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We compute new estimates of energy levels of doubly excited states with two electrons in the same shell, for all

principal quantum numbers N & 5 and angular momentum values 0&L &2N —2 in H and He. We investigate

the structure of these intrashell spectra using a recent "supermultiplet" approach which originates in the O(4)

shell structure of one-electron atoms. We provide new interpretations of the electron correlation underlying the

O(4) states and supermultiplets of two-electron atoms; this accounts qualitatively for approximate separability

of rotationlike and vibrationlike progressions of levels found in the computed spectra. Certain diamond-shaped

patterns of supermultiplet energies are found to contain near degeneracies of levels with cfL = ~ 2; this accounts

in part for level clustering we find in the unresolved spectra. Our investigation of scaling of the apparent rotational

and vibrational parts of the energy with higher N shows consistency with a simple model of the atom which has

electrons on the surface of a spherical shell, with radius R ~'.We investigate the model group theoretically, and

find two different O(4) groups which describe angular electron correlation in limiting cases of large or small

shell radius for each principal quantum number N. A third O(4) group is related to intrashell radiative transitions.

I. INTRODUCTION II. DESCRIPTION OF DOUBLY EXCITED STATES

A previous paper' described a novel supermulti-
plet approach for classifying doubly excited states
of two-electron atoms with both electrons in the
same shell. 'Those intrashell supermultiplets led

to the discovery of very systematic progressions
of apparent ro-vibrational energy levels in shells
N ~ 3 in He. 'The purpose of the present paper is
threefold. First, we have computed first esti-
mates of all higher intrashell double-excitation
levels N ~ 5 for both He and H . A description of
double-excitation shell structure, symmetry clas-
sifications, and wave functions is given in Sec. II.
Second, we give in Sec. III a clear exposition of the

O(4) quantum numbers, wave functions, and gener-
ators underlying the supermultiplets. We also pro-
vide new physical interpretations of generators and

quantum numbers that are related to the ro-vibra-
tional level structure. 'Third, we investigate the

supermultiplet structure of levels in Sec. IV; we

describe near-degeneracies of certain levels, and

scaling of ro-vibrational excitations with higher
principal quantum number. We summarize these
results in Sec. V. One of our goals is to present
this material simply, so that persons previously
unfamiliar with the language of the O(4) group may

learn some of the basics of it here for doubly ex-
cited states. Reference 1 also suggested an altern-
ate, "molecular" approach to the intrashell spec-
trum, involving floppy vibrations and rotations
similar to those of a linear triatomic molecule.
Here we will focus mainly on the group-theoretical
approach. We will give the ro-vibrational inter-
pretation and comparisons with spectra in other
areas of physics and chemistry in a subsequent pa-
per. '

Basic terminology for two-electron atoms is
illustrated with He, which has a closed-shell
ground-state configuration 1sls which renders the
atom chemically inert. Singly excited states lie be-
low the first ionization threshold at 24.6 eV, and

have configurations 1snl with one electron in a
higher shell. This is indicated by the principal
quantum number n, and the orbital angular momen-

tum l. Doubly excited states lie above the first
ionization threshold, and have configurations

si li+ l2 with n„n ~ 2. The double-excitation
regime extends from 2s2s at 57.9 eV, up to the
threshold for double ionization at 79.0 eV. Most of
these states are resonances in the single ioniza-
tion continuum, and are described as quasibound

states which decay by Coulomb autoionization.
Successive ionization thresholds are labeled with

a principal quantum number pf = 1, 2, . . . for bound

levels of the remaining ion: He-He'(N)+e .
Doubly excited states below each of these thres-
holds are labeled with two principal quantum num-

bers N and n, and fall into two types: (i) intrashell
states with configurations n =N, and (ii) intershell
states with configurations n &N. These levels may

be distinguished by their behavior along the iso-
electronic sequence, where in the limit Z -~ the

levels are those of independent electrons in degen-

erate hydrogenic orbitals. Doubly excited states
are also classified with the usual term symbol
' "L,~ for the exact symmetries of the atom:
for SO(3) rotation, S for SU(2) spin, and v for the

parity. s

'The difficulty in classifying doubly excited states
further originates in electron correlation due to the

Coulomb repulsion operator 1/r». This breaks
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the SO(3), XSO(3), symmetry of single configura-
tions from a central-field approximation, and thus
leads to configuration mixing involving different
values of f, and l, . This manifests itself clearly
in configuration-mixed channels of intershell Ryd-
berg series below ionization thresholds N ~ 2.
Similar double-excitation channels in H have a
modified level structure, due to the absence of a
long-range Coulomb attraction for the more-diffuse
electron. Most previous numerical studies of
doubly excited states with the Schrodinger equation
have dealt with the classification of this channel
structure, usually for only one value of L at a
time. 'The supermultiplets of Ref. 1 and the pres-
ent work focus on the intrashell part of the spec-
trum for each shell N. The supermultiplets de-
scribe a very broad range of spectral systematics,
because they take into account all of the values of
L at the same time.

Owing to the open-shell structure of doubly ex-
cited states, the electron correlation for the intra-
shell levels is in some ways similar to that found
in the valence shell of a chemically reactive sys-
tem. The configuration mixings thus relate to what
may be called the "geometry" of intrashell elec-
tron pair correlation for an isolated atom. ' Rigid
geometries play a key role in molecular-structure
theory, where at a simple level of approximation
chemists describe bond angles using a hybridiza-
tion of valence-shell atomic orbitals. Hybridiza-
tion, which means "linear combination of orbitals
with different l", thus breaks the SO(3) symmetry
of one-electron atomic orbitals, and gives new or-
bitals directed towards other atoms for maximum
bonding. This is illustrated by the orbital s+Ap„
which describes the tetrahedral sp' hybridization.
A linear sp hybridization s +p, is perhaps more
familiar to atomic physicists as the Stark-electric-
field mixing of the degenerate N=2 level of H. The
l mixing that occurs in doubly excited states is
analogous, and involves breaking of the one-elec-
tron SO(3) symmetry due to the noncentral field of
1/r~. The resulting configuration mixing allows a
favorable correlation of the two electrons, usually
described with the interelectronic angle 8», sub-
ject of course to conservation of the total angular
momentum of the atom. The notion of a geometry
for the intrashell correlation is important for un-
derstanding the apparent ro-vibrational level
structure we find embedded in the computed spec-
tra.

Our present numerical estimates of doubly ex-
cited states use a modified version of a method for
describing charge distributions for nonclosed-shell
electron correlation in many-electron atoms.
Neglecting spin for the moment, we represent the
open-shell structure of each double-excitation level

+c~(3dFf 'P ), (2.2)

with intrashell mixing coefficients normalized to
unity, g +@~=1.

We note that the function y becomes similar to
close-coupling' wave functions for two-electron
atoms if we use hydrogenic radial functions in the
intrashell basis. Oberoi' used a function similar
to X for low-L states in the N=3 and N=4 shells,
including nonlinear variations of orbitals. Our
present estimates of C~ use a hydrogenic intrashell
basis, and a finite expansion of radial functions in
X in terms of hydrogenic orbirals N&n ~7. Our
linear approximation of C~ is thus similar to earl-
ier hydrogenic configuration interaction for low
N, ' and gives intrashell energies comparable to
Oberoi's, and other configuration interaction in-
cluding additional angular correlation. ' Our cal-
culations are the first ones for all intrashell levels
N(5.

One consequence of a finite linear variational ap-
proximation of C~ is the occurence of intrashell en-
ergy eigenvalues above each double-excitation au-
todetatchment thresho1d in H . Increasing basis
size, or nonlinear variations of orbital exponents
in the radial functions F,(r), would result in a col-

N with a wave function 4'~ which contains two or-
thogonal parts:

(2 l)
chosen so that 4 is normalized to unity. Here 4
describes the near-degeneracy correlation included
in the intrashell mixing of configurations (Nl, Nl ).
The function g represents additional open-shell
correlation described by virtual pair excitations
from configurations in C to other configurations of
the type (Nl", F/'"). E ach pair correlation radial
function F,(r) is chosen orthogonal to the intrashell
radial function R»(r); both of these radial func-
tions are chosen orthogonal to hydrogenic radial
functions R„~(r) for lower shells N' & N in order to
account for continuum stability of autoionizing
states. The intrashell basis includes a finite num-
ber of orbitals 0 & l ~N- 1, and hence a finite num-
ber of configurations in 4. Clebsch-Gordan coup-
ling then gives the allowed values of the angular
momentum for intrashell states: 0 ~ L ~ 2N- 2.
Owing to the finite size of the intrashell basis, the
number of configurations in g is also finite. For
each value of N and L the radial basis F, (r) in-
cludes only the values 0+ l ~N- 1+L. Taking into
account spin, we illustrate the configuration mixing
structure of C~ for the case of 'I' intrashell states
with ¹3:

4~ = ao ( 3s3p P ) + a, ( 3p3d P ) + co ( 3sFp P )

+c, (3pFs'P }+g(3pFd'P'}+c,(3dFp'P )
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lapse of levels to threshold. It is possible, how-

ever, that some of the levels above threshold would

continue to represent resonance states, as illus-
trated by the 'P shape resonance above the M=2
threshold. " Very little is known about possible
shape resonances for higher shells. We will tent-
atively include all of the intrashell energy eigen-
values in our computed spectra, at least until more
accurate predictions of the stability of levels above
threshold become available. Qne reason we choose
to show them will be seen in Sec. IV, where we

discuss a possible link of the instability to a ro-
vibrational predissociation.

III. O(4) MULTIPLET CLASSIFICATION

In this section we describe and interpret the O(4)
quantum numbers that are used to construct the
supermultiplets for intrashell energy levels in He
and H . Since the O(4) approach is unfamiliar to
most, me will give a fairly detailed account of the

method, including some new results derived here.
Previous work has indicated several useful ways
that O(4) may be used to describe configuration in-
teraction in two-electron atoms. These include de-
generate intrashell hydrogenic orbital mixings at
high Z,""intershell channel mixings at low Z and"and intershell channel mixings at high Z
and L,." In our present computations the wave
function 4~ for each level in He and H involves a
substantial mixing of both intrashell (4}and inter-
shell (}t) configurations. There are two ways of
interpreting these results for the intrashell energy
levels. The first method uses O(4) to describe
intrashell configuration mixing at high Z, and then

follows each level into the low-Z regime. The sec-
ond method uses O(4) to describe intershell channel

mixings directly at low Z; intrashell levels are
then identified as the lowest levels in channels.
The former approach leads to two quantum num-

bers, P and T, that form the basis of intrashell
multiplets used for constructing g supermultiplets
in Ref. 1. 'The latter approach involves a related
pair of quantum numbers, K and T, for channels
that underlie the I supermultiplets of Ref. 1. As
we mill see, the two views emphasize different
aspects of the electron correlation that are related
to the ro-vibrational interpretation of supermulti-
plet levels. The organization of the rest of this
section is as follows: Sec. IIIA summarizes prop-
erties of O(4) and the one-electron orbitals; Sec.
III B describes the two-electron intrashell basis
using three different O(4} subgroups; Sec. III C
describes the intershell channel part of the wave

function; and Sec. III D interprets the electron cor-
relation in the intrashell states.

[lq, I~] =f~qa Im ~

[fs~ I'al = ~esa~f'~ ~

[bg ~ bit] —teggw la ~

(3.1)

Each irreducible representation of SO(4} may be

labeled with two numbers (p, q), with p positive, q

positive or negative, and p ~ q. In our atomic ap-
plications p and q will always be integers. Individ-
ual states for the subgroup chain SO(4)&SO(3)
DSO(2) are then labeled with four numbers p, q, I,
and m, contained in the eigenvalues of the Casimir
invariants

b'+ I' =p(p+2) + q',
1 ~ b =q(p+1),
1' = I(I+1),

(3.2}

i, =m.
A hierarchy for integer values of the numbers is

p=0, 1,2, .. . ,

C=p p-1 ~ ~ ~ -p

I=PP I,",lql, - (3.3)

m=t, I,-1, ... , -t.
'Thus each of the representations described by

(p, q} contains a multiplet of SO(3) terms with
~ q(

~ L & p. The total number of states in each repre-
sentation is then given by the formula

g, ,, =(P+I)'-.q'. (3.4)

The reflection operation mixes the representa-
tions (p, q) and (p, -q). Together, this conjugate
pair of SO(4) representations makes up a single ir-
reducible representation of O(4), labeled here with

the symbol [p, (q( ]. When q=0 the representation
is self-conjugate, and each of the SO(3} states has
a definite reflection symmetry. In our atomic ap-
plications we will label states in each representa-
tion according to their parity II for inversion of
electronic coordinates. When @=0 this satisfies
II(-1)' =+ 1 for atomic wave functions. It is there-
fore natural to distinguish between two types of
"multiplets" of states in each O(4) representation,
according to the number

q = II(-1)'. (3.5)

We label these multiplets [p, [ q) ]' or [p, ( q( ] for
states with the two types of parity g =+1 or -1,

A. Resume of O(4) and definition of symbols

The O(4) group is generated by the group of prop-
er rotations in four dimensions, SO(4), plus re-
flections. " The SO(4) group has six Lie-algebra
generators defined as components of vectors 1 and

b which satisfy commutation relations
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respectively.
In the case of hydrogen atom orbitals, ""the N'-

fold degeneracy of levels in each shell is explained
by the SO(4) group generated by the orbital angular
momentum 1 =r &p, and the energy-weighted Lenz
vector

b =N[p(r. p)- r(pm —I/r)] . (3.6)

[Eg, E„]= tey~~F~ ~

[GjqGk] tejkggGm q

[P„G,] =0.
(3 7)

Generally for SO(4), these groups have Casimir in-
variants F'

= f(f+1) and G' =g(@+I}, which are
related to previous labels by p f+g and q=f- g.
The self-conjugacy of hydrogen-atom representa-
tions gives f=g = ,' (N- 1). Owin—g to the SO(2) sym-
metry of the electric field, m is a good quantum
number. The linear Stark energies are also de-
scribed by the electric quantum number k, with b,
=k in the hydrogen orbital basis.

Both types of SO(4) states are used in the class-
ification of two-electron configuration mixings.
SO(4) plays a similar role in both the one- and two-
electron problems. In the hydrogen-atom Stark ef-
fect, neither SO(4) nor SO(3) describe an exact
symmetry at nonzero field strength. 'Thus the
electric quantum number k only approximately
classifies the states, which are quasibound reso-
nances in the field ionization continuum. In doubly
excited two-electron atoms the Coulomb interac-
tion 1/r» represents an internal field which breaks
both the one-electron R)(4) and SO(3} symmetries;
quantum numbers for coupled SO(4) representa-
tions thus only approximately classify the energy
levels, which are quasibound resonances in the
autoionization continuum.

Classically, these vectors describe the orientation
of a planar Kepler orbit in space; 1 is perpendicu-
lar to the plane of the ellipse, while b lies along
the major semiaxis. Quantum mechanically, the
orthogonality of 1 and b means that q =0, and hence
each degenerate manifold of hydrogen orbitals with
I =o, 1, .. . ,N —1 is contained in a single irreducible
representation of SO(4) with P=N- 1. Taking into
account the parity of these states, this is the self-
conjugate 0(4) multiplet [N - 1, 0] '.

There is a second way of representing the 80(4)
states, that is related to the linear Stark effect in
hydrogen. The electric field breaks the SO(3) sym-
metry of the atom, but the hydrogenic Stark states
remain separable in parabolic coordinates. The
group theoretical analog of the separability at zero
field is a product group representation 80(4) =SU(2)
x SU(2). Generators of the SU(2) groups are F
= 2 (1 +b) a,nd G = ~ (1-b), with

G =IIP 2. (3.8)

Generators of the group SO(4), XSO(4), symmetrized
according to irreducible representations of the
permutation-inversion group are given with the
character table in Table I. We define them here
as

L=l~+1, D=l~ —I

A bj +b2 ~ B b~ b2 ~

L is the usual generator of 80(3) orbital angular
momentum for two-electron atoms. Commutation
relations of L with each of the other three vector
operators, together with the appropriate reflec-
tion operations, lead us to consider three separate
0(4) subgroups. These groups, and their genera-
tors, are labeled as follows: 0(4)„with generators
(L,A, G(or II)], 0(4), with generators
(L, B, II(or P»)), and 0(4)n with generators
{L, D, P»(or G)]. It is interesting to note that the
group 0(4}B generates maximal breaking of the
permutation-inversion symmetry. We interpret
generators of the three 0(4) groups for intrashell
states as follows:

(i) The group 0(4)„ includes the generator A,

TABLE I. Character table for the permutation-inver-
sion group for two-electron atoms. G is defined in Eq.
(3.8) as the product of parity (ll) and exchange (Pf2). Also
shown are transformation properties of generators of
the group SO(4) &x SO(4)2 for intrashell energy levels.

Pg Generator

Ag
Bj
B2
B3

1
1

-1
-1

1
-1

1
-1

1
-1
-1

1

1(+12
b~+b2

b~- b2

B. Coupled intrashell representations

We now describe coupled representations of
80(4) for intrashell states, corresponding to the
near-degeneracy part 4 .of the wave function. The
two-electron product group SO(4), xSO(4), includes
a total of 12 Lie-algebra generators; these may be
coupled in several different ways, related to the
coupling of four SU(2) angular momentum vectors
in the Stark picture for one-electron orbitals. Our
present approach uses generators which are sym-
metrized according to the permutation-inversion
group for electrons in atoms; for two-electron
atoms this is isomorphic with the point group D, .
Group elements include the identity, parity II, ex-
change P~ of spatial coordinates of two electrons,
and the product operation
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which leads to one type of configuration mixing in
the two-electron basis. In the case of hydrogenic
orbitals, intrashell matrix elements of one-elec-
tron radial vectors may be represented by r
= (3N/2Z)b, and r" = (1/N)b for the unit vector. "'20~'

In the two-electron basis then, A is directly re-
lated to intrashell matrix elements of the operator
r, +r, . The group O(4)„ is therefore related to in-
trashell dipole radiative transitions, or Stark-
effect mixings due to an electric field.

(ii) The group O(4}~ leads to a second type of
configuration mixing in the intrashell basis, since
the generator B describes matrix elements of r,
—r, or r"; —r", . The group is therefore related to
the average spatial correlation of electrons in de-
generate hydrogenic orbitals; the operator L B
describes the angular momentum about the average
interelectronic axis. Reference 12 depicts two
possible arrangements of classical Lenz vectors
bi and b corresponding to favorable and unfavor-
able electron correlation for a pair of Kepler or-
bits. The actual motions carried out by the clas-
sical vectors b, and b, are more difficult to depict,
since they are complicated due to the Coulomb in-
teraction 1/r» and conservation of total angular
momentum. As a result of the interaction, the
Lenz vectors execute coupled precessional motion,
which is presumably slower than the motion of
each electron in its orbit. The angle between b,
and b, is therefore related to the average inter-
electronic angle 8&2. Three features of the motion

of the Lenz vectors could account qualitatively
for similar features in the intrashell doubly ex-
cited states. First, stretching motions of b, and

b, which conserve one-electron energy necessarily
give rise to changes in the one-electron angular
momentum. In the quantum picture the one-elec-
tron generators satisfy 1' +b' =N' - 1 for example.
l mixing of degenerate classical orbits is analog-
ous to quantum-mechanical orbital hybridization,
and hence to configuration mixing. Second, are
coupled rotational motions of the Lenz vectors;
these would include internal rotations about the
axis B. Third, are bending motions which change
the angle between the Lenz vectors. It is possible
that numerical studies of classical trajectories
would show coupled motions similar to the ones we

have described. Rotations and vibrations of the
Lenz vectors are at least qualitatively consistent
with the ro-vibrational level structure found in the
supe rmultiplet spectra. '

(iii) The third intrashell group O(4)o does not
describe configuration mixing, because the gener-
ators L and D both commute with the one-electron
SO(3) invariants I', and 1',. The two invariants of
O(4)n may be seen in the centrifugal part of the
two-electron kinetic energy:

~
PqLM)s =

~ (N/, Nl2) LM), (3.1 1)

with p = l+ l' and q = l —I,'. We use a similar sym-
bol (pqLM)„ to label states for the group O(4)„.
Our main interest is with the basis which diagonal-
izes O(4)~ Casimir invariants L'+B =P(P+2)+ Q'
and L.B=Q(P+1); this we denote by ~PQLM),
without a subscript. From the theory of angular
momentum recoupling we find that the three bases
are related by the following linear transforma-
tions:

IPQLM) =Q IPqLM)z)(pqL IPQL}, (3.12)

1',/r', +1gr2 = ,' (L'+—D')(1/r', +1/r,')

+ ~ (L ~ D)(1/r |—1/r2). (3.10)

Notice that the operator L D allows coupling of
symmetric and antisymmetric radial coordinates,
such as r, +r, and r, —r, . It is the only part of the
two-electron energy which couples these degrees
of freedom directly. In this sense it plays a role
analogous to the Coriolis interaction in a linear
triatomic molecule; the Coriolis force due to ro-
tation and bending vibration excites the asym-
metric stretch vibration of the molecule.

The preceding interpretation of O(4}n is inde-
pendent of the radial part of the intrashell basis.
In contrast, the interpretations of the groups
O(4)„and O(4)~ were directly linked to the degen-
erate hydrogenic orbital basis. Similar, approxi-
mate interpretations of these groups would be ex-
pected in other orbital bases, such as Hartree-
Fock type functions at low Z in the two-electron
isoelectronic series.

Thus far, we have interpreted only the Lie-
algebra generators for the three O(4) groups de-
fined on the intrashell configuration basis. We now

describe the relationship between the irreducible
representations of these groups. There has been
some confusion in the past as to the proper identif-
ication of coupled states for two electrons. Initial
work in this area misidentified the group we call
O(4)„as the one for configuration mixings due to
1/r» (Ref. 22). Subsequent work pointed out that
the group O(4)B is actually the one to use for two

electrons. ""Pairwise coupling of invariants for
O(4)~ was also usecP' to describe configuration
mixing in first-row many-electron atoms. Here
we will describe two-electron couplings in the in-
trashell basis; we give some additional details of
the intrashell symmetry breaking of SO(4), xSO(4),
in the Appendix.

We distinguish between three SO(4) bases for the
intrashell states. The first is the single-configu-
ration representation, which according to the
group O(4)o would have states labeled
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~PQLM) = (-1)'Q ~ pqLM)A(pqL ~PQL),
Doa

~
p'q'LM)„=g [pqI M), (pqL, [p'q'L)(-I)&' '&'.

(3.13)

(3.14)

(3.15)

I

Here the phase factor is given by c=N-1- —,(P —Q), and the coupling coefficient is defined in terms of a
9-j symbol as

(PqL ~PQL) =(-I)" "'[(P+q+1)(P- q+1)(P+Q+ 1)(P Q +I)]» I

,'(N- —1) ,'(N- —1) —,'(P+ Q)

x r~(N- 1) r'(N- 1) ~(P —Q)

-*(p+q) -'(p —q)

As indicated in Eq. (3.12), the state ~PQLM) has a
configuration-mixed structure; we denote the cor-
responding spatial wa ve function for intrashell
SO(4) states by the symbol @re~„. We find the
SO(4) wave functions have the following properties
under permutation-inversion operations:

I} + @e-qz&

P~@eors (-1) 4g-uzi ~

wr. s= ( }

@tumed~,

and time reversal:

(3.16)

(3.1V)

(3.18)

(3.19)

In all cases we consider, P and Q are integers and
satisfy (-1)~+o=1. From Eqs. (3.18) and (3.8) we
see then that the product of permutation-inversion
quantum numbers satisfies IIP» = (-1}o. Thus G
produces an effect on the SO(4) wave function ana-
logous to that of a 180I' rotation about an internal
body-fixed axis. This rotation is realized with the
operator exp(faL ~ B) within each 80(4) irreducible
representation, when the rotation angle is chosen
to be a = v/(P+1) radians.

When Q =0 the parity of each SO(4) state satisfies
II(-1)~ =+1, and hence these states belong to self-
conjugate 0(4) multiplets [P, O]' with q =+1. Nor-
malized wave functions for the 0(4}multiplets
[P, T]"with q =el are given by the following linear
combination when Q g0:

I

including only the folloming values of P and T:

T=0, 1, . ~ ~,N-1,
P=T, T+2, ... , 2N-2 —T.

(3.23)

We illustrate Eq. (3.22) for the case when two
electrons occupy 2s and 2p orbitals in the N =2
shell,

[1,0],x [1,0]2 = [0, OJ + [2, 0] + [1,1 ] . (3.24)

This includes one S term, plus S, P, D terms,
plus two P terms, in three 0(4) representations
respectively; this gives 1+9+6=16states in all.

Our use of Eq. (3.12) for configuration mixings
in doubly excited states involves a definite phase
convention for the one-electron orbitals. Follow-
ing an earlier convention" for matrix elements of
generators we use the Condon-Shortley phase for
angular momentum, '4 and radial functions which
have the phase (-1)' at small r near the nucleus.
This radial phase is important, because it means
that all one-electron radial functions have the
same phase (-1)" ' at large values of r, on ac-
count of the N- /- 1 nodes in each orbital. Conse-
quently, the R)(4) configuration- mixing coefficients
describe mostly angular correlation of the two
electrons, at least to the extent that radial func-
tions are similar in the region of peak radial dens-
ity for intrashell states.

~res (Irim+a( I)'q'r -r~~}//~, --(3.20)
C. Intershell channels

where w'e have used the number

(3.21)

[N 1,0],x [N —1, 0-]2 = Q [P, T), (3.22)

The values of P and T are given by the Clebsch-
Gordan series for the product representation,
which may be seen from general results" to have
the following form for intrashell states of two-
electron atoms:

Section III B discussed the problem of 80(4),
x80(4), coupling for intrashell configurations.
This part of the w'ave function dominates at very
high Z in the isoelectronic series, where the hy-
drogenic-independent-particle picture is good. At
low Z, the hydrogenic configuration interaction
matrix includes substantial coupling between dif-
ferent shells; in the mave function 4„ this is de-
scribed by the function g, which for intershell
channels controls the binding of the more radially
diffuse electron below threshold, 'The classifica-
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tion of these channels is important in our super-
multiplet classification of intrashell energy levels.
Following a procedure developed in Ref. 9, we first
label channels using two quantum numbers K and
T. We then use the intrashell O(4) to tell us where
to look in the channel spectrum for intrashell
states. In this way we efficiently unravel the intra-
shell supermultiplets from the overlapping inter-
shell spectrum. The intershell mixings also affect
the distribution of g» for states in the supermulti-
plets, and are thus important to our interpretation
of ro-vibrational energy-level structure. In a
perturbation approach at high g, these intershell
mixings would contribute terms second order and
higher in the energy.

Neglecting exchange for intershell states, the
channel quantum number K is seen in the following
O(4) reduction of the product basis when g ~ N:

[N-1, 0], & [n-1, 0]2=+ [n —1+K, T].
E, Z'

(3.25}
The usual O(4) quantum number P =n —1+K is not
a very good label for intershell channels, because
it changes value between successive states in the
series for higher g. K, on the other hand, remains
constant within a channel. In the hydrogenic con-
figuration interaction matrix for low-lying levels
in each shell, this separation of states with differ-
ent values of K and T is seen as an approximate
block diagonalization of the energy. Thus the clas-
sification with K is much stronger than a classifi-
cation based on the contribution of intrashell con-
figurations alone. Nonetheless, it is still conven-
ient to label the intrashell levels according to the
quantum numbers P and T from the high-Z limit.

The supermultiplet classification of intrashell
states uses both types of quantum numbers. Fig-
ure 1 shows the values of R and T for all shells N
~ 5. The channel K =N - 1, T = 0 is placed at the

bottom of each of these diamond-shaped patterns,
because it represents the most favorable correla-
tion of the electrons. The values of L in each
channel may be visualized as rising vertically out
of the plane of Fig. 1. A hierarchy for these quan-
tum numbers is

N=1, 2, 3, . . . ,

K=N —1,N-2, . . . , 1 —N,

or 0,
L=T, T+1,T+2, . . . .

(3.26)

These channels are also labeled according to the
two types of parity, g =+1. Note in Eq. (3.26) that
each channel described by K and T contains an in-
Gnite number of values of L. Above threshold, the
channels for very high L are related to large-
impact-parameter scattering for systems such as
e +H(N}; these high values of L are therefore not
important in our treatment of intrashell levels.
Instead, the values of L, are cut off for intrashell
states in each channel. In the O(4) shell model the
cutoffs are implicit in Eq. (3.25) when n =N, in
which case I =N- 1+K for intrashell states. We
therefore have two ways of viewing the spectrum
of intrashell O(4) quantum numbers. The first way
was described above in Sec. III B using P, T, and
L. The second way starts with the channel quan-
tum numbers K, T, and L in Eq. (3.26), but mod-
ifies this to account for the finite restriction on
intrashell angular momentum:

L = T, T+1,T+2, . . . , N- 1+K. (3.27)

The two hierarchies of quantum numbers are re-
lated to the two types of O(4) quantum numbers dis-
cussed in Sec. IIIA. P, T, and L are labels for
the subgroup chain O(4) &O(3). K and T, on the
other hand, originate in the SU(2) XSU(2) Stark-
effect picture for the hydrogen atom. Herrick"
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a filled circle, and q= —1, shown with an open circle; g is defined in Eq, (3.5).
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A = -(3N/Z)K+ L(L+1)
+-,(N' —1 —K' —3@2)+

W = Q[(3N/Z)-+2K+ ~ ~ ] . (3.30)

The first term in the expansion of A gives a
Stark-level pattern like the channels shown in Fig.
1; the most favorable electron correlation in this
Stark dipole approximation obtains when K =N —1.
A fuller interpretation of the electron correlation
in the channels will be given in Sec. IIID.

D. Ro-vibrational interpretation of correlated states

In Secs. IIIB and IIIC we described correlated
wave functions originating in the SO(4) shell struc-

has investigated the connection between the two
sets of quantum numbers using a dipole approxima-
tion" for the configuration mixing of intershell
states. Since this picture of the atom bears on our
interpretation of ro-vibrational types of correla-
tion in the doubly excited states, we will briefly
describe it here.

The method starts with a wave function similar
to the function g we discussed in Sec. II. After
taking into account configuration mixing (including
only the dipole term from 1/r»}, and averaging
over all degrees of freedom except the asymptotic
radial coordinate r, »r„one is left with a set of
decoupled radial equations

, + +2a)('„(r,)=0. (3.R8)( d' A 2(Z -'1)
~dr r

Here ~ is the energy of the electron relative to the
threshold for level N. Each channel is described
with a different eigenvalue A of the matrix of an
effective centrifugal operator l, (l, + I)+2r, cosg»
for each shell. In an 0(4) representation the dipole
channels are described by eigenvalues of two com-
muting channel invariants":

A=(3N/Z)b, i, +I,',
(3.29)

W=L [(3N/Z)r, —2b, ],
in which r" is the unit vector. Eigenvalues of these
invariants descr ibe configuration- mixed channels,
and replace the single-configuration quantum num-

bers l, and 1, over the entire isoelectronic series.
At very low Z, the invariants describe a Stark-
effect mixing of the degenerate manifold of bound

states in level N, relative to the frame of the asy-
mptotic electron. K is the related electric quan-
tum number, while Q is the angular momentum
quantum number for the body-fixed field axis. We
again use T = (Q ~

for the magnitude of the angular
momentum projection, because parity mixes the
conjugate states + Q for two electrons. The behav-
ior of the channel invariants at low Z is seen in a
perturbation expansion of their eigenvalues":

ture. The distributions of 8» in our computed wave

functions are similar tothe ones for SO(4} states in

two respects. First, our wave functions contain
intrashell configuration mixings due to I/r»; these
are well-approximated by the SO(4) mixings. Sec-
ond, the K, T channel classification is generally
very strong in the computed wave functions, and

the intershell configurations in y contribute corre-
lation effects similar to those found in the Stark
dipole channels at low Z. It is therefore important
to understand at least qualitatively the differences
between these types of correlation, and their rela-
tionship to possible ro-vibrational collective mo-
tion.

Rehmus et al."have investigated 80(4) distribu-
tions for the interelectronic angle (9» in a hydro-
genic orbital basis. They found the distribution for
the 'S' intrashell SO(4) wave function peaked in the

region g» =180' in each shell. This interpretation
was the basis of our initial investigation of rotor-
like series in the intrashell spectra of He and H ."
The fact that Rehmus et g/. had to resort to numer-
ical studies of the SO(4) wave functions attests to
the difficulty of this problem. Differences in the
distributions for other values of I, Q, and L, are
reflected in the average value (cose») for each of
the states. In the Appendix we show how to derive
the following expression for the intrashell 80(4)
states using hydrogenic orbitals:

(cos8») = [4N' —4- 3P(P+2)- 3Q'+2L(L+ I)]/SN'.

(3.31}

We interpret this result using an average correla-
tion angle defined by the inverse of Eq. (3.31), (((,

=cos '(cosa, g. This is also related to the angle
between two Lenz vectors b, and b„wase dis-
cussed in Sec. III B. There are two trends seen in

Eq. (3.31) which relate to the problem of ro-vibra-
tional collective excitations. First, within each
SO(4) representation (P, Q) increasing L gives
smaller values of e„and hence higher energies.
'The second trend relates to the K, T picture of the
intrashell states. For fixed T and L„decreasing
the value of K in each of the diamond-shaped pat-
terns in Fig. 1 gives smaller values of e„and
hence higher energies. The first trend is related
to collective rotational excitation of the system,
while the second trend is related to vibrationlike
excitations involving the angle g». With increasing
N the distribution of correlation angles is found to
have a range of values 60'&9, ~180' for 1-N &K
~N- 1, respectively. This is consistent with a
picture of favorable electron correlation in the
SO(4} states, which tend to keep the electrons away
from the Coulomb singularity at 8»

Similar interpretations for collective rotational
and vibrationlike motions are implicit in the level



22 SUPE RM U LTIP LET C LASSI FIC ATION OF HIGHER. . . 1525

structure of the eigenvalues of A in Eq. (3.30) for
dipole channels. The distribution of correlation
angles for the intershell channels is more diffuse
than it was for intrashell states, however, due to
the fact that one of the electrons is farther from
the nucleus. In a Stark approximation of the chan-
nels at low Z, the angular distribution gives 0'~ 6I,
&180' for 1-N &K &N-1. In wave functions of
low-lying intrashell levels then, admixtures of in-
tershell configurations would reinforce the ro-vi-
brational picture, since the values of I9, are near
180' in both cases. In contrast to this, admixtures
of intershell configurations in 4~ for higher intra-
shell levels, and in particular those with K & 0 or
very high L„would involve very floppy collective
motions. This is the regime where a simple rotor-
vibrator picture is least applicable for intrashell
states. ' It is also the regime where intershell lev-
els in H are no longer stable, due to the fact that
the centrifugal potential in Eq. (3.28) is repulsive.
This long-range repulsion is the reason for the in-
stability of certain eigenvalues in the H spectrum,
as discussed in Sec. II.

IV. SUPERMULTIPLET CLASSIFICATION OF
ENERGY LEVELS

In Sec. III we described O(4) multiplets, and gave
interpretations of the electron correlation for re-
lated configuration-mixed wave functions. We now
use those results, together with the prescription of
Ref. 1, in order to construct and interpret the su-
permultiplet energy level structure in our spectra
of He and H for N+5. Sections IVA and IVB il-
lustrate the detailed structure of I supermultiplets
and p supermultiplets, respectively, for the N =4
shell. This parallels the superrpultiplet classifica-
tion of the N =3 shell in Ref. 1. In Sec. IV C we
give a description of the full intrashell spectrum

for N ~ 5. We then investigate the approximate
separability of the ro-vibrational levels in Sec.
IV D.

A. I supermultiplets

'This first type of supermultiplet emphasizes the
description of intrashell states with K and T quan-
tum numbers, which were illustrated in Fig. 1.
The values of I. for each channel are then de-
scribed with the quantum number

I =I —T =0, 1, . .. , 2N-2, (8.32)

which gives the degree of rotational excitation rel-
ative to the lowest value of L in each O(4) multiplet
[N- I+K, T]. We thus obtain a similar diamond-
shaped "I supermultiplet" for each value of I; the
size of these "diamonds" decreases with higher I
due to the cutoffs for the intrashell angular mo-
mentum.

Figure 2 gives the I supermultiplet decomposition
of term symbols for intrashell levels when N =4.
Conjugate pairs of terms with the same values of
K and T are arranged so that terms with g =+1 ap-
pear on the right-hand side of each supermultiplet.
Within each I supermultiplet then, levels having the
same quantum numbers T and g have the same
term symbol. Similar progressions of supermulti-
plets are easily constructed for other values of N;
the ones for ¹ 3 were shown in Ref. l.

Figure 3 shows our I supermultiplet classifica-
tion of intrashell energies for N=4 levels of H,
He, and Z =~. The high-Z values were obtained
by diagonalization of I/r» in the intrashell hydro-
genic orbital basis. The unresolved spectra are
shown at the left. Overall, the supermultiplets
have a more ordered appearance at lower g. Re-
call, however, that levels above threshold in H

may only be stable in the linear configuration ex-
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pansion approach we havt; used; they may collapse
to threshold —or in some cases drop below thres-
hold —when nonlinear variations of radial functions
are taken into account. We note especially the
nearly equal spacing of levels in the largest super-
multiplet, I=O, as well as the near-degeneracy
of levels with the same quantum number K. Each
diamond has an approximate left-right symmetry
originating in the accidental near-degeneracy of
conjugate pairs of O(4} terms The spl. itting of
these levels was called "T doubling" in Ref. 1.
Here we also find that T doubling tends to give lev-
els with g =-1 lower in energy relative to the con-
jugate level with q =+1. The near-degeneracies
(including T doubling} weaken at higher values of I
in the supermultiplet spectrum. The number of
levels in I supermultiplets are contained in the se-
quences 1,4, 9, . .. ,2V' for even I, and

. 1,4, 9, .. . , (N- 1)' for odd I; this gives a total of
—,'N(2N'+ 1) levels for each shell.

B. d supermultiplets

The second type of supermultiplet emphasizes
the intrashell O(4) picture. Each d supermultiplet
is made up from intrashell O(4) multiplets [P, T]
having the same value of d= &(P+T). In this way
the O(4) product representation has an intermediate
form'

[N —1, 0]1 [N 1, 0]2 = (Oj—+ (Ij + ~ ~ ~ + (N —1},
(4.1)

with each d supermultiplet of intrashe)1 states hav-
ing an O(4) reduction

fdj = [2d, 0]+ [2d —1, 1]+ ' +[d, d) . (4.2)

Each of these d supermultiplets separates further
into the two parity classes, labeled by (dj". There
are a total of (2d+1)(d+1}' states in (dj', and
(2d+1)d' states in (dj . The respective numbers
of energy levels in these supermultiplets are
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N=1, 2, . .. ,

d=0, 1, .. . , N-1,
Q=d, d- 1, ~ ~ ~, -d ~

(4.3)

Figure 4 gives the term symbol supermultiplets
for d ~4, which allows one to construct the intra-
shell d supermultiplets for levels N ~ 5. We have
arranged each supermultiplet so that an O(4} multi-
plet [P, Tj' appears on the right-hand side, while
the conjugate multiplet [P, T] is on the left-hand
side. The parity and spin of levels in each O(4)
multiplet alternate with increasing I., due to the
fact that the generator B breaks these symmetries.
Levels along the lower edges of d supermultiplets
have I.= T, and thus belong to the same I super-
multiplet I=o. Our arrangement of d supermulti-
plets in Fig. 4 reflects the approximate degeneracy

(d+1)' for (dj', and d' for (d) . Further clar-
ification of the mathematical properties of the d
supermultiplets is needed. The multiplicities sug-
gest that each d supermultiplet may be reducible
under a group SU(2) &&SO(4), but we have been un-
able to identify a set of coordinates which would
give such a separation in the wave function for
doubly excited states. As noted earlier in Ref. 1,
the d supermultiplets are also related to an unusual
SU(2) group generated by an operator J, which is
the larger magnitude vector of the more conven-
tional SU(2) generators j = —,'(L+B) and k = —,'(L —B).
These are related to the one-electron hydrogenic
Stark SU(2} generators F and G as follows: j =F,
+G, and k =F, +G, . The quantum number d is then
associated with the larger of these vectors, with
J2, =d(d+1). The hierarchy of intrashell quantum
numbers N, d, Q is similar to the usual spherical
quantum numbers N, I, m for the hydrogen atom:

of levels with the same value of K in the largest I
supermultiplet for each shell.

Figure 5 shows our d-supermultiplet classifica-
tion of intrashell energies for N =4 levels. These
are the same energies shown in Fig. 3 using I
supermultiplets. 'The d supermultiplets give an
even more ordered and compact spectrum than the
I supermultiplets. Owing to the large number of
levels, we show only the spectroscopic symbol for
states with the same value of L„connected by lines
similar to the ones in the more detailed repre-
sentation of term symbols in Fig. 4. Energies tend
to increase with L in each O(4) multiplet, and the
largest series [6, 0]' is the one most like a cutoff
rigid rotor spectrum. " Note that the multiplet
[2, 0]' for g =~ has the level 'P' below the 'S' lev-
el however. The same '&' level lies above '$ in
the spectra of He and H . This illustrates the ap-
parently stronger, more rigid electron correlation
at low'er Z in the isoelectronic series. We find
similar inversions from a rotor ordering of levels
in the N=5 shell.

C. Levels for N &~5 in He and H-

We show only the largest I supermultiplet for
each shell, to illustrate the interesting pattern of
near-degeneracies we find in our computed spec-
tra. These are shown in Fig. 6, which includes
scaling of the energy levels so that the spacing be-
tween levels 'S'(K =N 1) and '—P'(K =N 2) ap-—
pears the same in each shell. N dependence of
spacings will be described in Sec. IVD. These
regular progressions and near-degeneracies are
quite striking; they are certainly not what one ex-
pects to find in a problem which is supposed to be
nonseparable. The near-degeneracies in these
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largest diamond supermultiplets (I=0) display
slight weakening with increasing N for K = 0; states
with higher values of T lie slightly lower in energy.

The complete d-supermultiplet spectra for intra-
shell energy levels 2 ~N &5 are shown in Fig. 7 for
He, and in Fig. 8 for H . The breaks in energy
scale between N =2 and 3 and between N =3 and 4
are required so that we can show the small rota-
tional spacings of levels at higher N. There is no
break in scale between N =4 and N=5. The most
striking feature of these figures is the near con-
stancy of the shape of supermultiplets with the
same value of d in different shells. Analysis of
autoionization widths for levels N =2 and N=3 in
He shows a similar trend, but we do not know if
this extends to higher shells. In addition to our
own computed levels for N =2, we have also dis-
played other, more accurate experimental and the-
oretical results. ""Although individual levels
show some differences, overall the shapes of the
supermultiplets are quite similar.

In Fig. 8 we have again included levels above
threshold, keeping in mind that an interpretation

of these levels as resonances in 8 is question-
able. One reason for showing them here is to il-
lustrate how these instabilities are related to the
ro-vibrational progressions of levels. Vertical
excitation within a d supermultiplet puts some of
the levels above threshold in H; this is analogous
to rotational predissociation in a molecule, where
the centrifugal barrier due to rotation pushes
otherwise stable states above the dissociation lim-
it. Here we also see an apparent vibrational in-
stability with increasing p in a d supermultiplet,
decreasing d between d supermultiplets, or de-
creasingly' in an I supermultiplet (cf. Fig. 6).
'There does not appear to be a simple rule with the
quantum numbers that would describe which levels
lie below threshold in each shell, and also which
levels would have the greatest stability above
threshold as quasibound shape resonances. The
usual criterion for predicting which H™channels
support intershell series below threshold is that
the centrifugal parameter in Eq. (3.28) describe a
long-range attraction: & &—4. Here we are inter-
ested in channels which satisfy this criterion and
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alsp support intrashell levels. Herrick has de-
scribed some of the properties of the eigenspec-
trum of the channel invariant A in terms of the

K, T classification for lower values of N (Ref. 15).
It is interesting to note that the channel K =N —1,
T= 0 gtvei A & 4 only for the following values of
the angular momentum: 0+1, ~2&-2, at least for
/~5. This is the same cutoff as was seen for in-
trashell L in the O(4) shell theory, since these val-
ues of K and T correspond to the intrashell multi-
plet [2N-2, 0]'. This is the multiplet whose lev-
els look most like those of a rigid rotor, "and may
be 8een as the central multiplet in the largest d
supermuliplet of each shell in Fig. 8. Values of the
centrifugal parameter A for the highest intrashell
levels (i.e., L =2N- 2) in these rotorlike series
are the following: -0.81('D', N =2), -2.56('G', N
=3), -5.23('I', N=4), and -8.82('L', N=5). These
values are sufficiently negative so that accurate
variational calculations with the charge wave func-

tion C~ should give bound anion states below each
threshold. Note, however, that our calculations
give the 'I' and 'I.' levels for N =4 and 5, respec-
tively, above threshold. We attribute this to radial
inflexibility in the linear approximation of 0„,
which becomes less accurate for higher shells, due

to the cutoff n ~7 in our hydrogenic radial basis.
We have carried out calculations for $ and P levels
using an extended radial basis N &g ~ 10, and find
that many of the H levels collapse dramatically
toward threshold as expected. However, some of
the levels near threshold are very insensitive to
changes in the linear configuration basis. This be-
havior is a possible indication of shape resonan-
ces, but more accurate calculations are needed.

D. Scaling laws for computed ro-vibration levels

A detailed investigation of the similarities be-
tween the present supermultiplets and molecular
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E =B, [L(L + 1)-T ] + &2(v+&') (4.5)

where B, is the equilibrium rotational constant,
+, is the vibrational bending constant, and v=N
—1-K is the integer quantum number for a two-

ro-vibration levels will be given in Ref. 2. Here
we will use only a very simple ro-vibrational pic-
ture in order to interpret the qualitative behavior
of our computed level spacings for increasing N.
We find results entirely consistent with the behav-
ior of ro-vibrational energy parameters for in-
creasing shell size.

If we include only rigid rotations and harmonic
bending vibrations, the intrashell levels are de-
scribed by the formula'

(4.6)

and in H:
B =0.058N- " co, =0.234 g (4.7)

dimensional oscillator. The first rotational ex-
citation energy described by Eq. (4.5) for +
-3P' is 2B,. We take the first vibrationlike ex-
citation 'P'- P as &, +B„where P denotes the av-
erage of the state 'P' and ~. Notice that the vi-
brational excitation includes a contribution B,
from the excitation of vibrational angular momen-
tum.

A simple power-law fit of ro-vibrational param-
eters from our computed spectra for levels N ~5
gives the following dependence on N in He:

B,=0.169 N ~3 (o =0.692 N ~
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where we have used atomic units. These results
indicate that the rotationlike level spacing de-
creases faster than the vibrationlike spacing, and

suggest increasing approximate separability of the

energies at higher N. This behavior is seen clear-
ly in Figs. 7 and 8. The separability is much less
than what is found in molecular spectra, where,
for example, &o,/B, =1720 for CO, . A similar value
would be obtained from Eqs. (4.6) and (4.7) when &
= 400.

The empirical scaling laws are reasonably con-
sistent with a simple model of the atom as a rotor-
vibrator. First, we note that ro-vibrationlike
spacings in Figs. 7 and 8 are much smaller than

energies between neighboring shells, indicating

that collective intrashell motions of electrons are
slower than radial motions which account for the
atomic shell structure. For the sake of simplicity,
let us assume the intrashell correlation in low-ly-
ing levels is described with electrons on the sur-
face of a spherical shell. The nucleus is fixed at
the center, and the sphere radius R corresponds
roughly to the region of peak radial probability in
the wave function. A linear XVX molecular con-
figuration for the electrons (g and nucleus (Y) is
consistent with a minimum in the angular part of
the Coulomb repulsion between two electrons at

180 . A nalysis of the ro- vibrational param-
eters for this model shows the following depen-
dence on shell radius'.
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B,~R ' R-as (4.8)

Note in particular that these constants predict a
faster dropoff of rotational spacings than vibra-
tional spacings with increasing shell size. This is
consistent with the empirical results for doubly
excited atoms, where increasing N corresponds to
a larger shell radius. The average radius of a
spherical hydrogen atom, for example, is r =1.5
N' in atomic units. If this same scaling continued
to apply in the case of two-electron atoms, Eq.
(4.8) would predict B,~N ' and &u, ~N ', which
agree qualitatively with the computed ones for He
and H . The scaling laws described in Eqs. (4.6}
and (4.V) suggest an effective-double-excitation
shell radius which scales as R ~N~'. It would be
extremely useful to have more accurate scaling
laws in the region of very high N, since analytic
continuation of the rotor-vibrator wave function
above threshold would give a simple model for
angular distributions of two electrons leaving the
atom at an equilibrium angle of 9» =180'.

The preceding ro-vibrational interpretation is
pleasing because it lends support to the picture of
the doubly excited atom as a linear rotor-vibrator.
We now give an O(4} interpretation of the model
which indicates that the molecular picture and the
group theoretical one are not incompatible. The
molecular approach assumed harmonic bending of
the XY~ structure about the linear equilibrium
configuration. Here we will assume the following
Hamiltonian for the ro-vibrational energy:

e = (I', +1',)/2R '+ (I +cosg»)/8R . (4.9)

The first term represents the centrifugal part of
the kinetic energy; the second term describes the
leading-order dipole portion of the operator I/r».
The potential energy term reduces to the harmonic
potential near g» =180'. Our goal is to diagonalize
the energy using a representation of O(4) defined on

angular functions only, with one-electron orbital
angular momentum 0 & ) &N-1 for each atomic
shell. Since we are concerned only with the lowest
energy eigenvalues in each shell, we can repre-
sent matrix elements of the dipole unit vector r"

for each electron with the O(4) generator b/N.
This substitution is not exact, but gives a good
approximation of matrix elements when the condi-
tion E«N is satisfied. " We therefore replace the
energy operator e in Eq (4.9) with .the following
modified O(4) energy operator for the shell model:

ea = (1~+1~)/2R + (b( ~ b~)/8RN + 1/8R . (4,10)

Eigenvalues of this energy operator could be found
at each value of the radius R by numerical diagon-
alization of the intrashell energy matrix. Our con-
cern here is with values of R where O(4} can be

B,=~N 4, ~ =+N '.»8 y 2 33 (4.12)

Scaling properties of these O(4) constants are con-
sistent with the empirical values we found for He
and H . However, the magnitudes are too small
to account for the actual level spacings in our com-
puted spectra for He and H, evidently due to a
smaller value of R for these systems. The O(4)
shell radius is therefore unphysical and describes
a highly idealized model. The larger value of R
is more typical of a system involving a fractional
charge Z & 1. The central Coulomb field for elec-
trons in the linear configuration g» = 180' is at-
tractive only when Z &+.

Although the O(4) model predicts constants that
are too small, it does give a very interesting pre-
diction of the relative separation of the rotationlike
and vibrationlike energy contributions. This is de-
scribed by a coefficient y =N(R, /ar, ), which in-
cludes a factor N to account for the different scal-

used to achieve this diagonalization. We identify
two radii where this can be done for each value of
N.

The first O(4) interpretation of the intrashell
energy is seen when R -0 in which case the cen-
trifugal term dominates the energy. In this regime
the energies are described by eigenvalues of the
Casimir invariant L'+D' =p(p+2)+q' for the group
O(4)n which we described in Sec. III. The connec-
tion is seen in the fact that I', +I,' = &(L'+9 ). The
eigenstates are single configuration states as de-
scribed in Eq. (3.11).

The O(4)n symmetry is broken at higher values
of R when the dipole coupling becomes important.
Recall that values of the shell radius R =N' are
most typical of the doubly excited atoms, which
generally involve substantial configuration mixing
in the wave function in order to account for the
electron correlation. It is of considerable interest
then, that we find that the second intrashell group
O(4)~ gives an exact diagonalization of the energy
when R = 8N*. We call this the "O(4) shell limit"
of the model. The energy is described by Casimir
invaria. nts of the subgroup chain O(4)~ &O(3), and

has the following form on the O(4} shell only:

@= (4N —2 —B )/128N (4.11)

Recall that B' is diagonal in the coupled repre-
sentation of Eq. (3.12), and has eigenvalues B'
=P(P+2)- [L(L +)I- T'] which we have written
in a form that emphasizes a symmetric top form
of the rotational energy. The "vibrational" energy
is identified with the correspondence P = &N —2- v

between O(4) and vibrational quantum numbers.
This leads to the following ro-vibrational param-
eters predicted by the model in the O(4) shell lim-
it:
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ing of rotation and vibration energy. The O(4)
shell model described above predicts y = 0.25, in-

dependent of N. Our computed energy spectra for
He and H also show a rather surprising degree of
constancy:

y = 0.243 + 0.001 (N = 2-5)
'I

y„- = 0.233 + 0.005 (N =3-5) .
(4.13)

The value for the N=2 shell of H is slightly lar-
ger, y =0.321. We are impressed by the closeness
of these values, and their agreement with the value
0.25 for the O(4) model.

V. SUMMARY

We have investigated three aspects of intrashell
doubly excited states of two-electron atoms,
thereby providing new insight to the supermultiplet
classification proposed in Ref. 1. First, we have
extended earlier theoretical calculations to include
for the first time all intrashell levels N ~ 5 in He
and H . This study included all possible intrashell
terms 0 &I, &2N- 2 necessary to construct the
complete supermultiplet spectrum. Because ener-

gy differences play an important role in the ro-
vibrational interpretation of supermultiplets, we

have been careful to adopt a systematic computa-
tional procedure for all states. The present vari-
ational estimates of energies were carried out in

the framework of a "charge wave function" ap-
proach' for the nonclosed-shell electron correla-
tion in doubly excited states. The second part of
our investigation was the classification of intra-
shell levels according to O(4). Earlier work in this
area had focused on either the classification of
intrashell configuration mixing at high Z, or chan-

nel mixing at low Z. As Ref. 1 noted, the two views

lead to two hierarchies of quantum numbers, and

hence two types of supermultiplets for intrashell
levels. Our present work has provided a much

clearer picture of the rotationlike and vibrationlike
aspects of the electron correlation implicit in the

O(4) approaches. These interpretations were made

possible by our study of Lie-algebra generators,
and our derivation of matrix elements for intra-
shell operators (cf. Appendix) using three different
intrashell O(4) groups. The third part of our in-

vestigation was the supermultiplet classification of
the spectra for He and H . As described in Ref. 1,
the supermultiplets are built up from different
O(4) levels, and thus encompass a much broader,
and richer range of spectral systematics than

could have otherwise been expected. The unre-
solved double-excitation spectra are very compli-
cated, and we have found many example of level
clustering between states of different L. The su-
permultiplets are found to give a very efficient

resolution of the entire intrashell spectrum, in-

cluding the ro-vibrational structure and accidental
near-degeneracies that other, more limited clas-
sification methods have failed to recognize. We il-
lustrated the power of our supermultiplets for un-

covering these novel spectral features in some
detail for the N =4 shell, and then very generally
for all double-excitation shells N ~5. It seems
quite clear from these results what could be ex-
pected for supermultiplets in even higher shells.
It would be extremely useful then, to have more
accurate estimates of the supermultiplet energies
and scaling. These would also shed light on the

question of possible shape resonances above higher
thresholds in H . Our present investigation of
scaling of low-lying ro-vibrational excitation ener-
gies is at least qualitatively consistent with a pic-
ture of rotational and bending mode vibrational
collective motion for the intrashell electron cor-
relation. As we discussed in Sec. III, this inter-
pretation may possibly be linked to coupled rota-
tions and vibrations of Lenz vectors at high Z.
However, this view is only approximate, and does
not explain why the ro-vibrational freatures seem
to become sharper at low values of g. We will in-

vestigate a ro-vibrational interpretation of the two-
electron Hamiltonian more carefully in a subse-
quent paper. '

It is clear that additional mathematical proper-
ties of the supermultiplets need to be identified,
and exploited in the form of approximate energy
level formulas that can be extrapolated to higher

N. Our present results provide considerable semi-
empirical evidence for an approximate separability
that has thus far eluded identification. In summary

then, we have found the supermultiplet approach to
be an extremely efficient way of unravelling double-

excitation spectra. Our analysis of computed ro-
vibratiopal structure in these spectra has allowed

us to accomplish better what has long been difficult

to do: Give a simple physical picture of the elec-
tron correlation in doubly excited states.
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APPENDIX: SO(4)~ X SO(4)2 MODEL OF
INTRASHELL SPLITTING

The purpose of this section is twofold. First, we

derive some useful matrix elements involving
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A= cq~ Y]Y~, (A 1)

with Y, denoting Lie-algebra generators of the in-
trashell 80(4), XSO(4)„and with real coefficients
c,~. We consider only forms for A that are sym-
metric with respect to the permutation-inversion-
rotation symmetry for two-electron atoms. This
reduces the number of independent parameters in
Eq. (Al) to four, and A is a linear combination of
the operators L', B', D, and A~. When working
in the basis (PQLM) for the group 80(4)s, it is
convenient to express A with four parameters a,
P, y, and 5 in the form

A =n(L +B +D +X }+P(L +B )

+ yL2 + 6(P -A') . (A2)

The first three terms in this expression are Casi-
mir invariants from the chain SO(4), XSO(4),
&80(4)~ &SO(3), and for intrashell states they are
given by

L +B +D +A =4' 4

L +B =P(P+2)+Q2, (A3)

L =L(l, +1).
The fourth term in Eq. (A2) breaks the 80(4)~
symmetry in a different way; it has nonzero ma-
trix elements between different irreducible repre-
sentations (P, Q) —(P', Q'}. Thus 6 represents an
asymmetry parameter for the interaction D2-A~.
This asymmetry is analogous to the asymmetry
term J2 —J2 in the energy formula for a three-di-
menS'ional top: e=aJ'+b J', +c(J', —J'„). The sym-
metric top energy is seen from this when c=0; the
analogous situation in the operator A occurs when
5 =0, in which case A is diagonal on the basis
(PQ LM).

As indicated in Eq. (A3), the matrix elements of
A' and D' are not independent. Furthermore, it is
straightforward to see from the expansion formulas
in Eqs. (3.12)-(3.14), that the matrix elements of
the Casimir invariant L +A' for SO(4)„are related
to those of the invariant L'+D' for 80(4)n by a
simple phase factor:

Casimir invariants of the three 0(4) groups de-
fined in Sec. IG; these results lead directly to Eq.
(3.31) for the average value of cosg~ in the intra-
shell hydrogenic basis. 'They are also useful for
decribing matrix elements of the intrashell model
energy ~ in Sec. IV. The second point we consider
is the general form of energy-level splitting for
the intrashell states, under the assumption that
this is a simple function of Casimir invariants for
the chain 80(4), &&SO(4), &80(4}~ &80(3}.

We start by considering matrix elements of an
operator

12

(P'Q'LM(L +A (PQLM)
=(-1)'+' (P'Q'L M(L +D (PQLM}, (A4)

with c=N-1-2(P —Q). Combining Eqs. (A3) and

(A4), we find the expression

(P'Q'IM(L'+D'(PQLM)[1+(-1)"' ]
=6~~.boo. [4N —4+L —B ] . (A5)

Here 5&&
= 1 if i =j, and 5,&

= 0 if z pj. E igenvalues
of L~ and B' are understood on the right-hand side
of Eq. (A5), and following equations. Our main in-
terest lies with the diagonal matrix elements P'
=P, Q'=Q. However, it is interesting to note the
selection rule that off-diagonal matrix elements of
L +D, and hence also D Bnd A, vanish identical-
ly when c+c' or c- c' is an even integer; that is,
they vanish when either ~ or ~Q is nonzero, and
—,'(AP —gQ) is even.

We now use Eq. (A5) in order to evaluate diagonal
matrix elements of the operators 1', + 1,' =-,'(L'+D')
and 2b, b, =2N' —2 —B~ ——,'(L'+D'), which repre-
sent special cases of the operator A. These are
easily evaluated as

(PQLM(l +1 (PQLM)=N2 —1+~(L2 —B2)

(A6)

(PQLM(2b, ~ b2(PQLM)=N —1-~(L +3B ).
(A7)

'These results have not been described in previous
work for doubly excited states. Suitable combina-
tions of Eqs. (A6) and (A7) lead directly to diagonal
matrix elements of the energy eo in Eq. (4.12). We
can also use Eq. (A7) in order to evaluate average
values of cose» for hydrogenic intrashell states,
using the operator replacement cos8~ - (b, b2)/N',
the results of this were displayed in Eq. (3.31).
We derive another useful result using the operator
replacement r, ~ r, - (3N/Z)'(b, b, ) on the hydro-
genic intrashell basis; in terms of this we evaluate
an expression for the mean-square interelectronic
separation,

(PQ LM(r ~ (PQLM)

=(N/4Z} (20N +76+33B +3L ). (A6)

One sees explicitly in this formula that, for each
value of L„ the electron correlation is more favor-
able in SO(4) states which correspond to larger
values of B'. Wulfman" described an approximate
formula for diagonal matrix elements of the Cou-
lomb repulsion operator 1/r~ in the hydrogenic
intrashell basis. However, he did not evaluate
contributions of a term 1', +1', in his formula. We
can now account for this term using Eq. (A6) de-
rived here; in terms of this we find that Wulfman's
formula becomes simply"
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(PALM( 1/r» (PALM)

~(4Z/N)(24N2+24+14B +21,~) ' 2 (A9)
The preceding results agree qualitatively with the

level orderings found ct lour Z in the isoelectronic
series for two-electron atoms. In view of the rel-
atively small 7 doubling for many intrashell
states, it is reasonable to assume that the energy
in each level involves intrashell splitting that is a
simple function of A when 5 =0. In this case the
energy-level ordering for each shell would be a
function of the operator

g =+2 yQ, 2, (A10)
where X is a parameter for the SO(4)~ &SO(3) sym-
metry breaking. Sinanoglu and Herrick described
approximate empirical formulas for intrashell en-
ergies. ' In the case of He they found the param-
eter ~= ~». This empirical value is similar to ~

from Eq. (AS) for the hydrogenic mean-square
correlation, and the value ~ = + from our version

Eq. (A9) or Wulfman's approximation of the repul-
sion energy at high Z.

Although the operators A and I can account for
many of the qualitative features of the intrashell
spectra, it is clear that more accurate energy
formulas are needed. We note, for example, that
diagonal matrix elements of A cannot describe an
exact degeneracy for levels in the largest diamond
supermultiplet in each shell. In this sense the
near-degeneracies in the computed I supermulti-
plets are still "accidental" from the group theo-
retical approach to the problem. This contrasts
with the molecular ro-vibrational approach, where
the near-degeneracy is part of the degeneracy of a
two-dimensional oscillator. " The best descrip-
tion of these computed near-degeneracies with X
is found when the parameter ~ =0. In this case the
angular momentum contribution to the energy is a
function of L(L+1)- T', and is thus similar to the
symmetric top energy for a rotor vibrator.
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