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The experimental data on muonic x-ray intensities for the third-row atoms (Z = 11—17) are analyzed in a unified

way. The deduced initial I distributions are not very far from the statistical ones; they are, however, somewhat

steeper near the closed atomic shells and somewhat flatter in the middle of the shell. The K-electron refilling rate is
fast increasing with Z; it is considerably smaller than the refilling rate of normal neutral atoms. The calculation
shows that in these light atoms the inner electron shells (K and L) are strongly perturbed during the muonic cascade.
Correct treatment of their depletion and refilling is essential. The two existing computer cascade programs are
compared. It is stressed that a correct treatment of penetration effects as well as inclusion of quadrupoles in the
Auger electron emission is necessary when one wants to utilize the full accuracy of the experimental data.

I. INTRODUCTION

The muonic, pionic, kaonic, and other exotic
atoms are by now familiar tools widely used in
studies of nuclear sizes and shapes, meson-nu-
clear interactions, QED tests, etc. The x-ray
transition energies are well understood and can
be calculated with great accuracy. However, the
initial formation of such an atom, in which the
meson is captured from the continuum into a
bound state, is not yet fully understood. Similar-
ly, one does not have a complete theory of the
subsequent cascade. On the other hand, the
amount of reliable data on muon capture and cas-
cade is rapidly increasing. Among the various
problems in this complex process, perhaps the
most amenable one to analysis is the "quantum
cascade, " that is, the muon transitions between
states with relatively small quantum numbers.
The starting point of the quantum cascade is the
point where the classical description breaks down
and the transition energy becomes a large frac-
tion of the binding energy. Alternatively, and
to a large extent equivalently, the quantum cas-
cade begins when radiation of an observable in-
tensity is first emitted at n=15-20. The theo-
retical analysis of the cascade is relatively sim-
ple because the muon wave functions are to a
good approximation hydrogenlike, while the elec-
tron wave f'unctions are those of the Z —1 atom.

The cascade proceeds by the emission of the
Auger electrons from the electron K, L, and M
shells and by the muonic x-ray emission. The
main transition strength is in only one of these-
possible modes at any given time. Radiation is
dominant at low quantum numbers (n & 5 for the
considered atoms). At higher quantum numbers
the Auger transitions dominate, with the main
strength being in the &n=1 Auger emission from
the electron shells with binding energy closest to

the ~n=1 transition energy. Thus, for the Z
=11-17atoms considered here, the L-electron
emission dominates for n ~ 10, and the K-elec-
tron emission dominates for 9 -n -5.

The partial radiative and Auger transition prob-
abilities were first calculated by Burbidge and
de Borde' and by Eisenberg and Kessler. ' They
were incorporated into the so-called Hufner cas-
cade code. ' Recently, a new version of this pro-
gram was written by Akylas and Vogel, ' including
higher multipoles (quadrupole and octupole),
higher shells (M shell), as well as treatment of
the penetration part of the Auger matrix elements.

In our numerical calculations reported below
we begin the cascade at n=17. According to our
results the muon emits during the cascade 4-5 L
electrons, -5 K electrons, and -2 muonic x rays,
that is, it makes altogether about 11 quantum
jumps. Because normal atoms have 8 L electrons
and 2 K electrons these shells are strongly per-
turbed during the cascade and their refilling must
be considered. In particular, the E refilling is
of crucial importance.

The observable quantities in a muon cascade
are t;he x rays. In a typical experiment the inten-
sities of 5-10 of the lowest members in each of
the Lyman, Balmer, and sometimes higher series
are measured. The purpose of the analysis is to
relate these observables to the relevant physical
parameters, that is to the population of the vari-
ous muonic states in the beginning of.the cascade
and to parameters describing the electron refil-
ling. It is customary, and supported by experi-
mental evidence, ' to assume that there is very
little direct capture into states with n -20. The
initial muon population should be, therefore, nor-
malized to unity. The shape of the muon l distri-
bution varies slowly between states with sufficient-
ly large n. Consequently, one may assume that
the entire muon initial population is concentrated

22 1600 1980 The American Physical Society



22 MUONIC CASCADE: GENERAL DISCUSSION AND. . . 1601

TABLE I. Intensities of muonic x rays in Na per 100 stopped muons. Calculated for n$gff

=17, &(l)= (0.455+ 0.268l+ 0.037l ) x 10, I'&=0.06 eV.

Expt.
n 1

Calc. Calc. Expt.
n 3

Calc.
n 4
Calc.

2
3
4
5
6
7
8
9

10
&10

79.2 (1.0)
8.52(1v)
5.74(14)
3.74 (11)
1.61(8)
0.66 (6)
o.1v(6)

79.27
8.52
5.88
3.60
1.65
0.65
0.22
0.04
0.08
0.08

60.6
11.27
3.74
1.19
0.40
0.13
0.02
0.04
0.04

33.2
4.17
1.01
0.31
0.09
0.02
0.03
0.03

8.96
1.15
0.30
0.08
0.01
0.02
0.02

Experimental data from Ref. 11 for Na metal. Normalized to 100Vo of I yman series. Re-
sulting X~/DE= ~ ~.r

in states with a single n value. We shall examine
this assumption in Sec. III. The "initial l distri-
bution" must be a smooth function of l and may
be parametrized by one or two parameters. Ad-

ding one parameter each describing the popula-
tion or refilling of the electronic R and I shells,
one ends up with 3-4 physical parameters de-
scribing the cascade.

Experimental data are available now for a more
or less complete analysis of the elements in the
third row of the periodic table (Z =11-17). We
would like to know whether a consistent approach
is possible, and whether the resulting parameters
vary smoothly with Z. We would like to compare
the resulting l distribution with the statistical l
distribution predicted by the classical approach
to muon capture. " There ~s evidence' "that the

initial l distribution exhibits periodic variations;
that is, the average initial angular momentum is
larger for atoms with nearly closed valence elec-
tron shells than for atoms with half filled valence
shells. We would like to see whether our detailed
analysis supports this evidence.

The numerical calcul. ations are described and
discussed in Sec. II. In Sec. III we analyze in

more detail the various effects included in our
treatment of the cascade but neglected in most
previous analyses.

II. CASCADE CALCULATION

For our numerical analysis we chose the data
of Refs. 5 and 11-14on the third-row elements,
Na, Mg, Al, P, S, and Cl. (For detailed infor-

TABLE II. Intensities of muonic x rays in Mg per 100 stopped muons. Calculated for nf
=17, P(l)= (1.12+0.76l+0.047l2) x10+, I'~=0.10 eV.

n 1
Expt. ~ Calc.

n 2
Expt. Cale.

n 3
Expt. ' Gale.

n 4
Calc.

2
3
4
5
6
7
8
9

10
11
12
13
14

&14

79.58 (65)
v.ve(av)
5.so(as)
s.vs(19)
2.12 (14)
O.86(5)
o.ae(s)
o.oe(s)
o.oe(8)
0.055 (16)
0.038(13)
0.021(12)
o.o160.2)
0.028 (18)

79.61
7.86
5.39
3.73
1.94
0.82
0.31
0.06
0.13
O.G53
0.022
0.011
0.012
0.04

62.5 (2.7)
10.4(1.8)b

4.26(86)
1.16(80)
o.so(v)
0.17(6)
0.43(16)

o.26(v) b

0.19(8)

60.30
11.28
4.12.
1.40
0.49
0.10
0.03
0.07
0.03
0.01
0.01
0.006
0.020

s6.o(5.6)"
4.eo(4o) '
1.81(80)
0.47 (12)
0.10(6)

0.07 {4)

35.77
4.66
1.16
0.36
0.11
0.02
0.04
0.02
0.02
0.003
0.004
0.012

9.93
1.26
0.32
0.09
0.02
0.03
0.01
0.005
0.002
0.003
0.010

Experimental data from Ref. 5. Resulting X /DE= —.
Lines affected by interference with C, 0, and N. When excluded X~/DE=~~.
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TABLE III. Intensities of muonic x rays in Al per 100 stopped muons. Calculated for ng
=17, P(l)= (1.40+ 0.096l+ 0.0428) x10+, rz=0.10 eV.

n 1
Expt, .~ Cale.

n 2
Expt. ~ Cale.

n 3
Expt. Cale.

n 4
Gale.

2
3
4
5
6
7
8
9

10
11

79.65 (60)
v.4s(29)
4.va(ao)
3.89(17)
a.s5(11)
1.1S(8)
o.sv(8)
O.18(8)
0.12(8)
o.o8(8)

12
13
14 0.08 (8)

&14

79.74
7.37
4.76
3.74
2.30
1.12
0.45
0.10
0.20
0.08

62.5 (1.8)
e.v(1.9)
4.as(sa)
1.44(19)
0.65(7)
0.21(6)
0.21(15)

0.07(6)
0.04
0.02
0.02 0.10(10)
0.07

59.86
11.09
4.61
1.79
0.68
0.24
0.05
0.10
0.04
0.02
0.05

ss.5(s.s)
6.07 (70)
1.98 (51)
0.55 (3)
0.12(4)
0.02 (2)

) o.o5(5)

39.08
5.59
1.52
0.50
0.16
0.03
0.06
0.02

0.03

12.4
1.67
0.45
0.13
0.02
0.05
0.02

Experimental data from Ref. 5. Resulting X /DI"= —.

mation see captions of Tables I-VI. ) Whenever
possible we used the data on pure elements. The
x-ray intensities often depend on the chemical
or crystalline form of the target. The differen-
ces in x-ray intensities between various forms
of the same element are, however, typically only
1-2 standard deviations and were not considered
here.

The following standard procedure has been
adopted.

(a) The cascade calculation began at n = 17 where
the electron L shell is open for Auger dos=1 tran-
sition for all considered atoms. The effect of

electron M shell is always small and was not in-
cluded in the calculation.

(b) The initial I distribution was characterized
by the two-parameter formula

P(l) =—+ b[l — (n —1)]
n

+ c[l ——,
'

(n —1)(2n —1)],

where b and c are adjustable parameters and n
is the initial main quantum number. More physi-
cally meaningful parameters are the first and
second moments of P(l), namely,

TABLE IV. Intensities of muonic x rays in P per 100 stopped muons. Calculated for nfgjt= 17, P($)= (1.035 + 0.54$ + 0.006/) x 1Q 2, r~= Q.17 eV.

n 1
Expt. ~ Calc.

n 2
Expt. ~ Calc.

n 3
Expt. Calc.

n 4
Calc.

2
3
4
5
6
7
8
9

10
11
12
13
14

&14

75.2(1.9)
7.25 (19)
4.04(11)
3.85 (11)
2.74 (8)
1.49 (5)
0.44(5)

79.16
7.29
4.15
3.73
2.71
1.46
0.63
0.14
0.32
0.14
0.06
0.03
0.04
0.12

54.5 (3.3)
10.81(31)
4.67(23)'
2.62(1o)
1.20 (6)
0.30 (5)

57.56
10.99
5.48
2.53
1.03
0.38
0.08
0.18
0.07
0.03
0.02
0.02
0.06

40.96
7.07
2.20
0.76
0.26
0.05
0.12
0.05
0.02
0.01
0.01
0.04

15.23
2.36
0.67
0.21
0.04
0.09
0.03
0.01
0.01
0.01
0.03

Experimental data of Ref. 12 for red phosphorus. Errors for transitions originating in
n= 7 and 8 'adjusted. Resulting X2/DE= ~&~.
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TABLE V. Intensities of muonic x rays in S per 100 stopped muons. Calculated for n~«
= 17, P(l) = (1.53 + 0.257l + 0.026P) x 10+, ~&=0.22 eV.

n 1
Exit. ~ Calc.

n 2
Expt. Calc.

s ~3
Expt. Calc .

n 4
Calc .

2
3
4
5
6
7
8
9

10
11
12
13
14

&14

80.7(1.0)
6.86(20)
3.31(16)
3.31(16)
2.58 (16)
1.45(12)
0.62(6)
0 .33(6)
0 .30(7)

)0.50(7)

80.74
6.78
3.46
3.20
2.54
1.51
0.70
0.17
0.38
0.17
0.08
0.04
0.05
0.16

60 .01
10.31
5 .14
2 .53
1.09
0 .43
0.10
0 .22
0 .09
0 .04
0 .02
0 .02
0 .08

44.20
7.38
2 .32
0 .82
0.29
0 .06
0.14
0 .06
0 .02
0.01
0 .02
0 .05

17.68
2.60
0 .73
0.23
0.05
0.10
0.04
0 .02
0.01
0.01
0.03

~ Experimental data from Ref. 13 for N@S. Normalized for 100% of Lyman series . Result-
i~ X~/'DE= ~2

l = QP(l)-l = k(n —1) +~6(n —1)n(n+ 1)[b+ (n —1)c],

l = QP(l }l'

=+(n —1)(2n —1)

(2)

++(n —1)n[(n' —1}b++(2n —1}(8n'—Sn —11)c].
(2)

Note that for the .statistical distr ibution one has
c=0 and b=2/n'. We have determined the best-

fit values of b and c, respectively, l and l (see
Fig. 1). The two-parameter formula (1) gives
better )(2/DF than the often used single-parameter
modified statistical distribution.

(c) The refilling of the electron K shell was
characterized by the K-electron refilling width
I'». The formalism of treatment of the K-electron
ref illing has been de scribed in Ref. 15. The neg-
lect of possible variation in F~ during the cascade
is justified, because the K-electron emission is
dominant only dur ing a relatively short and well-
defined stage of the cascade. The width F~ is

TABLE VI. Intensities of muonic x rays in Cl per 100 stopped muons . Calculated for nj
= 17, P(l) = (0.702 + 0.085l + 0.0158) x 10+, ~+= 0.4 eV.

n 1
Expt. ~ Cale .

s 2
Expt. ' Cale.

n 3
Expt. Calc .

n 4
Calc .

2
3
4
5
6
7
8

10
11
12
13
14

)14

85.8(1~ 0)
6.27 (26)
2.66 (17)
2 .40 (17)
1.97(17)
0.86 (17)

85.20
6.13
2.67
2.26
1.70
0.95
0.42
0.11
0.22
0.11
0.03
0.04
0.04
0.12

67.6 (1.7)
10.1(1.5)
5.13(74)
1.76(27)
0.61(14)

66 .43
10.05
4.57
2 .08
0.82
0 .30
0 .07
0.14
0 .07
0 .02
0 .02
0 .02
0.06

50.38
7.66
2.17
0.68
0.22
0.05
0.10
0.05
0.01
0.01
0.01
0 .04

20 .76
2 .67
0 .66
0 .20
0 .04
0 .08
0 .04
0 .01
0 .01
0.01
0 .03

~ Experimental data from Ref. 14 for CaC1 Normalized to 100%of Lyman series and using
Ln = Xn~~&~(1+ L&/Lu). Resulting Xt/DF= t—'~.
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Z

FIG. 1. Cascade characteristics of various atoms.
The quantity l is denoted by closed circles connected by
the solid line; (l ) - is denoted by open circles con-
nected by the dashed line. The le@ scale is used for
these quantities. ~~ is denoted by crosses and connec-
ted by dotMashed line; the right scale is used. The l
and (l ) for statistical distribution are also shown for
comparison.

restricted to the interval between zero for a fully
ionized atom in a vacuum and its value of a neu-
tral atom. This I'~ """could be deduced from the
calculated radiative emission rates and from
fluorescence yields or~,

paeutral p /&E mt' (4)

For the considered atoms I"~'"""raises gradually
from 0.25 eV for Na to 0. 60 eV for Cl. The re-
sulting best-fit I'~ values, shown in Fig. 1, are
smaller than I'~ """,suggesting depletion of the
electron L shell. Nevertheless, the best fit I'~
values correspond to the refilling rate which is
fast enough that about five Auger E'-electron tran-
sitions are possible during the cascade.

(d} To describe the L-electron depletion and
refilling we chose a single parameter for all con-
sidered atoms, the effective number of L elec-
trons, pop(L) =0.3. This means that all L-elec-
tron emission rates were multiplied by a single
reduction factor 0.3. Otherwise the number of
L electrons was left constant during the cascade.
The x-ray intensities do not depend very sensitive-
ly on this number which is determined to about
30% accuracy. The value 0.3 is near the mini-

mum of g' in all cases.
Our choice of parametrization of the L-shell

effects is partially based on practical considera-
tions, that is, reduction of the number of free
parameters and convenience of the lengthy com-
puter calculations. Formally it is not completely
satisfactory, but a better treatment is impossible
until the electron 2s and 2P shells are considered
separately. The 2s and 2p electrons are lumped
together in the cascade programs. ' However,
the 2g electrons are fast refilled in neutral atoms
and dominate the cascade for 13&n& 10. On the
other hand, the 2p electrons are slowly refilled
in neutral atoms and are depleted in two stages,
first early in the cascade for n & 13 and then as a
source of K-electron depletion for n& 10. Our
choice of parametrization is a compromise re-
flecting most simply the overall effect.

In the numerical calculation we used an auto-
mated version of our computer code. 4 Multipoles

up to quadrupole were included as well as the pene-
tration effect (see discussion in Sec. III}.

The best-fit initial l- distribution and I'~ values
are shown in Tables I-VI together with the cal-
culated and experimental x-ray intensities of the
first four x-ray series. Good overall fit is ob-
tained in Na, Al, and Cl, and somewhat worse
fit is obtained in Mg and S. The resulting y'/DF
is too large in P. The error bars of transitions
originating in n= 7 and 8 of P were adjusted so
that these transitions do not completely dominate
the resulting y'. Let us stress, however, that
in all cases the fitted b, c, and l~ values are
well defined and g' has a minimum.

The Mg and Al cascade was analyzed earlier
in Ref. 5 using the older version of the cascade
program. Despite this difference and other smal-
ler variations in approach the overall conclusions
of both analyses agree quite well.

The Z dependence of the resulting parameters
is summarized in Fig. 1. The I'~ value is in-
creasing with Z faster than the I'~ """;the cor-
responding reduction decreases from 4 in Na to
1.5 in Cl. Such a tendency is reasonable and re-
flects the increasing number of electrons avail-
able for refilling.

The initial l distributions are the most interest-
ing lessons of the present analyses. It is im-
portant to note that their first and second mo-
ments differ by only -10% from the corresponding
values for the statistical I distribution (Fig. I).
These relatively small deviations are certainly
within limits of the classical approach. On the
other hand one has to remember that the fitting
procedure is directly sensitive to only small l
values, because only the Lyman and Balmer ser-
ies are usually experimentally known. The full
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initial I distribution thus depends on our (sensible)
assumption of smoothness and on our parametriza-
tion [Eq. (I)].

The second interesting feature of these l distri-
butions is their u-shaped Z dependence. The l
distribution near closed shells, in Na and Cl, is
steeper than the statistical one, while in the mid-
dle, for phosphorus, it is flatter. Our more com-
plete analysis thus confirms the trend noted ear-
lier in Refs. 8-10 and elsewhere. There is no

theoretical explanation of this effect available at
the present time. It would be interesting to see
whether muonic Si follows the overall trend shown

in Fig. 1.
The population of the electron K shell during the

various stages of the cascade is illustrated in Fig.
2. The dip at n= 5-8, where transitions proceed
mostly by the K-electron emission, is clearly
visible.

The K-electron vacancies affect not only the
x-ray intensities but, via electron screening, the
x-ray energies as mell. The electron screening
of the 4f-3d transition in muonic Si has recently
been determined" as having only 0.47+0.11 of its
calculated neutral atom value. Our calculation
(average of P and Al) predicts IC population -0.58

in agreement with the experiment. Note that Fig.
2 shows the number of K electrons present when

muon reaches the n, l state, while the mentioned

experiment measures a somewhat larger number
of K electrons present during the subsequent tran-

2.0—

sition.
To visualize the development of the cascade we

show in Fig. 3 the population of various selected
states in muonic aluminum. The curve P„,de-
scribes the total population of all states with the
same principal quantum number n. As noted
earlier the cascade consists of about 11 quantal

jumps, giving hn-1. 5 per step. The average

Pt t is therefore -0.75.
In this context one may ask how much our assump-

tion P„, (n, ) = 1 affects the resulting cascade. Our
program allows distribution of the initial popula-
tion over several n values. We have verified
that the x-ray intensities vary by less than 2'%

when the muons are evenly distributed among
n=17, 16 or n=17, 16, 15 instead of being re-
stricted to n=17. The l-distribution shapes mere
identical in all, these cases. Thus, for the con-
sidered atoms the restriction of the initial pop-
ulation to a single s value is justified.

The other curves in Fig. 3 show the population
of the spherical orbits (I =s —1, P„~) and of the

strongly eccentric p orbits (P„&). The increase
of P„„is caused not only by the decreasing num-
ber of available l states but also by the increasing
steepness of the l distribution with decreasing n.
The P,~ population determines the intensity of the
Lyman x-ray series

I(sp - ls) =P„P's/I'. (5)

The branching ratio I's/I' increases from 0.02 at
n = 17 to 0.1 at n = 11, and saturates to -1.0 at
n=6.

I.5-

l, 5-

I 0- Ptot

I,O-

0,5-

0.5—

I

IO I5

IO I5

FlG. 2. Popailation of the electronic 1s state when

muon reaches the spherical n. l =n- 1 state. Notation:
dashed line —Na; solid line —Al; do~ashed line —Cl.

FIG. 3. Cascade characteristics in Al. P~ is the
total population of all states with a given n value; P,~„
is the populati, on of the spherical state l~ n-1; P is
the population of the np state (the quaatitJJ shown is
20 x P+).
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HI. FORMALISM OF THE CASCADE ANALYSIS:
ROLE OF VARIOUS TERMS

- In this section we summarize previously un-
published formulas and discuss the relative im-
portance of various terms contributing to the total
transition rate. Many of the original results were
first obtained by Akylas" and are incorporated in
the cascade program. 4

Throughout we use the hydrogenlike nonrelativis-
tic wave functions for the bound muon, as well as for
the bound and continuum electrons. To simula. te the
screening effectof other electrons we use an effective
charge Z~ (Zz*, Z„*}in the electronic wave functions of
theK(L, M) electrons andof the corresponding con-
tinuum states. The Z* values were chosen in
our numerical calculations in a following way:
First we calculated an analog of the electric-
dipole internal conversion coefficient (ICC) using
our approximate electron wave functions. The
Z* is then chosen in such a way that these ICC
agree with the precise values" over the energy
range of interest. The choice

Z~=0. 975Z, Zi =0.95Z -2.5

X Qg— (6}

Here a is the fine-structure constant, c is the
velocity of light, (d = nE/Pf is the transition fre-
quency, and the radial integral I~ is equal to

fulfills these requirements very well for 10 ~Z
~30. This procedure, which we propose as a
standard in future muonic cascade analyses, as-
sures that the most important Auger rate is treat-
ed correctly.

Several smaller effects are not included in the
cascade program, 4 and consequently in the present
treatment. They include the dynamic electron
screening, described by Leon and Seki, ' relativis-
tic, and nuclear finite-size corrections. All of
them could influence the radiative and Auger tran-
sition rates to some extent. If the experimental
accuracy is further improved, it would be neces-
sary to treat also these, computationally very
complicated effects.

The muonic radiative n1l1 n, l, transition prob-
ability for multipolarity L is equal to

2(L+1)(2L+1)(2l,+1) (l, L I,)'
L[(2L + 1}!!]'

I

( I 222-2 !I -2
( I )+2 +222-$2-22 2n n ) 222+((2 2»I +2

2Z 2 n"2»2n" a" n +n
&1=& 1 &2= l2 1 2 1 2

[(n, + l, )!(n, —l 2
—1)!(n, + I,) ' (n, l, - 1)' ]'—'

(n M, —1}!(I +M +1}!(M, —l2)!(n~ —M2 —1)!(l2+M2+1)!(M2 —l2)!

in Eq. (7}a„ is the muonic Bohr radius

a„=(m, /m „)a,=25 5.92 2

(7)

(9)

(10)

We use here the dimensionless quantity

y = Z~/ka,

instead of the wave number k. The expression (10) is real and the expansion of the hypergeometric func-
tion contains only a finite number of terms for n' ~ 3, L - 3. Furthermore, I'„always reaches its maxi-
mum at threshold (y- ~). In order to treat the second term in Eq. (9) we have to evaluate the coupled

expressed in fm. In practice, only the dipole radiation is usually important, the quadrupole one being
suppressed by a factor -(Za/n}'.

The Auger transition involves the same change in muon quantum numbers plus an ejection of bound elec-
tron from the n', l' state into the continuum state with wave number k and angular momentum L. The cor-
responding probability per electron is given by

(21,+1)(21+1),I, I. I,'!'('I L I)', ,
(0 0 0/l, o 0 Of

The same muonic radial integral I~ [Eq. (7)] enters here. The second term in square brackets above in-
volves coupled integrals and represents the "penetration" of the electron through the muon orbit. The
electronic radial integral I„ in the first term is given by

»cl I' 2 2 '" cc,&„(r((+(—(2)( (»'+r!!(»' —!—!)!2)"''

~ ( 2 "" ' (-I)~ (M'+I+I -L)!F[I+I+iy; M'+I+2 L; 2l+2; 2-in'/(y+in')]
~ !((n' (n' —M' —1)!(1'+M'+1)!(M' —I')!(1/n'+ i/y)" "'~
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radial integral

(12)

Although analytical evaluation of I, is possible, it is impractical because it involves summations of long
fast-oscillating series. On the other hand, one needs to evaluate I, only for reasonably large y values,
that is, near the threshold. It turns out that one could expand in powers of the parameter

(13)

and that the corresponding series converges rapidly. In Refs. 4 and 17 the incomplete integral in Eq. (12}
is rewritten as

ncaa'~' (2L+1)!~I'(I +I Ly)-~ (n'+I')! (n' -I' —l)l ~~' '

(2~ e'+3)a
( 1Pr -~~ ~ (n' j (n' —M ' —1)!(L'+ M' + 1)!(M '- I'}!

x p"'""' ""exp(-p/n' }~
"„— „~&„„„(2~2p)dp.

0
(14)

Here J„(t) are the Bessel functions and p„=r Z*l
a,. The first four expansion coefficients are

(1+1)

In our cascade program' each of the integrals
in Eq. (14) is approximated by a simple function

f(r) = Pr" ""'~exp( era, /a„), (16)

where n and P are fitted parameters, independent
of Z, Z*, and of muon mass. They are chosen in
such a way that the integral in Eq. (14) is close
(within I /~} to its exact value in the important re-
gion 0~r-a JZ. In practice, already the j=0
term accounts for -95/p of the full value. The re-
maining integration over r„ in Eq. (12) is straight-
forward, leading to formulas analogous to and
only slightly more complicated than the integral
I in Eq. (7}. The fitted parameters are close to
their simple estimates, namely, a= m /m„and

2~+'i+»~ (2L, y])
(2L+1+j)!(M'+I+2+j —L)(M'+I+ 3+j+L) '

(17)

A different approach, roughly equivalent to the
assumption j= 0 in Eq. (14) was used by Bingeli"
in his treatment of the monopole transitions.

The "Hufner cascade'" also includes penetra-
tion in the L = 0 monopole case (where the leading
term vanishes, I~,=O). However, that program
not only uses &=0 in Eq. (16) but also uses the
approximation

exp(vy)/ s inhvy —1/ wy,

which is inacceptable for large y. The monopole

rates are, therefore, substantially underestimated
there.

The inclusion of higher multipoles and of pene-
-tration effects makes the Akylas-Vogel cascade
program' lengthier and more cumbersome than
the previous cascade. ' Is it necessary~

There is no doubt that the individual rates are
quite different in the two calculations. The dif-
ferences usually increase with increasing quan-
tum numbers. For transitions with the same n
the differences are generally larger for more ec-
centric orbits. To illustrate how large the dif-
ferences could be we compare in Fig. 4 the rates
for the transitions originating in the (n, I) = (17,2)

20—

io
0)
V)

Q
O l0—

0
1 2

FIG. 4. Auger rates for the n=17, l=2 n', l+&l
transitions in Al. The full histogram shows the sum over
n' of rates calculated without penetrations; the dashed
histogram shows the same quantity calculated including
the penetration effect.
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FIG. 5. Effect of various approximations on the Ly-
man series in Al. The displayed quantity is the x-ray
intensity normalized to the standard value of Table III ~

[Notation: Full curve —normal treatment of monopoles,
dipoles and quadrupoles calculated without penetration.
Dashed curve —normal treatment of monopoles, dipoles
without penetration, no quadrupoles. Dot-dashed
curve —monopole rates reduced by the factor (18), di-
poles without penetration, no quadrupoles. j

state of Al. The rates are plotted in histogram
form as a function of the angular momentum change
4l =E&, —l,„. The penetration effects reduce the
total rate by a factor of 2 in this case. Curiously
enough the total rate with penetration, that is the
rate used in the present cascade calculation, and

the total Hufner cascade rate [dipoles without

penetration+ monopoles reduced by the factor
(18)], differ by only 10%. This is so because
the additional quadrupole and monopole rates in

the new program to a large extent compensate the
decreased dipole rate due to penetration. Similar-
ly, when calculating the average angular momen-
tum change Q l) and the average (dn) the two pro-
grams typically differ by -20/'.

Another way of illustrating the role of various
terms is shown in Fig. 5. Starting with the iden-
tical l distribution and refilling rate we calculate
the intensities of the Lyman series in Al. Ex-
clusion of penetration or of individual multipoles
leads to up to 80% change in intensity. Because
the cascade analysis involves adjustable param-
eters, the two available programs would lead to
differences of these parameters of a comparable
magnitude. This should be compared to the ex-
perimental accuracy, which is better than 5%
for the lower members of the various x-ray ser-
ies. The simpler cascade code' is therefore use-

ful for a preliminary analysis, but the more elab-
orate code4 is needed when one wants to utilize
the real accuracy of the directly experimentally
determined quantities.

IV. CONCLUSIONS

The available. experimental data on muonic x-ray
intensities are analyzed in an unified way for the
third-row elements, Z =11-1V. The:Only excep-
tion is Si where not enough data ar8 pfesently
available.

The analysis uses 3 adjustable parameters fo&

each atom, plus an overall parameter 'describing
the L-shell population. The parameters are
found to vary smoothly with Z. The effective elec-
tron K width is fast increasing with Z. - In Na it is
4 times smaller than the corresponding normal
atom width; this reduction decreases to 1.5 in Cl.

The initial l distributions in all atoms studied
are not very different from the statistical l dis-
tribution. Nevertheless, there is a pronounced
tendency to have larger average angular momen-

tum near closed atomic shells than in the middle

of the shell. This effect was noted earlier' "and

is apparently present even to a larger degree in

pionic and kaonic atoms.
The calculations show that the lengthier, but

more accurate treatment using the Akylas-Vogel
code is necessary when one wants to use the full

accuracy of the experimental data. 'The treat-
ment of electron refilling, including the L shell,
emerges as the most uncertain part of the analy-
sis. Other data, such as measurement of elec-
tron screening, could help to determine the rele-
vant quantities. However, it is clear from the

present analysis that in the light muonic atoms
considered here the inner electron shells are
heavily depleted during various stages of the muon

cascade.
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