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Atomic polarizability in negative-ion photodetachment
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The influence of a strong atomic polarizability on photodetachment processes is isolated. In a model study

of K photodetachment near the 4pl„, 4p», levels of K, the polarizability (a4p 600a 0) is shown to cause

astriking energy dependence of the parameters which determine the cross section. This study extends the
effective range theory of O' Malley, Spruch, and Rosenberg to a broader energy range and to multichannel

systems. An appendix provides a derivation of the polarization potential (and correction terms) starting

from the electron-atom close-coupling equations, showing some new features.

I. INTRODUCTION

The photodetachment cross sections of all the
alkali negative ions (except Fr ) have been ac-
curately measured in recent years. " All of these
measurements have shown autodetaching reson-
ances near the first excited state of the alkali
atom. In Cs, for example, a narrow window-
type resonance of width -2 meV was found just
below each of the two fine-structure levels 6P
'P„»„. The geometry of these negative ions is
simple, consisting of two electrons outside a
spherically symmetric closed-shell core, but
the fine-structure dynamics remains quite com-
plicated by the interplay of electron correlation
and spin-orbit interaction.

Lee first interpreted the Cs results semi-
empirically. ' He expressed the photodetachment
cross section in terms of two dipole matrix ele-
ments D and of their derivatives with respect to
the energy, and in terms of six energy-indepen-
dent elements of a 4 x 4 reaction matrix K, ,. Lee
successfully fitted his ten-parameter expression
to the observed total cross section, obtaining
semiempirical values for the K,, , D„and dD /dE.
(Actually, only nine of the parameters were
determined, since the experimental results were
not measured absolutely. ) While this fitting pro-
cedure successfully reproduced the photodetach-
ment cross section using an energy-independent
reaction matrix, close-coupling calculations by
Moores and Norcross '"' obtained K-matrix ele-
ments which varied rapidly (e.g. , by more than
a factor of two over the 550 cm ' interval between
the atomic fine-structure levels 'P„, „,) This.
apparent discrepancy has been partially clarified
by Norcross and Taylor, ""who found that their
calculated scattering matrix Sc was related to
Lee's fitted scattering matrix S~ by a trans-

formationn

—~ i6S ~i 6
C

where 6 is a diagonal matrix (in ij ), whose ele-
ments vary with energy. The photodetaehment
cross sections are invariant under this trans-
formation of S~, so it is not surprising that Lee
successfully fitted the data with an energy-inde-
pendent reaction matrix.

While the explanation of Norcross and Taylor""
has clarified the mathematical ambiguity of Lee' s
semiempirical approach, it does not provide a
systematic method for dealing with the strong en-
ergy dependence of K. This energy dependence,
which Norcross and Taylor4'" attributed to the
polarizability of the excited atom, particularly
hampered their calculation of cross sections. In
the present paper we isolate the effect of the
atomic polarizability and calculate it separately,
thereby extending the single-channel effective
range theory of O' Malley, Spruch, and Rosen-
berg' (OSR) to multichannel systems. As shown
in the preceding article' [see Eq. (2.27)], a major
portion of the energy dependence does indeed take
the form of a phase shift 6 as in (l.l). But in
general. , the induced energy dependence is more
complicated. An initial study of this problem was
made long ago by O' Malley. ' The generalized
theoretical framework of quantum-defect theory
presented recently' permits us to write the re-
action matrix in terms of two separate groups
of parameters: slowly varying ones representing
the effect of short-range interactions, and rapidly
varying parameters characterizing the long-range
fieM alone. These latter parameters depend only
on the polarizability n, , orbital angular momen-
tum l, , and the energy &,. in each dissociation
channel i. As an application, we then show that
the strong polarizability of the excited alkali
atom (n -600a,' for the potassium 4p state) ac-
counts for the energy dependence of the reaction
matrices calculated by Norcross and Taylor""
(see Figs. 6 —"l in Sec. III).

In the Appendix we show how the long-range
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close- coupling equations approximately reduce
to a set of uncoupled single-channel Schrodinger
equations with a polarization potential c-(,/2. r'
in each channel i. Though this problem has been
studied extensively in the past, we point out some
new features which have emerged from our an-
alysis. Our result for the energy-dependent r
correction term differs from previous deriva-
tions'" in sign and magnitude.

II. QUANTUM-DEFECT PARAMETERS FOR
THE POLARIZATION FIELD

In the absence of quadrupole moments, the po-
larization field i.s the dominant long-range field
for the compound of an electron and a nonpolar
neutral atom (or molecule). Its potential (in a.u. )

is, to a good approximation, proportional to r 4

(Ref. 11), i.e.,

V, (r) =- n/2r', (2.1)

where n is the atomic polarizability of the neutral
atom in a given state (see the Appendix). The
Schrodinger equation of an electron in this field
18

~ + —

~
- — ~ - f (c, I;r) =0, (2.2)(

, d' l(l+1) f' k'

where we have set u= f'. This equation can be
solved analytically using the Mathieu functions.
Here we utilize these functions for mathematical
convenience and defer until the end of this sec-
tion the discussion of the energy dependence of
the quantum-defect theory (QDT) parameters to be
obtained below.

It has been shown by Vogt and Wannier" that
the functions r"'M„[ln[(k/f )"'r]] satisfy Eq. (2.1)
where M„[ln[(k/f )"'r]] are the Mathieu functions
of order +v. These functions were previously
used by OSR' in their effective range theory for an
r ' potential. The functions M„[lnx] themselves
satisfy the equation

d
, —(I+ —,')'s 2kf cosh(24)) M„[0)= 0. (2.4)

It should be noted that Eq. (2.2) has irregular
singularities at x=0 and x=~, the series repre-
sentation of the solutions M„[lnx] is given by

00

M„[lnx]=—,g C„(&)x'""").
n=-~

(2.5)

Here C,(r) =1 as in Ref. 13. The constants K"
normalize M„[lnx] as in the corresponding func-
tions of OSR and are defined by Eq. (17) of Ref.
13. Equation (2.3) has an obvious symmetry under
x-1/x. From Eq. (2.5),

M [ln (1/x)] =m(~)M, [lnx], (2.6)

where m(T) =M.,(0)/M, (0) =K /K'. The para-
meter m =m(T) plays an important role in con-
necting the solutions corresponding to the two
limiting cases x-0 and x-~. The determina-
tion of ~ and C„(r) (-~ & n & ~) is discussed by
Morse and Feshbach. " A method for computing
m as well as 7 and C„(r) is detailed in Ref. 13.
The Hill's determinant ~ is an oscillatory func-
tion of kf. Its amplitude and the spacing between
its zeros increase monotonically as kf increases.
For small values of kf, the parameter A lies be-
tween 0 and 2, and T is real. When kf is large,
the solution to the equation sin'(nr/2) = z/2 almost
always takes the form r =integer i+p(p, rea, l). In
this case m is also complex, and the Mathieu
functions M„[lnx] are complex valued.

Suitable linear combinations of r'f'M„[ln(k/f)"'r]
yield real standing-wave solutions for & &0. Solu-
tions to Eq. (2.1) which are real and analytic func-
tions of the energy, have been given by OSR.
Following the convention of Greene, Fano, and
Strinati (GFS),' we denote the base pair which is
analytic in energy at all finite r by (f', g'). The
base pair {f',g') differs from the solutions (3.12)
and (3.13) in OSR only by a multiplicative con-
stant (-1)'(2f/)T)kf'. This base pair is normal-
ized near r =0 independently of the energy &, and
its Wronskian is W, (fo, g') =2/m. We define the
base pair (t",g') explicitly as follows:

dx*„,+x—„—(l+ —,')'+kf (x'+x *))M„[lcxj=0.
(2.3)

rl/2
f'(c, I; r) = (-1)'m cos6M, [lnx]cos25

1+—slcilM, [loxj), (2.7a)

The radial variable r is related to the scaled
variable x by x=(k/f)kf'r, while r is a function
of l and kf. The parameter r is related to an in-
finite Hill's determinant n, by sin'(wr/2) = a/2, and
plays the role of an indicial-type parameter. A
further change of variables x=e~ reduces Eq. (2.3)
to the standard form of the Mathieu equation:

p/2
g'(q, l; r) = (-1)'m sin6M, [lnx]cos2$

1+—cosi!M,[loxj), (2.7b)

where 6=-,'m(v- l- —,') as in OSR.
The small-r and large-r forms of (f ',g') are
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equivalent to those of OSR. At small ~,

f (/, l; r) „(2/mf)1/ (-1)'r sin(f /r l1-T/2),

(2.8a,)

g'(e, l; r) —(2/1/f )"'(-1)'rcos(fjr l—1//2),

(2.8b)

for both e &0 and &&0. At large r, we have

fP(e, l; r),=„(2/w k) 1/2[ 1,)cos(kr l 1—//2)

+ 1I2 sin(kr —lw/2)], (2.9a)

gP(e, l; r) „„(2jwk)'/2[1)2 cos(kr - l11/2)

+ 1), sin(kr- 11//2)], (2.9b)

when & & 0, and

f '(&, l; r) „= (v/2m)"'

"(Re((1l,—irj2) exp[- i21/(l+ —,')]]e-«~

+ 0&1 + 21)2) exp[i 21/(I —2)]]~"'")

the g,. are all real as they should be.
In quantum-defect theory the relationship be-

tween solutions normalized near r=0 and those
energy normalized at x=~ is expressed in terms
of standard parameters. The energy normalized
solution f is chosen to be proportional to f '. The
other energy normalized solution g oscillates
90' out of phase asymptotically,

f (~, l; r) „„(2/7/k)1/' si1n[kr- iglnr

(2.12a)

f (c, l;r) =(v/m) / 1[s2inP(v, l)D 'f

—cosP(v, l)Df '],
g(e, l;r) =- (v/1/)1/2[cosp(v, l)D f

(2.13a.)

+ q(k, l)],
g (q, l; r), „- —(2/1/k)"' cos[kr i(ln—r

+ r/(k, l)], (2.12b)

where p is i/k for the Coulomb field, but vanishes
otherwise. (Cf. Sec. IID of GFS.) For &&0, these
solutions assume the form

(2.10a)
+ sinP (v, l)Df '], (2.13b)

g'(e, l; r) — (v/21/) 1/2

when «0. Here we have set

(2.10b)

&(Re((qp —iq, ) exp[- i~2(l+ —2')]$e "'"

+ I(n2+ in. ) exp [i2~(l - 2))}e"'"),
rf PW

q)0

hagi

& 8-1/2 -1/2 0
(2.14a)

where the pair (f',f ) is composed of the outgoing
and incoming waves for e &0 and f'(q, l; r)
e'"'"x+ when E & 0. The relationship between
the base pairs (f', g ) and (f,g) are expressed by
the linear transformation

(2.14b)

=2 m+ —+ m-— (2.11a)

n2
=+ —,'(1/m —m) tan2g .

13
(2.lib)

(Note, q, 1),—@2@2=1.) The coefficients of e "'"
are not automatically real due to the occurrence
of the Stokes phenomenon as discussed in the
Appendix of GFS. The real parts of the coeffi-
cients of e "'"were thus taken explicitly for bothf' and g'. The solutions (f',g') oscillate rapidly
near x=0 where t/", is large and negative. The
rapid oscillations nea. r ~=0 have no physical con-
sequences as the r ' potential never holds all
the way down to x=0 in actual problems, just as
for the attractive z ' field discussed in GFS. The
coefficients m+1/m and m —1/m are, respectively
real and purely imaginary" in the range of posi-
tive energies when v equals an integer +ijL(, ; hence,

Our ta.sk is to derive expressions for these QDT
parameters 8, q, A, P, D, and g in terms of m
and r by comparing the asymptotic forms of (f', g')
and (f,g). From Eqs. (2.9), (2.12), and (2.14),
B and g are obtained by inspection. The negative-
energy parameters A and g depend on the choice
of p(v, l) and D. The parameter D scales the co-
efficients of f' and f to comparable magnitudes
so as to minimize the energy dependence of the
phase-shift parameter P(v, l). The parameter
P(v, l) must be constrained to yield the alternating
zeros of the coefficients of f ' and f (in the ex-
pansion of f'), and must further be interpolated
smoothly between them. This then makes the
energy dependence of D smooth. General pro-
cedures for specifying P(v, l) and D were left am-
biguous in GFS. We choose a particular conven-
tion in order to satisfy the above properties of
P(v, l) and D. Here we set
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D !q, —iq, lsinp(v, l)
(q, +iq, ) exp[i-,'~(l —,')—]

(2.16)

Atf jjv= (f/v), where the denominator vanishes,

P(v, l) =(i+1)w

~ arg{(q, —iq, ) exp[- i-,' w(l+ —,') jj, (2.15)

where a suitable choice of the branch is implied
to be made consistently with the signs of Re{(q,
—iq, ) exp[ —isa(l+ 1/2)]j and (q, +iq, ) exp[i~v(l
—1/2)], so that the parameter D below is real
and positive. The first term (l+1)v is the thresh-
old value of P (modulo 2v). Correspondingly, we set

sinP also vanishes; and D is defined by its limit
as f/v approaches (f/v)~. The parameter g(v, l)
is obtained uniquely from Eqs. (2.10), (2.13), and
(2.14) once B, A, q, P, and D are fixed. Thus
we have

A '(v, l) = —,'[(q, +iq, )'exp[iw(l ——,')]D'

+ (Re{(q,—iq, )exp[- ~2'm(l+ —,')]j)'D '],
& '(k, l) = q,'+ q', ,

P(v, l) = (l+ 1)m +arg{(q, —iq, ) exp[- ~~'w(l+ —,')]j

[Threshold value =-(l+ 1)v, modulo 2m j,

q (k, l) = arctan(q, /q, ) ——,'lv,
D' =

! q, —i q, !sinp(v, l)/{(q, +iq, ) exp[ ,'in(l —-—,')jj,
If(k l)(q~q3+ q2q4)

9(& I) =
&

—l~(v, l)(D'(q, +iq. )(q. +iq, ) exp[i&(l- -')j

! +D 'Re{(q, —iq, ) exp[- —,im(l -+)]}Re{(q,-iq, )e px[ ~p'w-(l+ p)]j), «0. (2.17)

These expressions complement Table I of GFS in specifying the QDT parameters for arbitrary long-range
fields. These QDT parameters are graphed in Figs. 1—4. The range of the parameter kf (or f/v) covered
here is sufficient, e.g., for the analyses of low-energy (0-10 eV) elastic scattering of an electron by noble
gases or for studying many of the electron-alkali atom compounds near the first fine-structure threshold
energies. Note that the Mathieu equation involves the parameters k(1/v) and f only in the product form
kf(f/v)

In the small kf(f/v) limit, OSR's series expression [Eqs. (3.6) and (3.10)j for m and ~ yields the QDT
parameters to leading order in kf(f/v) as

f/v, l =0

2D2A-~(& ~3-
m'[(2l+1)!!]'

(2l + 3)'(2l —1)'(2l + 1)~

kf, l=0
v'[(2l +1)!!]4

(2l+3) (2l- 1)'(2l+1)~

v/2 —wkf/3, l = 0
(2.18)

and D' =!(i+1)w-P! approaches zero at least
as rapidly as (f/v)' for l = 0 and much more rapidly
for l ~ 1. The energy dependence of A and D near
threshold is given here only for the product D'/A,
as they appear only in this combination in our
applications. The behavior of g(e, l) near thresh-
old is independent of the choice of P(v, l).

Delves" has shown that the threshold behavior
of the phase shift j.n the presence of a long-range
field V„=-f'„/2r', is

q (k, l)= &

! -5kf/3v-v/2, l=l

v(kf)'
(2l+3)(2l+1)(2l- 1)

e
'"" (no 2l+3)

cx q)0.
e"' ' (n ~2l+3)

(2.19)

lo1 &~0

( —v(1 —kf)/3, l =0, e&0

v/f, l=0, e& 0

(2l+3)(2l+1)(2l- 1)
7' t

One can show that this agrees with our present
results.

General behaviors of the QDT parameters we
have obtained can be understood by a WEB-type
consideration. Our choice of q(k, l) and P(v, l)
corresponds to setting the phase integral at
small ~,
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FIG. 1. Amplitude parameters versus reduced energy
parameter for l = 0 and 1: (a) A (v, l) below threshold;
(b) reciprocal of amplitude B (k, l) above threshold.
Note convergence to unity away from threshold, more
rapidly for l =0.

5 10 15 20

(a. u, )
Phase shifts versus energy for l = 0 and 1.

(a) Negative energy phase P(v, l). (b) Positive energy,
noncentrifugal part of phase g (k, l) + 2lx.

+ —,'lm; )~,- (f/r —le/2) + fv, (2.20)

phase shift q(k, f)+-,'lm. j The scaling parameter
D steadily rises as f/v increases. Some useful
values of the quantum-defect parameters are
given in Tables I and II for l = 0.

for both & & 0 and & &0. The rapid variation of
the amplitudes of B and g in the region of small
kf arises from the penetration of the effective
centrifugal barier (l+ ,')'/r' At l—arge k.f instead,
B approaches unity and g vanishes.

Analogous comments apply to A and g below
threshold. Note, however, the convergence of
g to -w/3 for l =0 as e -0' while it diverges as
& -0 . For higher angular momenta g diverges
as 1/e at e =0. The phase shifts P and q both de-
crease far away from threshold as expected.
[Figure S(b) shows the noncentrifugal part of the

D
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FIG. 2. Amplitude scaling parameter D(v, l)(«0) ver-
sus energy parameter f/v.

FIG. 4. Mixing parameter g(&, l) versus energy.
(a) Negative energy; (b) positive energy. Arctan (g) is
shown because g diverges near threshold except for l = 0
and positive energy.
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TABI E I. Values of quantum-defect parameters for
$ =0. Negative energies 5&&10 2&f/v ~5.

A
(10&))

D
(10&))

5 (-2) 1.876 (-1)
1(-1) 3.355 (-1)
2 (-1) 5.438 (-1)
3 (-1} 6.761 (-1)
4 (-1) 7.632 (-1)
5 (-1) 8.227 (-1}
6 (-1) 8.645 (-1)
7 (-1) 8.948 (-1)
8 (-1} 9.171 (-1)
9 (-1} 9.339 (-1)
1 (o) 9.4es (-1)
2 (0) 9.914 (-1)
3 (0) 9.981 (-1)
4 (O) 9.995 (-1)
5 (0) 9.999 (-1)

1—1.503 (-3)
1—5.43S (—3)
1-1.804 (-2)
1-3.428 (-2)
1-5.233 (-2)
1—7.116 (-2)
1—9.024 (-2)

8.907 (-1}
s.v20 (-1)
8.53e (-1)
8.356 {-1)
e.vsv (-1)
5.548 (-1)
4.51V (-1)
3.623 (-1)

1.884 (1)
8.829 (0)
3.884 (0)
2.299 (0)
1.546 (0)
1.119 (0)
8.508 (-1}
6.695 (-1)
5.4ov (-1}
4.456 (-1}
3.V34 (-1)
1.041 (-1)
4.369 (-2)
2.1S2 (-2)
1.2O2 (-2}

7.237 (-2)
1.447 (-1)
2.896 (-1}
4.346 (-1}
5.799 (-1)
v.25e (-1)
8.718 (-1)
1.019 (0)
1.166 (0}
1.314 (0)
1.463 (o)
3.022 (0)
4.vee (o)
6.781 (0)
9.143 (O}

TABLE II. Positive energies 5 &&10 ~ kf ~ 5.

kf

5 (-2)
1 (-1)
2 (-1)
3 (-1)
4 (-1)
5 (-1)
6 (-1)
7 (-1)
s {-1)
9 (-1)
1 (o)
2 (o)
3 (0)
4 (o)
5 (o)

2.O14 (1)
1.O21 (1)
5.285 (0)
3.ees (o)
2.svo (o)
2.39v (o)
2.086 {o)
1.sev (o)
1.vo5 (o)
1.5s1 (o)
1.484 (0)
1.083 (0)
S.880 (-1)
9.629 (-1}
S.eos (-1)

4.840 (-1)
4.e91 (-1)
4.416 (-1)
4.163 (-1)
3.927 (-1)
3.vo4 (-1)
3.491 (-1)
3.2sv (-1)
3.O91 (-1)
2.9O1 (-1)
2.v1v {-1)
1.O94 (-1)

-2.91e (-2)
—. 1.536 (-1)
-2.680 (-1)

-9.616 (-1)
-8.959 (-1)
-7.950 (-1)
-v.1vs (-1)
-6.552 (-1}
-6.026 (-1)
-5.573 (-1)
-5.175 (-1)
-4.822 (-1}
-4.5O5 {-1)
-4.218 (-1)
-2.23O (-1)
-1.3ov (-1)
-v.osv (-2)
-3.499 (-2)

III. APPLICATION TO K PHOTODETACHMENT

We have seen how Norcross and Taylor'"" cal-
culated a reaction matrix and a dipole matrix for
the photodetached P states of K and found them to
be strongly energy dependent in a narrow range
near the 4p detachment threshold. In this section
we shall shorn how equivalent results can be ex-
pressed in terms of a reaction matrix and a di-
pole matrix, both energy independent in the same
range, provided the polarizability of K in its 4P
state is taken into account by using the wave func-
tions described in Sec. II.

Stationary-state wave functions of the continuous
spectrum of a multichannel system such as K

can be expressed for large r in the form

0; =~ '& +4,If, (~)&;,—&;,a, (~)] (3 1)

Here Q,. indicates a wave function for the ith chan-
nel of K including its dependence on all variables
except the radial distance of the detached electron,
(f, ,g, )ind.icate a base pair of radial functions
for the detached electron, K, , is a reaction matrix,
and the symbol 8 indicates antisymmetrization
of r with the coordinates of other electrons. In
the most familiar formulation, the f,.(r) functions
are Riccati-Bessel functions normalized per unit

energy and the g,. are of the corresponding Neu-
mann kind. Norcross and Taylor instead renor-
malized these functions to a form energy inde-
pendent at r-0 in order to minimize the energy
dependence of the reaction matrix. Removal of
the residual energy dependence will be achieved
here by replacing the pair (f„g,), for the chan-
nel with the K resiaue in its 4p state, with a base
pair for the polarization field as defined in Eq.
(2.7).

The alternative pair will be distinguished by
adding a "zero-field" index "s"to the Norcross-
Taylor pair (f f,g', ), and a "p.olarization-field"
index "p" to one pair (2.7). We shall instead omit,
for brevity, the index "o"that mould pertain to
all these functions according to the notations of
Sec. II and of GFS. Similarly, we shall label the
K matrix with superscripts z or P, omitting the
label o. The desired relationship between K and
K' is to be obtained by comparing the expansions
(3.1) of g',. and gi, taking into account the relation-
ship between the (f~, gf) and the (f;, g,'. ) pairs. .

In the energy range of interest, near the 4p
threshold, there are only two open P channels
of K, namely 4sep and 4pes. Triplet and singlet
states of K mill be treated separately, as was
done by Norcross and Taylor, ""but both of them
must be studied since they must be combined in
the eventual consideration of spin-orbit coupling.
The calculation of Ref. 4(a) included the additional
closed P channels 4ped, 5scp, and 3d&p bec'ause
they interact with the open channels appreciably.
Here we need to consider these channels explicitly
only for the limited purpose of evaluating the
polarizability of the 4P state of K as described
belom. The short-range contributions of the
coupling with closed channels are energy indepen-
dent on the scale of interest, and hence will be
taken into account implicitly in the process of
fitting the two- channel matrix K semiempirically.
For the same reason it will be sufficient for us
to carry out the transformation from K' to K~,
replacing explicitly the z pair with the p pair for
the 4pes channel only. The polarizability of K in
its 4s state will be embodied in the fitted K~ ma-
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trix. (The 4s polarizability should lead to no
noticeable variation with energy in the range of
interest near the 4p threshold. )

The connection between the p. and z pairs is re-
presented by a matrix 1 as in Eq. (3.1) of Ref.
6,

f'=ref*+r~. g'

g'=r„f'+r„g . (3.2)

gl/2

/-"2g 8 "' -sing cosgP P P

This matrix is calculated by representing both
the p and the z pair in terms of a third base pair
adapted to r —~ and hence independent of polari-
zability, namely, fcoskr, sink2 j for e & 0 and

(exp(r/v), exp(- r/v)) for e & 0, with e = k' = —1/v2

Rydberg units. The transformation to this base
is done again in two steps, by going over first
to an energy-normalized pair and then to the r- ~
pair. The transformation matrix pertaining to
the p pair is given by the reciprocal of the matrix
in Eq. (2.14) for the first step and is obtained
from Eqs. (2.10) and (2.11) for the. second step.
The corresponding matrices for the z pair are
obtained from Table I (8) and 1 (C) of GFS, re-
spectively. Combining these 4 factors, we find

0 ' cosg~ sing~

formula in the present context require some dis-
cussion which is. given in the Appendix.

The final step of obtaining the K' matrix from
E~ utilizes the explicit expression of the wave
functions (3.1) for our system with two open
channels; We label 1 the channel (4sop) and

(f„g,) its single set of base functions. We label
2 the channel (4p&s) and {fg,g22) and (f;,g,') its two
alternative sets of base functions. The explicit
form of the base wave functions (3.1) of the p
type is (omitting 2 ' and 8)

(&if1 Kll~lgi 12~282 ~ ~2f2

—
K21 &if1

—K22&2f2)

Each of these functions must be expressible
as a superposition of the corresponding pair of
wave functions of the z type. Thus, we write

Alfl —Ki1 &lgl —K12&a2

= f-(4'if 1 Kll—&lg 1
—K'f2&2g2)

+M (Q2f;—K21lt 1 gl K22$2 g2),
(3.5)

4 2f2 K21~1gl K22~2g2

=&(0 f -K' 4' g, -K;,4.g:)
+ Q(4 2f2 K21~1gl K22~2g2) '

X
cosg sing gl/2 0

-sing cosg, g»l/2 g g-l/2
g g g

at positive energies e & 0 and

Al/2 0 1 cospp 1
P

A "2g A '~2 -sinpg

sin p+2'

COSP+2

(3.3a)

Substituting the expressions (3.2) on the left-hand
side, we obtain two linear relations involving the
four independent functions p,f„p,g„p2f;, and

$2g2g. The coefficients of each of these functions
must be equal on the two sides of each Eq. (3.5);
this yields eight inhomogeneous equations in L,
M, P, Q, K„lfK„;K„adnK;, . This system
can be solved directly or more generally by the
matrix algebra reformulation given in the pre-
ceding paper'.

cosp j7,' sinp, D,'

-sinP, D, cosp, D,

pl/2

g-l/2 g L M 1 M 1 -Kl2r ~ (3.6a)

(3.3b)
P Q o Q 0 r„-z~r„

)D„„i'
gg tt 4p

(3,4)

where n indicates one of the even-parity levels
of K, i.e., 4s, Sd, 5s, and implies summation
over magnetic quantum numbers m, associated
with n. The derivation and the evaluation of this

at negative energies e &0. The QDT parameters
for the zero field are tabulated in GFS (Table 1).

The parameters A, B2, g2, p, q, and D
these expressions are functions of the polariz-
ability o. described by (2.17) and earlier equations
of Sec. II. The value of o. itself has been calcu-
lated by the familiar- looking formula

and

Kf,q+SP„K2„r„
E' »- x~,21 K~2r —r~ (3.6b)

The matrix (3.6a) will prove useful later in
transforming the dipole matrix from the zero-
field representation to the polarization-field re-
presentation and vice versa.

The relationship thus established between the
matrices K' and R, whose coefficients depend on
the energy through the elements of the matrix l",
was utilized in the following way. At the energy
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E«, -5 && 10 ' By above the 4P threshoM, the matrix
E' was given the values calculated by Norcross and

Taylor, '"' and the matrix K~ was calculated from
it:

19.31 -5.28
5.28 0.376

90.11 0.652
O. 652 O. 1SO

At the other energies shown in Fig. 1, E~ was giv-
en the same values as at E«„K'was then calcu-
lated and compared with the Norcross-Taylor
matrix in terms of the alternative parameters,
namely, the mixing angle 8 and two eigenphase
shifts p., and p., which are related to the matrix
E' by the following expressions:

g O

O

—60

O

0

e(me V)
60

= tan 'f(K' +K;,)/2
77 iLt 2 ~

I (K;, K;,)'/4+K;~;, ]"'J,
8 = tan-'[2K»/(K;2 —K;,)]/2, (3.7)

—60 0

e(m, eV)
60

cos9 sin9

-sine cos9

where U diagonalizes the K matrix as in Eq. (2.6)
of Ref. 6.

Figure 5(a) shows a weak asymmetric cusp for
S =0 near threshold, indicating the opening of the
channel 4p&s. Figure 5(b) shows a sharply avoided
crossing for S =1 at & = 2.7 meV. The origin of the
cusp is traced to the nonanalyticity of g through
the substitution of small kf(f/t/) expansions. We
have

7/f"/'e/3

'zf '/2~/3
I'=

&

f-~/ 2

and consequently,

vf 3/2gl/2/3

fi/2 '
&~0

0(e2) 3

(s.8)

FIG. 5. Comparison of the analytically fitted ( )
and numerical I.-——Ref. 4(a)l eigenphases. (a) S = 0;
(b) S=1. Note cusp at threshold for S=o and expanded
scale of p~ for S=1.

(K/P ~f 3/2/3+f I/2)/(7/f3/2g/3 KP f "1/2) g p 0

-f/K~» e & 0.
(s.e)

Thus, lim, „dK;2/d& =~ while bm, , dK»/dk =0.
A cusp is missing in Fig. 5(b) for S =1 due to the
occurrence of the avoided crossing near threshold.
The mixing of the singlet states is large but the
triplet states remain almost decoupled. Notice
the step in 9 for S=i near threshold where the
eigenphases have the avoided crossing.

Analogously, we reproduced the energy of the
dipole matrix of Norcross and Taylor from an
energy-independent matrix utilizing the transform-
ation (3.6a). For example, the dipole matrix ele-
ment in the polarization representation evaluated
between the ground-state wave function p„,„,3 of
the electron-neutral atom compound and the first
dissociation channel wave function g, , is given by

(3.10)

where d is the dipole operator and P is that solu-
tion which asymptotically approaches Q,f, —K~»$3g,
-K2»$2g22. The above can be expressed as a lin-
ear combination of the dipole matrix elements in
the zero-field representation by substituting ex-
pressions (3.5) into Eq. (3.10). We then have

(3.11a)

where gf and r/r2 are the corresponding zero-field
solutions which asymptotically approach Q,f,
-Kf~l&Z& —K)24'2Z2 and 4'g2 —K2&4'2Zx —K' 4 a'2,
respectively. Similarly, we express D, in terms
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I I I

—60 0

e(me V)
60

FIG. 6. Comparison of analytical ( ) and numerical
[-—-, Ref. 4{a)]values for the angle 9 representing the
mixing of (4sep) and (4peg) channels for S=0, 1. The
sharp step in the S = 1 curve derives from the avoided
crossing of phase shifts in Fig. 1(b). Note the small
cusp for S= 0 at threshold.

of D~ and D2 as

D2=PD;+ QD2.

Thus ~

M D»
1

Qi

or equivalently,

~D~ ' 1 ~'Q -M' D,

,Df, 0 1 ~ ~D2J

(3.11b)

(3.12a)

(3.12b)

The dipole matrix above is related to the dipole
matrix in the eigenchannel representation given
in Sec. II of the preceding paper' by

D~ = PD, cosvp, , U, , (3.13)

The above results (3.12) establish explicitly the
connection between (Df, D;) and (D„D,) in terms
of the base transformation matrix (3.2). The ener-
gy dependence is thus absorbed into l through M,
Q. This point is illustrated in Fig. 't which was

generated by Etl. (3.12b) using an energy-indepen-
dent dipole matrix D~ fitted to the Norcross-Taylor
matrix'"' at one energy E«, --5 && 10 ' Ry (D, =
-97.15, D, =23.84). Both Df and D,' grow in com-
parable magnitudes away from threshold, reflect-
ing the large mixing of the 4p&s and 4s&p states.
The total and partial cross sections obtained using
the fitted values of p,„jL(,„and 8, and of the dipole
matrix appear identical to the Norcross-Taylor
cross sections, "' though we do not show them
here.

The present results have shown that the energy
dependence of E,&

and D,' calculated by Norcross
and Taylor results from the polarizability of pot-
assium. It is not obvious, however, that the ener-
gy dependence arises only from a phase shift, as
found by Norcross and Taylor, and as implied by
Eq. (1.1). We have determined by direct calcula-
tion that the energy dependence of K,z implied by
5 =q~ in Eq. (1.1) alone, does qualitatively repro-
duce that shown in Figs. 5-7. Still, to reproduce
the energy dependence quantitatively, we have
found it necessary to use the full transformation
given in Eq. (3.3b).
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APPENDIX: DERIVATION OF THE POLARIZATION
POTENTIAL FROM THE CLOSE-COUPLING EQUATIONS

CO

i = 1

0
C)

I

-60 0 60

e(rue V)

p&G. 7. Comparison of the analytically fitted ( )
and numerical I.-.

——,Ref. 4(a)1 dipole matrix elements.
Reciproeals are plotted to avoid a divergence of unnor-
malized data.

It wa~ shown long ago" that the close-coupling
equations for an electron in the field of an atom
reduce as r- ~ to a set of uncoupled radial Schro-
dinger equations with a polarization potential

n."/2x4. Cas-tillejo et al "noted tha.t n" is the
static polarizability of the atomic state associated
with a channel, provided this state has zero or-
bital angular momentum. A lternative derivations
have also been given in the literature""'"'"
which confirm this result and extend it by deriv-
ing correction terms that vary as r~. In the con-
text of the present paper it seemed worthwhile
to present a comprehensive derivation of these
results, spelling out the role of the adiabatic
approximation which had not always been stated
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explicitly, and the dependence of the polarizability
a', t for the p, th channel on this channel's param-
eters. In so doing, we have found two features:

(i) the actual coefficient of the r~ potential de-
pends on the orbital angular momenta of the atom
ly and of the outermost electron /„and in par-
ticular it differs from the static polarizability
n" when both l, c0 and l, c0.

(ii) the r~ term in the interaction has three
contributions; one is adiabatic and results from
the centrifugal potential of the outer electron,
and the others are nonadiabatic and result from
the actual radial motion of the outer electron. "
The net result of item (ii) reduces to the well-
known correction term 6P/2r' in special circum-
stances.

In the close-coupling equations for the radial
wave function M &(r) of the detached photoelectron
in the jth dissociation channel, the potential is
local and off-diagonal at large r ~ r„

, +-,'. .. +,(r)+ QV, ,(r)m, (r)=O.
. d', l,.(l,.+1)

(A 1)

x [W'(r)],.. (A3)

Here the adiabatic channels are labeled by Greek
letters. The potential energy u, (r) vanishes when
r-~, and W„(r) reduces to 6„. in this limit.
(This presumes that no atomic states of opposite
parity are accidentally degenerate as in hydro-
gen. ) Accordingly, the adiabatic p, channels can
be set in one-to-one correspondence with the i
channels to which they converge as r- ~. In the
following, we use both Greek and Roman indices
with the understanding that they coincide at large
r (e.g. , p, = 1 coincides with i = 1 at r = ~).

This transformation of Eq. (Al) gives rigor-
ously2~ '22

(A4)

where

F(r) = W(r)M(r)

[E,+u, (r)]6„„.= g W„(r)

x[1,(l, +1)/2r'6„~E6 , + y ( )]

Here p,.—=E-E& is the energy relative to the
atomic state of energy E, associated with the jth
channel. This local form of the equations of mo-
tion does not hold at smaller r where nonlocal
exchange terms are important. The real symme-
tric potential matrix is defined by

&;;(r)= (4,((d)
~

-1'
~
4;((d)) (A2)

where V is the electrostatic potential between the
N core electrons and the detached electron, and

(t),(~) is a bound-core wave function f S coupled
to the orbital and spin functions of the outermost
electron with specified values of I and S. The
matrix element in (A2) implies integration over
all degrees of freedom except the radial coor-
dinate r.

We proceed to diagonalize Eg. (Al) adiabatical-
ly at fixed r, thereby reducing the long-range
coupling from r ' to r '." Mathematically this is
accomplished by transforming Eq. (Al) with an

orthogonal matrix W(r):

f (r) = W(r) W&(r) .—

The diagonal matrix p represents the energy rela-
tive to threshold in each channel q, = F.-E„. The
antisymmetric matrix P(r) now contains all of
the residual interchannel coupling.

To lowest significant order in r ', we need to
retain only the dipole couplings in (A2}, given by

b)=).(y,.(re)(i +ra((,. (rd))/r'

=V, ,

Here r~ is the position vector of the kth atomic
electron. At sufficiently large r the V&,(r) are
small compared to the atomic energy level sep-
aration E, —E, , so the diagonaliz. ation (A3) can
be performed perturbatively. " We find

u „(r)= l „(l„+1)/2r' n, /2r4+ P;—/2r'+ O(r '),
1 V,.

r E, —E;+ l„ l„+1)—l, (l, +1) 2r'

I „„(r)=
0, p, =v

(A6)
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where N, (r) = 1+ O(r ) is a normalization factor.
Explicit expressions for n, and P, will be given

below in Eq. (A10). First, however, we note that
the transformation W„(r.) has reduced the off-
diagonal coupling'0 at large y from x ' in Eq. (Al)
to '7 1I1 Eq. (A4). To a good approxlmatlon then»

P(r) can be neglected entirely in the outer region
»d p;/2y' (and all higher terms) can be ignored
in u, (r). These are the only approximations used
in the treatment of Sec. III, and Figs. 5-7 indicate
that the errors involved are negligible. The valid-
ity of ignoring P; and higher-order terms in n, (~)
.is investigated quantitatively in Fig. 8, which
compares the exactly diagonalized potential u, (r)
(for the 4p&s channel of K ) with the polarizability
potential alone. The radius of the inner region is
roughly &0=30 a.u. for this channel. At that radi-
us we estimate the exchange energy to be 2% of
the polarization energy. The relative error in-
curred in Fig. 8 by using only the first two terms
in u, (r) is then roughly 10% at r= y„and is de-
caying rapidly as z '.

Next we turn to items (i) and (ii) above, in suc-
cession. First, the dependence of the effective
polarizability a, on the angular momentum of the
outer electron is now clear; o., depends through
Eq. (A5) on V, , , given for a. two-electron sys-
tem'4 "

V„=((n,.I„&,.I„.)L~
I &, cos e„ I (~,.I„.~,.~„)L~)

are the principal and orbital quantum numbers of
the atomic valence electron, respectively. Sub-
scripts 1 and 2 refer, in the following, to the
valence and detached electrons, respectively. The
reduced matrix element is evaluated in Eq. (3.14)
of Ref. 25 and depends explicitly on (I,I,') and on

In the usual expression for the static polar-
izability of the state (nl, ), this matrix element is
replaced by its single factor (I,!!cos e,!!I,') which
obviously depends neither on (I,l,') nor on L. In
special cases (e.g. , when l, =0), the effective
polarizability n„ in Eq. (A10) reduces to the stat-
ic polarizability by virtue of the properties of
3-j and 6-j symbols. " An example of this dif-
ference among polarizabilities is provided by our
estimates using- Bates-Damgaard radial integrals"
for K:

n ~,„=690 a.u.

Second, we discuss item (ii) regarding the co-
efficient of the y ' long-range potential, without
considering the quadrupole interaction in (A2).
The "post-adiabatic" theory of Klar and Fano" "
derives the nonadiabatic effect of P(r) on the po-
tential energy

u'„"(~)= u, (r) ——,'(P')„
1 ((I„.I„.)1.!!cos e„!!(I„.I„.)1-)R"„»P»

(A8)

( ] ) L+!2»+ly» (I„.II cos e, ll &„)
E„- 3„- 1

~

«r 'IP..(~) I'&'-IE.(~) -&.(~)
I

Using the per
turbation expansion for u„(r) and P„„(z)in (A6),
we obtain finally

&& (I„llcos e,ll l2,.)R„"»I»'.

Here R"„»',» is the radial matrix element and (n, I, )

I
»» (I »»

+ 1)

C3
C3

(.O

where

) on
Lf)

l

TABLE III. Estimates of parameters G.', p', p"', and y
by the Bates-Damgaard method.

»

30 60 90 1;.? 0

FIG. 8. Effective polarizability e(r) versus radius x.
No dependence on the derivatives of W(x) is included.
Note expanded scale of e.

pa
pna

'Y

K (4p&8)

6.00 (2)
i.96 (4)
3.92 (4)
&.78 (6)

Hb-(~p~&)

8.40 (2)
3.24 (4)
6.48 (4)
3.88 (6)

Cs (6p&&)

j..46 (3)
9.73 (4)
X.95 (5)
2.5& (7)
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t V„„I'a„=2 g
vga v

4 ~ I v„„l'
(A10)

t V„„l'

and the summation implies the averaging over the
magnetic quantum number M „.

In special circumstances (e.g. , for an isotropic
atomic state), the sum P'+ P"' reduces to the val-
ue 6P derived previously'7 by virtue of the pro-
perties of 3-j and 6-j symbols and E„=/„+1. It
is clear from Eq. (A8) that the energy-dependent
term in the post-adiabatic theory is necessarily
attractive provided that E- E„&0 and that E„ is
the ground-state energy of the residual atom. Our
result for this term -2(E —E,)y„/2z' differs from
the corresponding quantity in beefs. 9 and 10 by
the factor ——, (i.e. , it differs in sign and magni-
tude). The values of these parameters are es-
timated using the Bates-Damgaard method in
Table III.
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