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Hyperfine structure in muonic helium
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A calculation of the ground-state hyperfine frequency in muonic helium is given. Perturbation theory is applied to
the Schrodinger equation to obtain a series in m, /m . The value obtained is 4462.6 3 MHz, which is consistent

with experiments at the Swiss Institute for Nuclear Research and the Los Alamos Meson Physics Facility. The
theoretical value includes a —46-MHz contribution from excited states of the effective (aIM. ) nucleus.

I. INTRODUCTION

Muonic helium, an atom consisting of an a
particle, a negativemuon, and an electron, was
first formed and detected by Souder et al. in 1975.'
Recent experiments at the Swiss Institute for Nu-
clear Research SIN' and the Los Alamos Meson
Physics Facility LAMPF' have measured the
ground-state hyperfine splitting in this system.
Various theoretical studies of muonic helium have
been made. '~ In this paper, we apply perturbation
theory in a simple nonrelativistic calculation of
the hyperfine frequency. This approach can read-
ily be generalized to a relativistic calculation,
and may eventually give a precise value for the
frequency. Qur calculation is similar to pertur-
bation theory studies of hyperfine structure made
by Low for deuterium, ' and by Drell and Sullivan
for hydrogen. "

Because the a particle and the muon are much
more massive than the electron, muonic helium
may be regarded as a one-electron atom with an
effective nucleus consisting of an (up, )' atom.
The hyperfine splitting is due to the spin-spin
interaction of the muon and electron. In this
picture, corrections to hyperfine structure as-
sociated with the size of the effective nucleus are
of relative order (nuclear size}/(Bohr radius),
analogous to the well-known nuclear size correc-
tions in deuterium, ""in hydrogen, ""and in
heavy atoms. "" However, in muonic helium
there is a larger correction from excited states
of the effective nucleus, which is not surprising
since the (np, )' system is weakly bound.

II. CALCULATION

where x„and x, are the position vectors of the
muon and electron relative to the o. particle, and
M„=m„m /(m„+m ) and M, =m, m /(m, +m ) are
the reduced masses of the muon and electron with
respect to the a particle. The mass polarization
term (-1/m )V„~ V, is negligible to the accuracy
considered here. The hyperfine shift of the ground
state is given by the expectation value of the con-
tact term of the spin-spin interaction

5H = —
/we

' p 5 (x„—x ) (2)

obtained in the nonrelativistic reduction of the
Breit equation. In (2), p„= -g„(m,/m„)pg„
and p, = -g,p,s, are the magnetic moment vectors
of the muon and electron. In view of the factoriza-
tion of the nonrelativistic wave function into co-
ordinate space and spin parts, the difference be-
tween the hyperfine shifts of the ground-state
levels with total angular momentum 1 and 0 is
proportional to the difference (s, ~ s,},—(s „~s,),

Hence, we have

d, v = -,
' vg~, (m, /m„)p', (5(x„-x,))

= —', s(n/m„m, )(5(x, -x )) (3)

for the magnitude of the hyperfine splitting, where
the expectation value is evaluated with just the
coordinate space portion of the wave function which
is the lowest energy eigenfunction for Eq. (1}.

To evaluate the expectation value in (3}, we
apply perturbation theory to the ground-state
wave function. The "pseudonucleus" picture sug-
gests a natural division of the Hamiltonian into
a zero-order part and a perturbation, H =, H, +5V,
in which

The structure of muonic helium is described,
to a good approximation, by the nonrelativistic
Schrodinger equation (units in which c =5=1 are
employed here)

1 1, 2(y 2e a
V~ — V~ ————+ $(x„,XN)( 2M„" 2M ' x„x x„,

= EtI (x„,x,), (1)

and

1, 1, 2e aHo=- +2

0 9
5V(x„,x,) =

xl.e X8

(4)

(5)
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The zero-order wave function for the ground state
is the product of normalized 1s hydrogenic wave
functions

~0 3& dx~ dX $0 X~ X 6 X~-X tt}0 X Xm pm'

$0(X~ q XN) = Q~o(X~)$~0(Xg)

=(1/v}(2n M„M,)s e~~~~*ge~Ne*e

(aM, )'(1 +M,/2M„)-'

mmmm

= nv~(1 +M,/2M„) (7)
(6)

which has the sum of the hydrogenic 1s state ener-
gies as its energy E, =E„,+E„. This wave func-
tion gives the zero-order hyperfine splitting

where &v~ is the Fermi value.
The first-order correction 4v, to the hyperfine

splitting, due to the first-order correction to the
wave function, is

+pl 2' deaf.~ dX $0 X~y Xg 6 X~ -X~ gl X~qX~m pm 6}

tg, (%)|t,y(xs)4la(%)t(/fe(xx) 6Vg g )g (@)y (x )E~+E 0 Ef,
(6)

it is convenient to divide the sum over muon states in (8) into two parts av, =d vf+nI/„where &P is the
contribution to &v, from the term with n =0, i.e., where the intermediate muon state is the 1s state. For
this part, we have

ave =~a' dx, dx, g, (x,) ~g„,(x,) ~' g '" '" ' V„(x )g„(x,)
nK eo en

(9)

with

V„(e) =fdj„g (x„)5V(x„,x)g„,(x„)= —(a/e)(1 +2aM„e)e (10)

Only s states contribute to the sum over n in (9), so we may replace the sum by the s state reduced Green's
function for the electron"

' e "e'*~~2'~ —In(2aM, x&)+j-y -nM, (x, +x ) +

where x&=max(x„x, ), x& =min(x„x, ), and y=0. 5772. . . is Euler's constant. Evaluation of Eq. (9), with the
aid of (10) and (11), yields

«, = &~„[I'~~./M. +(M,/M. )' ln(M„/M, ) —~7(M, /M„)'+0(M. /M„)s In(M„/M, )]
The part &v', corresponding to excited muon intermediate states may be written as

AVE = —~~7T dg~ dXjf 0 g $~&0 X

(12)

xP $„„(x)g„(x,)G,(%„„xE„,+E„E„„) -|}1„(x,}g„(x,}, (13)

where

G (g g ) —~PeeePW)faa( 1)
e sy ly+ ~ E,

ff N
(14)

is the electron Coulomb Green's function. In (13), there is no contribution from the term -a/x, in
5V(x„X,) due to the orthogonality of g„„(K,) and f„,(X,) for no 0. To evaluate (13), we make two approxima-
tions. First, we replace the electron Coulomb Green's function 6, by the free electron Green's function

M e-ala, -a, l

(16)2~ Ix, -x, I
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in which b =[2M,(E„„E-» E„)]'~, b &0. Second, we replace the electron wave functions by their value
. at the origin $,0(0}. Both replacements correctly reproduce the behavior of the exact electron functions

near the origin. An examination of the corrections to these approximations indicates that they are of order
Avr(M, /M„) In(M„/M, ) or smaller. Preliminary results of a numerical evaluation of 6v,' indicate that
the corrections are numerically small. We thus have

ave = —ave
' dx, dx, dx, g'„,(X,} 4„„(X,)g'„„(XJ - - 4„,(g) . (16)

Integration over x, yields

' Ix -x, l )x -K, [ b )x3-x I

=4&(1/&-mls-wl+lblw &.I-' cabal+ xal-'+ )" (17)

In view of the exponential falloff of the muon wave functions, the main contribution to (16) in the integration
over x, and z, comes from the region in which x, and x, are of order 1/M„a. The order of magnitudes
IXs-x, i -1/ M„o.'and b-(M,M ) o., suggest that the series in (17) gives a series in increasing powers
of (M,/M„)'~' for &v,'. The leading term b ' gives no contribution because of the orthogonality of the muon
wave functions. In view of the completeness of the muon wave functions, we have

Pg„„(x,)g„„(x,) =5(x, -x, ) g„,(x—,)gf„(x,),
%0

so the second term in (1V) yields

-&v 2aM tg@ g x x -x g x =-&v M (18)

(19)

in (16). In the third term in the series in (1V), we neglect E„compared to E„„-E„,in 5, and again be-
cause of orthogonality of the wave functions in (16), we may replace (x, -x, ~' by -2x, ~ x,. Hence, in (16)
this term contributes

E„„-E„o x
ff

where we define

(20)

with R„=2a'M„, s„='1/2aM„, the effective Rydberg
and Bohr radius for the muon. For a simple es-
timate of S», we note that the standard sum
rules" S, =S, =3, together with S,~,

~ —,'(S, +S,),
give S,~,

~ 3. A lower bound on S,~, is given by

&E„„-E„.i" 2

S,j, o-min
l

"" "'l ~ p0 —p,
~0 .E R~ j -~0

—3(f)1AE (21)

Hence, . S,~ =2.8 +0.2. The leading contribution to
&v,' from the fourth term in (1V), nominally of
order avr(M, /M„)', vanishes.

HI. CONCLUSION

The leading contributions in the nonrelativistic
formulation are thus

ev = Ev~[1 —3M /M„+ ~S,p (M /M„}3~2] (22)

from (7), (12), (18), and (19). The Fermi value is

I

&v~ =4516.9 MHz based on the constants R„
=3.289842 x 109 MHz, a ' =137.0360, m„/m,
=206.7686, and m, /m, =V294. Evaluation of Eq.
(22) yields &v=4452. 5 MHz. The Fermi term
&v~ corresponds to the hyperfine interaction of
the electron with a point muon charge and mag-
netic-dipole moment at the origin. The correc-
tions to &v~ from &v, and &v'„which account for
the distributed charge and magnetic moment of the
muon in the ground state, including distortion of
the electron wave function, amount to -18 MHz.
The remaining correction, from excited muon
states, is 4v, =-46 MHz. The main correction
to the nonrelativistic result is due to the lowest
order anomalous magnetic moments of the elec-
tron and muon, which when included in g, and g„
shift the hyperfine frequency by b vr(o. /n) =10.5
MHz. Higher -order self-energy and vacuum-po-
larization corrections are roughly approximated
by the hydrogenic value" &v~(ln2 —j)a' =-0.4
MHz. Our estimate of the uncertainty in the value
for the hyperfine splitting due to uncalculated
terms, including terms of order av„(M, /M„)'
x ln(M„/M, ) in the nonrelativistic part, is 3 MHz.
The total result is 4v=4462. 6+3 MHz.
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Qur result for the contribution from the static
distribution of charge and magnetization of the
muon is consistent with earlier work of Qtten, '
which is based on the Bohr-Weisskopf formulation.
Qur total result, including excited muon states,
is in agreement with the result of the experiment
at SIN which measures the hyperfine splitting in
a weak magnetic field: &v =4464.95(6) MHz. ' A
preliminary result of the strong field measure-
ment at LAMPF is &v =4464.99(4) MHz, ' which
agrees with the above values. Both experimental
values assume a hydrogenic pressure shift. Huang
and Hughes have applied a variational calculation
to the nonrelativistic expression for the hyperfine
splitting and obtain for the total splitting Llv

=4465.1(1.0) MHz, ' in agreement with experiment.

Boric' and Huang and Hughes' have calculated ad-
ditional relativistic, radiative, and recoil correc-
tions to the hyperfine structure; however, the
values they obtain are smaller than the current
uncertainty in the nonrelativistic value for the
splitting. A recent calculation by Drachman con-
firms the leading correction in Eq. (22) by an in-
dependent method.
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