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T-matrix analysis of one-dimensional weakly coupled bound states
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The ground-state energy of the Hamiltonian —(1/2)d '/dx '+ XV(x) is analyzed in terms of the zeros of

a pertuI'bative expansion for the inverse of the T matrix, and an expression for ( —2E)" correct to order X'

is obtained. Modifications of the results for long-range potentials of the type V(x)~ —a+~x~ ",
n = 1,...,4 at x ~+ oo are discussed. The problem of three-body bound states is considered, leading to an

expression for the ground-state energy of He-like atoms with nuclear charge a&1, in a strong magnetic

field.

I. INTRODUCTION

Abarbanel, Callen, and Goldberger' have derived
a formal series for the ground-state energy
E(X) of the form

-(-2E) ~ =X J) dx VQ)+X'J) dxdy V(x) ~x-y
~
V(y)

+o(~') . (2)

For range-long potentials, these results require
modifications. For example, it has been shown

by Blankenbecler, Goldberger, and Simon' that
if V(x)- —ax' as x-+~,

-(-2E)'~'=(X+4aX'1na) dx V(x)+0(X'). (3)

Another example of long-range potentials is that
of a hydrogen atom in a strong magnetic field for
which

H = ,' p' ——+ —-(x'+y') .r 8
(4)

Under a scale transformation

p- (.'y)'"p, ~- (4-/y)'"~

the Hamiltonian becomes

For y-~, the essential problem reduces to weakly

It has been observed' that a short-range attrac-
tive potential always produces a bound state in

one or two dimensions. This interesting property
allows one to obtain some general results about

the bound states in the weak coupling limit. In

particular, for the one-dimensional Hamiltonian

d
H = —— 2+XV(x),

coupled motion in the z direction and one obtains'
for the ground state,

E ~ 2 y"' —2 o.'[-2 in(-,' y)" '
y

-1n 1n(-,'y)"'j'.

This result is of direct practical importance and

has been used' in dispersion relations to obtain
accurate predictions for Zeeman energy shifts.
Several other significant results' have been ob-
tained by Simon and Klaus, in particular, about

the uniqueness of the bound states.
In the derivation of most of the results per-

taining to the bound states in one-dimensional
weakly coupled potentials, the analysis has been
in terms of the wave functions. Hausmann' has

analyzed the bound states using the Lippmann-
Schwinger equation but for the wave function. The
discussion in terms of the wave functions, while

being direct, is generally quite complicated re-
quiring a careful incorporation of boundary con-
ditions. We would like to suggest that the T matrix
provides a more convenient tool for the analysis of
bound states as poles of the T matrix. It has the

advantage that one would then be working in the
momentum representation and have access to

integral equations of the Lippmann-Schwinger type
for the T matrix. A particularly convenient form
is the one provided by Noyes' which gives us a
perturbative expansion for essentially the inverse
of the T matrix thus allowing a perturbative de-
scription of the poles of the T matrix and hence
the bound-state energies.

In the present note we analyze the bound-state
energies for attractive one-dimensional potentials
using the Noyes form of the T matrix. In Sec. II
we discuss the general results for short-range
potentials and show that
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(-2-E)" 'x=f d*v(x)ak'Jl d*dx v(x) v(2)(x 2[-

++6k.3 dxdydz Vx V V z x-y + y —z + z-x

dxdydzdtV V Vz Vt x-y +6 x-y x —z +3 x-y z —t

+5Ix-y
I Iy -z

I Iz —t I)+0(x').
In Sec. GI, we consider the modifications required by bound states for long-range potentials. In addition
to obtaining the results (S) and (7), we are able to derive expressions

(2E)'~'-=-kf dxv(x) a'kf dxdxv(x)v(x)(x —2(akx'(a. aa)()ak)( dxv(x)( ao(k')
j

for V(x)--a, Ix I

' at x-+~ and

( 2E-)'-~'=x dx v(x)+x')t dxdy v(x)v(y)Ix-y
I

+2X' dxdydzV V Vz x-y + y —z + z-x

+~2% (a, +a )(Ink) dx v(x)I +0(& ) (10)

for V(x)--a, x ' at x-+~. In Sec. IV, we consider
the bound states for the Hamiltonian

1 d 1d2
2 dx, 2 dx2

+x, u(x, )+x,v(x,)+x,a)(Ix, -x, I).

In order to simplify the problem we introduce an
approximation which may be reasonable in gen-
eral. This allows us to obtain an expression for
the binding energy which is valid when ~, is small
compared to X, and X,. We include the modifi-
cations due to long-range interactions and use our
results to obtain an approximate expression for
the binding energy of He-like atoms with nuclear
charge &»1, in a strong magnetic field, anal-
ogous to expression (7) for the hydrogen atom.
This expression is found to agree quite well with
a simple variational expression for the energy.

H. SHORT-RANGE POTENTIALS

We begin the T matrix discussion of the bound
states with the Lippmann-Schwinger equation for
the T matrix:

(i2)

(is)

with f(k, q) satisfying the integral equation

( )
(k I XV I q)k, q =

0

(2 I 2 V I 2}(2 I k V I k ')

)Qa XVO

f(k, q)
(E--.'k" +zq) '

(i4)

(15)

where V, =(q
I
V

I
q). The bound states correspond

to the zeros of the function in the denominator of
expression (14). Now, since Eq. (15) allows an
iterative solution for f(k, q), one can locate the
zeros of the denominator and hence obtain the
bound-state energy perturbatively. Before pro-
ceeding with the perturbative derivation of the

where the total energy E = &q'. For the analysis
of the bound states it is preferable to use the
Noyes' form of the equation which is obtained by
writing

(k I
& Iq& =f(k, q)« I

& Iq&.

where (q TIq) is the forward scattering amplitude
and f(q, q =1. This relation leads to
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d"k (q I}kVlk) f(k, q)
(2v)" (E--,'k'+iq) ' (ls)

one-dimensional bound-state energy, we note that
in n dimensions the denominator in (14) is

and carries out the k integration to get

g~ ~ VD(E)=1+ dxdy e"' " ""E'

q - Vo

(20)
It is easily seen that the integral diverges in the
limit E-0 for n ~ 2 so that D(E) always has a zero
in these cases for X-0 if the potential is attractive.
This explains the well-known fact that an attractive
short-range potential always produces a bound
state in one or two dimensions howsoever small
be the coupling, but not in three dimensions.

To illustrate the iterative procedure for the
perturbative evaluation of bound-state energy in
one dimension, we consider the first-order so-
lution for f(k, q),

f(k q) =(k
I
~v

I
q)/} v„

which leads to

Expanding the exponential function for q - 0 and

retaining only the first two terms to be consistent
with the order of the iteration, we have

D(E)=1+ Vo — dxdy V(x')V(y) Ix —y Idxdy.
q Vo

(21)

From the condition that D(E) should vanish at
bound-state energies and the relation q =~2E, one
finally obtains

( 2E) -i -=2 I d'q V(q)

(ql kv lk)(k I }).v Iq)
27( }).Vo(E —E k +i}l)

' dxdy V V x-y (22)

One then uses the expression

T

(q I
~v

I
k) = dx ~v(x)e*" 2)", -

which agrees with the expression (2) of Abarbanel,
Callen, and Goldberger. ' We proceed along the
same lines but include the next two terms in the
iterative solution for f(k, q):

(kl kqlq} ( dk'
}

~, (2 lkqlq)(2ll vlk'))
}).Vo d 2v(E —zk" +iq) }).Vo

(k' I }).V I q) It
dk"

Xv, ~ 2v(E —-', k"'+i}1)

(k I}vlq&(ql})vlk") (k" Ixvlq)
xV, , XV,

(23)

One again uses expression (19) for the potential matrix elements, integrates over the k, k', and k" vari-
ables, carries out an expansion in powers of q, and finally obtains from the condition that D(E) =0 at
bound-state energies,

( 2EV" .f d*q(q). k'jd=qdqq(q)V(2)lq-21

+-', y' dxdydz V V Vz x-y + y —z + z-x

+-', X' dxdydzdt V V V z V t

x (Ix-y I'+six y I'Ix z I+3lx-y I'Iz —tl+slx-y I Iy-z
I

lz —tl). (24)

We have evaluated these terms for a. particle in a square well of depth v, and width a, to get

(-2E) =avp —2 a v +—a v —
2 a v%1/2 1 3 2 1 5 3 EL6 7 4

which agrees with the iterative solution for the bound-state energy obtained by solving the equation

(-2E)' '=[2(v, +E)]' 'tan{[2(v, +E)]' 'za)

(2S)

(2s)
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for the square well. Of course, expression (24) is meaningful only if the integrals occurring in it exist;
i.e., the potentials are of short range.

III. LONG-RANGE INTERACTIONS

In this section we discuss the modifications required if the interactions are of long range. It may be
noted that the case of V(x)-a, lx l

' for x-~ requires special consideration, since V, in Eq. (15) is not

defined for this potential and therefore one cannot use the analysis in terms of the forward-scattering

amplitude. We first discuss the potentials for which

V(x)-- a, lx l

" for x -+, n =2, 3,4.
'The analysis for such potentials may be illustrated by considering an integral of the type

I= jt 'dx V(x) e"l' "'
m qqo

which for example occurs in Eq. (20). This integral can be written as

&/a OQ t' -&/a

I= dx V(x)e" * "'+ dx V(x)e" ' ' + Jl dx V(X)e"' "
-&/a 1/a ~&q0

(25)

(29)

(so)

for n =2,

&/a 1
dx v(x) Q —. (Iq

l
x —y l

)'+0(q" ') .
a- o -1/a ~o jl

To extract the leading terms, the prescription then is to retain terms up to order lx -y
l

' and integrate

from -1/q to 1/q. pince q - X, the integral can equivalently be carried out between the limits (-1/)&,

1/X). This immediately leads to the following results:

-(-2E)'~'=)).Jt dx V(x)+2)&'(ln)&)(a, +a ) dx V(x)+0()&'),
4

for n=3,
2

-(-2E)'~'=x dx V(x)+x'&~ dxdy V(x)v(y) lx-y i+2K'(ink)(a, +a ) V(x)dx +0(&')
q

(31)

(32)

for n =4,

( qE) I q-fq v(=&qq qqqqq(')q(q)lq-ql

+ ~
&' dxdy«v( )v(y)v(z)(lx-y I+ ly -z I+ lx-xl)'

3
+ —, x ()qq)(q, qq )(( v(q)dq +0(l'&. (33)

v(x)--o, lxl
' f»»-*" (s4)

the forward scattering amplitude is not defined
and hence one cannot use Eqs. (14) and (15).
Alternatively, we may analyze the bound states
in terms of the backward scattering amplitude.

Relation (31) is a slight generalization of result
(3) obtained by Blankenbecler, Goldberger, and

Simon and reduces to their expression for a, =a
=a, while the remaining two relations are new

results.
For potentials of the type

&ulrlq) g(k, q)& qlrlq), - (s5)

where &-q
l
T

l q) is the backward scattering am-
plitude and g(-q, q) =1. On substituting this re-
lation in Eq. (12), one obtains

&-q lqlq& =&-ql~v)lq& (& E
&&

&-q ( XVI @}g(0,q)

(se}

with g(k, q) satiefying the integral equation

The corresponding equations are obtained by writing
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( )
(k I Xv I q)gk, q-

j.

&a ii ~vs q&(-q i ivy a
&)

XV,

g(k, q) =(k lxvlq)/~v„

which leads to an expression

(36)

g(k', q}
E

where V, =(-q
I Vlq). The bound states once again

correspond to the zeros the denominator of ex-
pression (36). Though this function is somewhat

more complicated in the general case than the

corresponding function in Eq. (14), it has the

advantage that it is well defined for potentials

(34) which have a Coulomb tail.
We retain the leading iterative solution for

g(k, q),

It is possible to obtain the bound-state energy
for Hamiltonian (6), for y-™,by using the above

result (42). We first note that Eq. (36) is valid

for the three-dimensional Hamiltonian as well.
Specifically for the Hamiltonian in (6), we take

the unperturbed Hamiltonian to consist of the ki-
netic energy and the simple harmonic potential,
so that the states lk) contain harmonic oscillator
states for motion in the xy plane and free states for
for motion in the z direction; the "weak" Coulomb

potential (-n)(4/y)'~'(1/r) serves as the X V per-
turbation. Now, since the oscillator energies
are separated by finite energies, for the limit
k-0 one needs to include only the ground state
in the summation of the oscillator states. This
reduces the problem to a one-dimensional problem
with the effective potential being given by an ex-
pectation value of 1/r between the oscillator states.
Thus we have

&/
dk (-q ikvlk)(k I Xviq)
2) (E ——,'k +iq)(XV, )

(s9}
k —q = — dx dy dz e '" " 'e'" '"

y'

for the denominator in Eq. (36). For potential

V(») in (34) one has the leading behavior

(klVlq) (a, +a )lnlk —ql.
k)q

We substitute this in (39}and carry out the k

integration to obtain

D&(E) = 1+—' x(a, +a )(lnl 2E I)/'I 2E I"'
This is zero for

-(-2E)'~'= (a, +a )&(inX+inln&)+0(&)

which gives the energy of the bound state.

(4o)

(41)

(42)

(4s)

from which it follows that the bound-state energy
for the Hamiltonian in (6) can be obtained from

Eq. (42} with» = n(4/y}'t . Including the oscil-
lator energy and multiplying by (-,'y)'~', one finally

gets

E ~ zy't —2a [z ln(—,'y)' ' —lnln(4y)'~'+O(1)]'.

(44)

This expression agrees with the known results. '

IV. THE THREE-BODY PROBLEM

In this section we discuss the problem of a bound state for the Hamiltonian

1 d 1 d
H = —— z —— z + x,u(x,}+x,v(x, ) + x,tv(l x, -x, I}, (45)

in the weak coupling limit X,.-O. The general problem is much too complicated so that one is forced to

make some approximations. In particular, we obtain an expression for the bound-state energy which is

valid if x, «x„x2.
First consider the case of short-range interactions. If the particles are to be bound, at least one of

the two potentials, N(x, ) or v(x,}, has to be attractive. Let us assume that v(x, ) is attractive and that

particle 2 is bound with the ground-state energy z, given by expression (24),

z =--.'ox, J dxv(x) + X, dxdy v(x)v(y)l»- yl
2

+ —X~ dxdpdzvxv gvz x —g+ g —z+ z —x

+ —X~ dxdydzdtv x v y v z v t
2

x (I yl + 6lx —yl'lx —zl+ six —yl'lz —t I+ 6lx —ylly —zllz —t I)+ o(x') (46)
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We now analyze the scattering of particle 1 in the forward direction by the potential

XV= X,u(x, )+ X~u)(ixi —x~i), (47)

with particle 2 being in the ground state both in the initial and the final state. Let the states of particle 2
be designated by ~i} and the corresponding energy by &„ i= 0 being the ground state with the energy given

by Eq. (46). Then the three-body bound-state energy is given by the position of the zero of the denominator
function

dk g (q, 0IXVIk, i)f(k, i;q, 0)
27t,. E —&; ——,

' k'+ ig

with f(k, i; q, 0) satisfying the integral equation

(46)

(49)

(k
. 0 (k, i I XV lq, 0)

xv0

k f) f(k', j;q, 0)
~ ~ ~

~

where E —&,=-,'q' and XVO= (q, O~XV~q, 0), analogous to Eq. (15). The matrix elements of XV are given by

(a(zv~a j,& xf',ax =(x)s"' "*n„+z f sx ( )e'"' "*&i(e"'"(j). * (50)

We now introduce our major approximation by replacing z, and &~ by pp in the summation over the states.
Since u connects only the diagonal elements in the space of i, j states, this introduces errors only in
terms of second or higher order in X,. It may be observed that the errors tend to zero in the region of
large k or k integrations. The approximation may therefore be worthwhile even in cases where A., is not
small. Of course, the results are rigorous up to terms which are first order in X,. With this approxima-
tion, the summation over i and j can be carried out, leading to

and

I
dk (q, OIXVlk) f(k;q, O}

2w E- &, —,' k'+ i)1—

( )
(klXVIq, 0) dk' i, (klhVlq, 0)(q, OI))Vlk') f(k', q, 0)

xVo " 2w, XV, (E- e, —,' k "+i)i)—

(51)

(52)

These equations can be analyzed to give the bound-state energy in the weak-coupling limit and to first
order in X,.

It should be noted that while there is no pole in the integrand of Eq. (52), the u)-matrix elements are not
smooth near k'=0 because of factors of the type (0~exp[i(k' —k)x, ] ~0) observed in Eq. (50). The origin of
this nonsmooth behavior is essentially the fact that s)(~x, —x, ~) may not be small for x, -~, if x, -~. How-
ever, one can then argue that every successive iteration brings in terms which are of higher order either
in X, or in ()).,/a„)).,/X ). Hence the leading terms in the first order of ))., are obtained from the first two
terms in the iterative solution for f(k, i;q, O). Finally, for carrying out the k and k integrations, we use
the integral representation (19}for the potentials and use

(53)

for the bound-state wave functions in evaluating the integrals in the x, space. For example, the first
iterative solution for f(k, i;q, 0) leads to

( )
xal „„(x)u(y),,(„„„„) 3u)olq, l'"
q ~ uo (2IE —zol) (l&ol + I E —&Ol ) '

where

(54)

Qp = Q X cfX
~

(55)

t'

uo= u(x)dx. (56)

Using higher-order iterative solutions for f(k, i;q, 0), analogous to Eq. (23) but retaining only the leading
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terms in the first order of X„we finally obtain
P

dxu x +X, dxdyu x y x —y

+ ' ~' dxdy«u(x)u(y)u(z)(I» yl+ ly zl+Iz —xl)'

r
+—', x, dxdydzdtu(x)u(y)u(z)u(t)(l»-yl'+6I»-yl'I»-zl

2

+ 3lx —yl'Iz —t I+ 6lx —ylly —zllz —t I)

+ e, —X,X,X,
+' "' + O(X')+ O(X,X')+ 0(X',),

$1ggP( + ( y 2/P|

where e0 is defined in (46), X stands for X, or X„and

w. = Jt .(x)d». (56)

To the order specified, this is a rigorous result for short-range potentials.

V. He-LIKE ATOMS IN A STRONG MAGNETIC FIELD

The Hamiltonian for a two-electron atom in a strong magnetic field is given by

H= z P~+ g p2 ——— + + (x~+ y~+»2+ y2) ~

y, y y, 2 8

where a is the charge of the nucleus. Under the scale transformation

p -( r) p -~ -(4/r) "
the Hamiltonian becomes

y'' . . . n4y a4y 4y
2P1+ 2P2 + 2 (x1 31+x2 ~2j

r2 +12

(60)

(61)

For y- ~, the problem reduces essentially to one-dimensional motion in the z direction, but with the po-
tential having a Coulomb tail. As was mentioned before, for a potential with a Coulomb tail, the forward
scattering amplitude is not defined. However, one can analyze the bound-state energy in terms of poles
of the backward scattering amplitude.

The denominator function for the backward scattering is

with

t dk p (-q, OIXVlk, i)g(k, i;q, 0)
2w,. E —g; ——,

' k'+iq

(k, ilxVIq, O) dk'g .
I

I, .
) (k, ilxVlq, 0)(-q, OI)Vlk', j) g(k', j;q, 0)

(62)

(63)

where XV, = (-q, OIXVlq, 0), analogous to Eq. (37). As before we replace q,. and q~ by ea and carry out the
summation over j and j to obtain

( )
dk (-q, Ol XVlk)g(k; q, 0)
2Z E —qP- 2k +iq (64)

(k 0 (klXVlq, 0) dk'
kl~Vlk, (klXVlq, 0)(-q, OIXVlk') g(k', q, O)

XVi 2w XV (E —z, - —,'k" + iq)
' (65)

These equations can be used to analyze the ground-state energy of Hamiltonian (61). For this we take the
unperturbed Hamiltonian to consist of the kinetic energy, the simple harmonic potential, and the term



l662 S. H. PATIL

n(4/y)i i (I/z ) so that, the states consist of oscillator wave functions in the x and y variables, free-par-
ticle wave functions in the z, variables, and weakly coupled bound states in the z, variable with the ground-
state energy

fp zy2 2 l
4

—lnln
4

as given in Eq. (44). The scattering potential is

(66)

(67)

For k, k'-0, one needs to include only the ground state of the oscillator states which essentially reduces
the problem to a one dimensional problem with the effective potential being given by an expectation value
between the oscillator ground states:

k k = I dxydpydzye '"i"i'e"' k 'i
~I

I ~ ~ i~

I l I
~ 2 I I

k IIk
~I

7t 7'y j

-2 In/k —k' f, (66)

( dxydpydz, dx2dy2 exp —x,' + y,'+ x,'+ p,
' e' "

12 i 12

—2(inik -k'i)e"' "'2.
k, k"'~0

(69}

4 1/4 1n1 E 11/2
D, (E)= 1+ — (2n 1),

y (2IE —apl )'/ (71)

This expression is equated to zero to give the
bound-state energy. Finally, including the os-
cillator energy and multiplying by (y/4)'i', one
gets the bound-state energy of the two-electron
atom in a strong magnetic field:

E' ~ y' —2n(2n —l}i21n(—'}' ' —lnln(4 y}' ]'.
(V2)

For calculating the expectation value of this last
expression between the bound-state wave functions
of particle 2, we take the wave function to be the
same as Eq. (53) but with &, given by (66}.

In order that D, (E) includes the leading terms in

the first order of the interaction between the two
electrons, we use the twice iterated solution for
g(k;q, 0), i.e. , the expression in Eq. (63) with the
g(k'; q, 0) on the right-hand side replaced by
(ki&Viq, 0)/XV, . We finally get

4 1/4
D (E)=1+2—1

ln1E-q 1

/2
I

11/2

(2IE — I) '
I

I' '+IE —r I
') '

(70}
which, to leading order in e, reduces to

The above result is valid for e» 1. It is in-
teresting to compare this expression with a sim-
ple variational calculation for the ground-state
energy of the scale transformed Hamiltonian (61).
If we use oscillator ground-state wave functions
for the x and y variables, and wave functions (53)
for the z variable, one obtains for y-,
E=(-'y}'"~2 I2"I

-(4n —1)(4/y)' 'i2$, (' 'Ini2$, i' '],
(V3)

where we have used the fact that qp is expected
to be small. Taking qo as a variational parameter,
one finds for the variational energy

E, =y'i' —(2n ——')2[2 In(~i y)'i' —lnln( —'y)'i ] .
(74)

This expression is equivalent to an independent-
particle approximation with a screened nuclear
charge of z-& which ~ay be compared with the
corresponding charge of z —~6 for the case of
y= 0. The variational expression agrees very
well with expression (V2). Even for He, the coef-
ficients of the second term agree to within about
2%. Therefore though we derived expression (V2}
under an assumption that e» 1, it may be a good
approximation for He as well, i.e., for @=2.
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