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A molecular-dynamics simulation of the pressure broadening of the sodium resonance line by argon gives an
absorption line shape which is compared to results from the Anderson-Talman classical path theory. The system
consists of 255 argon atoms and one sodium atom in a box with periodic boundary conditions. The size of the box
and the initial velocities are chosen to correspond to a particle density of 2 10*! cm=* and a temperature of 450 K.
The time-dependent difference potential matrix is utilized in an adiabatic approximation to give the molecular-
dynamics line shape. Spin-orbit coupling and Doppler broadening are neglected. A Fourier-transform technique
is used to evaluate the Anderson-Talman theory line shape for the same system. Remarkable agreement is found
between the molecular-dynamics line shape and the line shape obtained from the one-perturber spectrum by
means of the Anderson-Talman theory. Comparison of molecular-dynamics line shapes calculated with a scalar
and with a vector dipole transition moment shows that relaxation of polarization has a significant broadening

effect on the center of the line.

I. INTRODUCTION

In the theory of pressure broadening of atomic
spectral lines,'+? the line shape is related to few-
body interactions among the atoms. The quantitative
reliability of the various physical assumptions
made to simplify the theory has not been thoroughly
tested because tests based upon a comparison of
calculated and observed line shapes are incon-
clusive when the interatomic potentials are im-
precisely known.

The technique of molecular-dynamics simula-
tion® can be used to generate “experimental” data
for a system with known interactions. In this
~omputer-simulation technique, a finite system is
allowed to evolve with time and properties of
interest, such as an atomic line shape, calculated
from the detailed dynamics of the particles. Ap-
proximations in the dynamics, such as pairwise
additivity of forces and a classical path, are us-
ually made.*

In this work, molecular-dynamics data for the
sodium resonance line in absorption pressure
broadened by argon are analyzed to give an atomic
line shape using methods that are based upon an
adiabatic approximation to the difference potential
(discussed in Sec. II). The feasibility of producing
atomic line shapes with an acceptable statistical
error is proved and the importance of perturber-
perturber interactions and rotation of polarization
axis on the line shape are assessed. Comparisons
are made with theories based upon the concepts of
Jablonski® and Anderson® that the N-perturber line
shape can be expressed in terms of convolutions
of one-perturber line shapes, or alternatively,
the N-perturber autocorrelation function can be
expressed in terms of products of one-perturber
autocorrelation functions.

Successful completion of this work required
development of new numerical methods for analy-
sis of the molecular-dynamics data and for applica-
tion of the classical path Anderson-Talman theory.
These methods are described in Secs. III and IV.
The results are presented in Sec. V and discussed
in Sec. VI.

II. DIFFERENCE POTENTIAL

The sodium resonance line results from a tran-
sition from the spherically symmetric ground 32S
state to the manifold of 32P states. Under condi-
tions in which the sodium atom density is much
less than the argon atom density, the pressure
broadening of the spectral line is due to sodium-
argon interactions with a negligible contribution
from sodium-sodium interactions. In the classical
path approximation (see following sections) the
line shape is then directly related to the difference
in the interactions of argon atoms with 2P and with
%S sodium atoms.

The interaction of a 2S sodium atom with an
assembly of argon atoms is obtained quite simply
and with reasonable accuracy by making the Born-
Oppenheimer and pairwise additivity approximations.
The total interaction energy as a function of the
positions of the atoms is given by

VS=Z Vx(Rc)*‘Zq: Vae (Ryy), (1)

where V is the diatomic interaction potential be-
tween a sodium atom and an argon atom in the
ground X?Z state, R, is the distance between the
sodium atom and argon atom i, V,, is the interac-
tion potential between argon atoms i and 7, and

the sums run over argon atoms. In the molecular-
dynamics simulation of an absorption experiment,
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the motion of the atoms is governed by forces
derived from this ground-state potential energy
surface.
The interaction of a 2P sodium atom with an as-
sembly of argon atoms is complicated by the de-
generacy of the 2P states. The spin-orbit interac-
tion causes the resonance line to break up into
a doublet at low pressures; it causes broadening at
intermediate pressures, but at the very high
pressure used here its effect is negligible, thus
we simplify the system by neglecting the spin-
"orbit interaction. Then, because there is only

one unpaired electron in the system, and we con-
sider only electric-dipole transitions, the electron
spin does not influence the spectrum. With this
simplification, the 2P configuration includes three
degenerate states corresponding to the three values
of the orbital angular momentum projection. Ina
previous publication’ it was shown that the inter-
action potential can then be considered to be pair-
wise additive as a 3 X3 matrix

Vp=V-1+G, )
where
and
¢=3 LELViR) sy, )
i i

The functions Vy and Vi are Born-Oppenheimer
interaction potentials in the B®Y and A%II diatomic
states, ﬁ‘ is the distance vector from the sodium
atom to perturber i, and in the {b,, by, b} repre-
sentation A(R;) is the real matrix

G -yi-23 2% 2x,24
ﬁ(ﬁi) =] 2x; yi -« -2} 2y,2y , (5)
~ 2x;2y 29,2, 2} -5 -y}

where x;, ¥4, and z; are the Cartesian components
of R;. The difference potential matrix is given by

(6)

The perturber-perturber interactions cancel in the
difference potential.

Because of the three-fold degeneracy of the
sodium atom 2P configuration, there are three
adiabatic excited states of the polyatomic system
(sodium atom plus argon atoms). The eigenvalues
of the difference potential at each geometric con-
figuration of the system define three difference
potential surfaces which correspond to the three
adiabatic excited states. We use these surfaces
in analyzing the molecular-dynamics data, and in
this sense we utilize an “adiabatic approximation.”

AV=Vp-Vs-1

The three components of each eigenvector of the
potential matrix give the direction cosines of the
transition moment vector for the corresponding

state

—in= IU-'ZDU é, M

where &,, 2,, and &, are unit vectors in the x, y,
and z directions, Dy, is the ith component of
eigenvector j, and |u | is the magnitude of the
atomic transition moment, which will be assumed
independent of the configuration of perturbers.

III. MOLECULAR-DYNAMICS METHOD

In the molecular-dynamics simulation, 255 argon
atoms and one sodium atom are given initial posi-
tions and velocities within a box with periodic
boundary conditions, after which they are allowed
to move according to Newton’s equations of motion,
Initial velocities are chosen to have a mean square
value corresponding to the desired temperature,
but are otherwise random. Initial positions are at
the sites of a face-centered cubic lattice. The
size of the box is determined by the desired num-
ber density. An absorption experiment was simu-
lated in the sense that the dynamics was carried
out on the ground-state potential energy surface,
for which pairwise additivity was assumed.

In the molecular-dynamics algorithm, the box
is divided into cubical cells of edge length equal
to the “range of the interactions.” We chose 125
cells of edge length 19.05 bohr, at which distance
the potentials were arbitrarily truncated. Dis-
tances (squared) between particles within the same
cell and in adjacent cells are calculated. A linked-
list technique® is used to follow the cell location
of each particle. All pair interactions are interpo-
lated by means of a tension-spline algorithm®
with independent variable equal to the square of the
distance. In this way the taking of square roots
is avoided. The equations of motion are numerical-
ly integrated with a simple second-difference
formula and a time step of 1.0x107% s, chosen as
the best compromise between numerical stability
and precision. The stability of the temperature,
calculated from the mean square velocity, was
taken to be an indication of equilibrium and of the
performance of the algorithm. Equilibrium data
were collected and saved after the system had
evolved for several thousand time steps. Data
pertinent to the line shape problem, active atom
velocities, and the difference potential matrix
[Eq. (6)] were saved for 16384 time steps.

The molecular-dynamics simulation gives the
time-dependent difference potential matrix in a
representation that moves with the sodium atom,
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but is orientationally space fixed. In this work

we focus on the applicability of the molecular-
dynamics method to the optical line-shape problem
and on the effect of perturber-perturber interac-
tions on the line shape in a high pressure gas. To
this end we analyze the molecular-dynamics data
to simulate a system which evolves adiabatically
along a classical path with spin-orbit coupling and
Doppler broadening both neglected. The data are
analyzed in three ways.

The first analysis is made to evaluate the per-
formance of the molecular-dynamics technique
and the importance of perturber-perturber inter-
actions for a simplified physical model to which the
Anderson-Talman theory® (Sec. IV) can be applied
in an unambiguous manner. This analysis is un-
realistic in that it utilizes a single diatomic ex-
cited state potential and simple pairwise additivity,
and thus ignores the degeneracy of the atomic ex-
cited state. The second analysis uses the three
polyatomic excited-state adiabatic potential sur-
faces for the interaction of the degenerate atom
with the perturbers, and the third analysis, the
most realistic, includes the vector transition mo-
ment, and thus accounts for the effects of relaxa-
tion of polarization.?

In the first analysis, a single upper-state poten-
tial, the A?Il or B*Z, is used. The corresponding
difference potential yields an instantaneous fre-
quency vy or vy. In terms of the difference poten- .
tial matrix [Eq. (2)]

hvg =V +TrG (8)
and
hvy =V - TrG. ©)

All frequencies are measured relative to the un-
perturbed atomic line. Then the phase of the rad-
iation
t
o0 =2n [ vt (10)
0
where the subscript T or IT has been omitted.
The signal
{Iulexp[w(t)], 0<t<T
= 1
f@ 0, t<0; ¢t>T (11

where T is the duration of the simulation, is Fou-
rier transformed!? (FT)

F)=FT[f@)]= f ) exp(-2mivt)f (t)dt (12)
and squared to give the line shape
Rel(v) =F*(v)F(v), (13)

which must, however, be treated further to reduce
noise due to statistical fluctuations. The line

shape is Fourier transformed to give the auto-
correlation function

C(T)=FT‘[I(V)]E_[” exp(2nivT)Rel(v)dv. (14)

The correlation function so obtained extends for
the full time range, 16 384 time steps, but the later
times contribute only noise. A window is used to
select the statistically significant data and discard
the noise. The autocorrelation function [Eq. (14)]
is multiplied by a window function!!:

77 sin(ar /M) | +(1 = |r | /M)cos (a1 /M),

w(r) = IFlsm  (@15)

0, Ir|>M

and extended to negative times by the relation
C(-1)=C*(1), so that the Fourier transform will
give only the real part of the line-shape function
I(v),

Rel(v) = FT[C(7)]. (16)

In this way, the noise is reduced to an acceptable
level while good resolution is retained if M is
chosen to be 128 time steps, the value used to give
the line shapes shown here. A value of M =256
gives a line shape indistinguishable, except for a
minor increase in noise, from that given by M
=128, so the results are rather insensitive to
the choice of the size of the window.

In the second analysis, the adiabatic approxima-
tion with scalar transition moment, the difference
potential is diagonalized'? at each time step

hy=DTAVD , an

to give the time-dependent frequencies v,;, j=1,2,3.
From here the analysis follows the preceding one
with v; replacing v in Eq. (10) and with the correla-
tion functions averaged

clr) =3 zc,(f) (18)

before the window is applied.

In the last and most realistic analysis, the vec-
tor properties of the transition moment are con-
sidered. The components of the eigenvector ma-
trix of the difference potential are proportional to
the Cartesian components of the transition moment
(Sec. I). Thus, Eq. (11) is replaced by

fi;8) = | |Dyy(t)explio, ()] (19)

and

3 3
cir)=4 ‘Z_; ;Cu(’r). (20)

Otherwise the analysis is identical to the first
two. Since the phases of the eigenvectors [Eq.
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(17)] are necessarily arbitrary, any numerical
method for determining them may introduce noise
from random sign changes. This is eliminated by
a simple test to insure that the scalar product of
the eigenvectors at two successive time steps is
nearer +1 than -1.

IV. CLASSICAL PATH ANDERSON-TALMAN THEORY

Following Royer,! we write the Anderson-Talman
theory® autocorrelation function as an exponential

C(r) =C(0)exp[G,(r)], (21)
where
G,(1) =n[C,(r) - Cl(O)]/Io. (22)

Here x is the number density of perturbers, C,(t)
is the one-perturber dipole autocorrelation func-
tion, and I, is the atomic line strength. By means
of Egs. (16), (21), and (22) the density-dependent
line shape is expressed in terms of the one-per-
turber autocorrelation function.

The one-perturber autocorrelation function can-
not, however, be obtained as a simple Fourier
transform of the one-perturber line shape. The
function C,(r) does not approach zero, but becomes
a linear function of time, as the time 7 approaches
infinity. This fact, which results from the physical
approximation of one perturber in an infinite
volume, leads to the divergence of Fourier inte-
grals over the one-perturber line shape.

It is possible to evaluate C,(r) while avoiding
divergent integrals if the second time derivative
C,(r), which is Fourier transformable, is evalua-
ted and then integrated twice. The second deriva-
tive is determined by

C,(r) = -47*FT*[v*1,(v)], (23)

where I,(v) is the one-perturber line shape and
v*I,(v) is finite everywhere. Then, from Eq. (22),

6, =6/1)( / 'fo'é‘,(s)ds at +¢,0) . 24)

For the purposes of numerical evaluation, the
iterated integral is converted to a single integral

c,(r)=(n/10)( fo '(T-t)é‘l(t)ahél(oy) . @)

The value of ('31(0) is purely imaginary and is
related to the first moment of the one-perturber
line shape

C,(0)=2mi f v, (v)dv . (26)

When 12I,(v) and C,(0) have been calculated, either
by quantum mechanical or classical path methods,
Eqgs. (23), (25), (21), and (16) are readily evalua-
ted to yield the density-dependent line shape. For

consistency with the molecular-dynamics calcula-
tions, a classical path method is used here. In
the description, which follows, the notation

(20, E)] =7 [ dEaexp(—TET‘) 2 @7+, E)

27
is used. Here
Qp=QmukT/h?)P? (28)

and p is the reduced mass of the diatom. In some
of the calculations an average over diatomic states
that correlate with degenerate atomic states is also
performed. Then Eq. (27) is multiplied by the sta-
tistical weight and summed over diatomic states.

In the classical path formulation of the one-
perturber problem, the fundamental quantity is
the time-dependent signal

u(R(t))exp@L‘AV[R(t’)]dt'), t>0

0, <0

f@)= (29)

where R(¢) is the trajectory in the initial state
potential. The function C,(7) is related to the auto-
correlation function of the signal f(t):

e = ([ rrstenar) (30)

and
0= ( S “prowat) . (31)

Explicitly, if it is assumed that u(R) is a slowly
varying function,

&0 = ( [ wmavem) . (32)
The classical path evaluation of v?I,(v) is derived
by writing

1L (v) = (40%%) " -2miv F*(v)27iv F(v) ]y (33)
where

2mivF(v) =FT [ ()], (34)
and ,

. 1 ¢ ’
(t/ﬁ)u(R(t))AV(R(t))eXp(E j: AV(R(t ))dt),

f)= £50 (35)

0, t<0.

It has again been assumed that u(R) is a slowly
varying function.

Note that the required Fourier transforms of
Egs. (34), (23), and (16) are all well behaved. The
function f(#) approaches zero for large times due
to the AV factor. The function v?I,(v) remains



1504 G. J. ERICKSON AND K. M. SANDO ' 22

finite as v- 0. The function C(r) approaches zero
for large time because the real part of G,(7) [Eq.
(22)] becomes large and negative at large times.
Therefore, a stable numerical algorithm is
achieved.

The algorithm is in two parts. In the first part
12I,(v) and C,(0) are evaluated. In the average
over collision energies, Laguerre-Gauss inte-
gration is used, while a simple sum is used for
the angular momentum. Twelve Laguerre points
are used in the energy integration. It is usually
unnecessary to sum over each value of J in order
to achieve the desired accuracy (3 or 4 significant
figures). For the NaAr system every fifth J value
was used.

For each Jand E, a classical (curved) trajec-
tory is determined by means of a second-order
Runge-Kutta method®® with a constant time step.

A rather small time step is necessary for the
fast-Fourier transform steps to come later, so
high-order integration methods for the other steps
in the calculation are not practical. For each
trajectory, the time derivative of the signal [Eq.
(35)] is evaluated, Fourier transformed, and
squared to give a contribution to the average of
Eq. (33). The phase integral in Eq. (35) is evalua-
ted with simple trapezoidal rule integration and
the “fast-Fourier transform!®” is used. Sufficient
accuracy has been achieved with 2048 time steps
of 100 a.u. duration (1 a.u. of time =2.418 88

x 107" s). The computer time required for a com-
plete one-perturber spectrum is about 1 hona
CDC CYBER 70/71 computer.

The efficiency of this algorithm, as compared to
others,'*™!7 is due to the elimination of an explicit
evaluation of the autocorrelation function. The
fast-Fourier transform is used to change to the
frequency domain where a simple square of the
signal is evaluated. The Fourier transform is
made possible because the spectrum is expressed
in terms of the time derivative of the signal 7 (),
which is a well-behaved function.

In the second part of the algorithm the quantity
v?I,(v) is backtransformed to give C,(r) [Eq. (23)].
The time integral of Eq. (25) is done by trapezoi-
dal rule integration. Finally, the result is multi-
plied by the density [Eq. (22)], exponentiated [Eq.
(21)], and transformed [Eq. (16)] to give the line
shape. Only seconds of computer time is required
for the second part of the algorithm.

V. RESULTS

Molecular-dynamics and Anderson-Talman
(AT) calculations of the shape of the resonance
line of sodium perturbed by argon were carried
out with the methods described above and using

NaAr pair potentials for the ground and excited
states interpolated from the configuration inter-
action results of Saxon, Olson, and Liu.’® The
Ar, interaction was that derived from experiment-
al bulk property data by Barker, Fisher, and
Watts.'® A temperature of 450 K and a density

of 2% 10%! cm ™ (r.d. =74.4) were used. Under
these conditions Doppler broadening is negligible,
and the spin-orbit splitting is small compared to
the linewidth. Neither is included here.

In the first set of calculations, the molecular-
dynamics data are analyzed and the AT calcula-
tion is done with the assumption of a single diatom-
ic excited-state potential, either the T or the II.
In this case there are no ambiguities in the applica-
tion or interpretation of the Anderson-Talman
theory. The many-body line shape is simply a
sum of convolutions of one-perturber line shapes.
The spectra are compared in Figs. 1 and 2. With-
in statistical error the spectra are identical. This
result indicates that the molecular-dynamics
method can be applied to the atomic-line-shape
problem, that the AT concept is good for nonde-

.generate states up to the relatively high density

Intensity

! n L__ 1

-500 0.0 500
Energy (cm™)

FIG. 1. Comparison of Anderson-Talman (AT) and
molecular-dynamics (MD) line shapes for a single up-
per Il-state potential. The intensity is relative, but the
spectra are normalized to have the same integrated
intensity. AT--e-; MDe—.
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FIG. 2. Comparison of AT and MD line shapes for a
single upper Z-state potential. AT----; MD—— .

used here, and that the line shape is insensitive

to the perturber-perturber interactions at this
density. With the assumption of pairwise additivity
of interaction potentials, the perturber-perturber
interactions influence the trajectory in the molecu-
lar-dynamics simulation, but they cancel in the
difference potential. It is because the line shape is
sensitive to the difference potential, but relatively
insensitive to the details of the trajectory, that the
perturber-perturber interactions are unimportant.
We note in passing that the A’II-X2Z difference
potential is uniformly negative, whereas the
B*z-X2% difference potential is predominantly
positive; thus, the II state leads to a line shape
with no blue wing and the T state to one with no
extended red wing.

The dipole autocorrelation functions from the
molecular dynamics and AT calculations for the
single difference potential cases are compared in
Figs. 3 and 4. The autocorrelation functions are
very similar, however, there are deviations at
longer times that appear to be systematic and
larger than statistical error.

In an allowed atomic transition at least one of
the states involved must be degenerate and there-
fore correlate with more than one molecular state
of the system, active atom plus perturbers. When
adding diatomic interactions to estimate the poly-
atomic energy surface these must be added in the

Autocorrelation

Time (10" sec)

FIG. 3. Comparison of AT and MD autocorrelation
functions for a single upper I-state potential. AT----;
MD

Autocorrelation

1 2 3 4 5

Time (10" sec)

FIG, 4. Comparisonof AT and MD autocorrelation func-
tions for a single upper Z-state potential. AT----;
MD——.
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same space-fixed representation. This leads to a
difference potential matrix for the system. An
adiabatic approximation to the molecular-dynamics
line shape is determined by diagonalizing this
potential matrix and adding the spectra calculated
from the use of each eigenvalue. In the low den-
sity limit, when only one perturber is interacting
with the active atom at one time, the eigenvalues
are the values of the adiabatic diatomic interac-
tion potentials. For the NaAr case there are three
eigenvalues, one of which approaches the Z-state
energy at low densities while the other two ap-
proach the II-state energy. There is no AT-like
approximation that is strictly analogous to the
molecular-dyanmics adiabatic approximation, but
there are two plausible approximations, both of
which approach the correct form in the limit of
low densities. One approximation is simply to
add the single state N-perturber spectra (with the
appropriate statistical weights); the other is to
add the one-perturber spectra for the Z and I
states.

In Fig. 5 the sum of the AT N-perturber spectra
for the T and II states is compared to the adiabatic
molecular-dynamics line shape. The agreement
is poor. The reason is that the three components
of the adiabatic molecular-dynamics line shape,

Intensity

-1000 0.0 1500
Energy (cm™)

FIG. 5. Comparison of weighted average of AT line
shapes for II and T states with adiabatic MD line shape.
ATeeee; MD—o.

the spectra calculated from each of the three
eigenvalues, do not look like one Z-state spectrum
and two II-state spectra (Figs. 6-8). The greatest
discrepancy is found in the spectrum from the
second eigenvalue which resembles neither the

Z- nor the II-state spectrum.

When the sum of the - and II-state one-per-
turber spectra (with statistical weights of § and 2)
is used in Eq. (23), the resulting AT N-perturber
spectrum is in excellent agreement with the adia-
batic molecular-dynamics line shape (Fig. 9).

It is possible to incorporate the rotation of the
transition dipole moment for each molecular tran-
sition (active atom plus perturbers) into the adia-
batic molecular-dynamics line shape [Eq. (20)].

In Fig. 10 the effect of the rotation of the direction
of polarization is assessed by comparing the
results of molecular-dynamics analyses with and
without consideration of polarization. The rotation
of the polarization axis is seen to have a slight
broadening effect on the center of the line. This

is reflected in a modified decay rate in the auto-
correlation function (Fig. 11).

V1. DISCUSSION

The molecular-dynamics technique has been
shown to be a useful tool for studying the dynamic
processes involved in the formation of the shapes
of pressure-broadened atomic spectral lines.
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FIG. 6. Comparison of AT line shape for a single up-
per Il-state potential with MD line shape from first
eigenvalue of difference potential. AT----; MD——,
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Intensity

-1500 0.0 5 1000
Energy (cm™)

FIG. 7. Comparison of AT line shape for a single up-

per Il-state potential with MD line shape from second
eigenvalue of difference potential. AT-wee; MDee—.

Even though there is only one active atom in the
system, along with 255 perturbers, the statistical
error in the calculated spectrum is held to an ac-
ceptable level with molecular-dynamics runs of

Intensity

-500 00
Energy (cm™)
FIG. 8. Comparison of AT line shape for a single up-
per Z-state potential with MD line shape from third
eigenvalue of difference potential. AT-—-c; MDe— .

Intensity
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-1000
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FIG. 9. Comparison of AT line shape calculated from
weighted average of II- and Z-state one-perturber spec-
tra with adiabatic MD line shape. AT-=--; MDem—.

Intensity

-1000

00 1500
Energy (cm™)

FIG. 10. Comparison of adiabatic MD line shape with
the adiabatic MD line shape that incorporates relaxation
of polarization. No polarization----; With polarization

——,
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Autocorrelation

+
1

w4

. 2 13
Time (10 ~sec)

FIG. 11. Comparison of adiabatic MD autocorrelation
function with the adiabatic MD autocorrelation function
that incorporates relaxation of polarization. No polari-
zation---~; With polarization.

a readily attainable length (less than 20000 time
steps). The consistency found between the mo-
lecular-dynamics and the Anderson-Talman theory
results confirms the utility of the molecular-dy-
namics approach and shows for one system (sodi-
um perturbed by argon, T =450 K, N =2x10?
cm™3) that the basic assumptions of the Anderson-
Talman theory are remarkably good. The effects
of coupling between atomic states, the spin-orbit
interaction, and Doppler broadening are expected
to be small corrections to the line shape at this
high pressure, and have been neglected for sim-
plicity. Extensions to investigate the importance
of these more subtle effects will be pursued in
future work.

The remarkable agreement between the Ander-
son-Talman theory and the molecular-dynamics
spectra for the simple nondegenerate case (single
upper-state potential) indicates that the indepen-
dent-perturber approximation inherent in the theory
is valid, even at the rather high density used here.
There is a noticeable discrepancy in the long-
time tail of the autocorrelation function when the
II-state interaction is used, but this causes only
a very small difference in the spectra.

When the degeneracy of the excited state, and
therefore the difference potential matrix, is con-

sidered in an adiabatic approximation, the Ander -
son-Talman theory still gives a line shape in ex-
cellent agreement with that from the simulation
(Fig. 9) provided that the one-perturber spectrum
is constructed by adding the contributions from the
¥ and II states before the density dependence is
introduced; that is, when the spectra are added at
the “one-perturber level.” The meaning of this
result is clear if we decompose Eq. (21):

C(r) =C(0) exp[G,5(1)] exp[2G 5 (1)]. (36)

The - and II-state autocorrelation functions are
multiplied to give the density-dependent autocorre-
lation function, which is equivalent to convoluting
the corresponding spectra.

In the molecular-dynamics simulation, the dif-
ference potentials are considered to be pairwise
additive as matrices in a space-fixed representa-
tion. Thus, as long as the matrix representation
is retained, the effects of two different perturbers
are correlated only by means of the perturber-
perturber interactions, which have already been
shown to be unimportant for our system. However,
when the difference potential is diagonalized to
form the adiabatic approximation, a different
kind of correlation of perturber effects arises.
For simplicity, consider the two perturber case
and let the positions of the sodium atom and one
of the argon atoms be fixed. As the second per-
turber approaches the Na-Ar pair, each of three
eigenvalues will receive a contribution from the
approaching argon atom, however, that contribu-
tion may be from a IT-state interaction, a Z-
state interaction, or a combination thereof, de-
pending upon the position of the first perturber.
The agreement found between the AT and molecu-
lar-dynamics spectra indicates that this correla-
tion is also unimportant for our system. Within
the molecular-dynamics framework, the adiabatic
approximation is expected to be good, an asser-
tion that will be tested in future work, thus the
Anderson-Talman theory with adiabatic diatomic
interactions, although not a rigorous counterpart
to the N-body adiabatic approximation, should be
reliable for predicting the shapes of atomic lines
at high perturber densities.

The vector properties of the transition moment
make possible a broadening mechanism for atomic
lines that involves relaxation of polarization. A
quantitative assessment of the importance of this
mechanism is readily obtained from the adiabatic
molecular-dynamics method, since an eigenvector
of the difference potential matrix is proportional
to the transition moment for the corresponding
state. For our system the effect is noticeable
(Figs. 10 and 11), but it is less important than
energy changing effects.
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Better agreement between the Anderson-Talman
theory and molecular-dynamics line shapes is
reported here, than was indicated in preliminary
reports?®?! of this work. The reason is that better
numerical methods have been used here.
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