number for the
empty cavity, and ~ = 6-8 is the cavity damping
constant. The terms in Q describe the effect of
the saturable absorber, with n, being the satura-
tion photon number and Q a constant proportional
to the cooperativity parameter C. Equation (A1}
may be derived from a set of equations describ-
ing the full atom-field system by adiabatically
eliminating the atoms, as done, for example, by
Scully and Lamb in their well-known derivation of
the laser master equation. "

Using the principle of detailed balance, the
steady-state solution of Eq. (Al) is readily found
to be

I ~ I ~ I I I I

0.1 0.2 0.3 0.4 0.5 2.0 3.0 4.0 A AAsat

FIG. 9. g' (0) as a function of F/2Cn 0 from the mas-
ter equation approach of the Appendix; C= 5, 10, 20, 40.

1.0

where

P(0)=[F(l,no+1, no(B/( +1)+1; 8/(.')] '

where I' is the hypergeometric function.
A simpler, approximate expression for P(n)

may be obtained using a method developed by
Gragg et al." Letting X„=8n and p„=[S +~1/(1
+n/n, }]n we have in the case where P(n) is a slow
ly varying function of n:

=P(I+))—Pfn)= " —l)Pb)

=(&„/V„-1)P('s)

This equation has the solution

(A3}

P(s) =3t[e(1+n/n, )+~] e+"0 exp(-ne/e -a),
(A4)

where St is a normalization constant. P(n) of Eq.
(A4} has the same qualitative form as P(R) for
Eq. (4.1).

Since the distribution moments may be calcu-
lated without difficulty from the exact solution, Eq.
(A2), we shall use this expression rather than
Eq. (A4} to compute the moments. The mean
number and first-factorial moment are readily
found to be:

(n) =P(0) ' rF(2, n, +2,re+n, +2;r),r& +no+1

(n(s —1))=P(0)
(

r2F(3, no+ 3, re+no+3; r),(s, +1)(n,+2)
r4+no+1 rE+no+2

where r =n/(n+1), e =2Cn, /n. The second-order
correlation function g(~)(0}=(n(n —1))/(n) may
then be calculated in a straightforward manner.

I

g(2)(0) is plotted in Fig. 9 as a function of n for
various values of S. The form of these curves
agrees well with the results of Refs. 5-V.
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