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Dependence of photoabsorption spectra on long-range fields
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Strongly energy-dependent photoabsorption cross sections near excitation thresholds have been

parametrized in terms of separate short- and lang-range field contributions. The largest portion of this

energy dependence results from standard parameters characterizing the long-range field effects; these

parameters are known analytically for the most common outer fields, and can be calculated for others

independently of the complicated short-range dynamics. The approach is illustrated in the Appendix by

using a semiempirical fit to the total H photodetachment cross section to predict partial cross sections.

I. INTRODUCTION

Photoabsorption cross sections often vary rapid-
ly with photon energy, particularly near the
threshold for a new excitation process. This re-
port develops a parametrization of these strong
energy dependences using the methods of multi-
channel quantum defect theory (MQDT)." But
whereas the original MQDT applied to photoelec-
trons escaping in a long-range Coulomb field, the
present approach treats particle escape in an
arbitrary long-range field. This formalism should
then describe such diverse processes as negative-
ion photodeta. chment, molecular photodissociation,
and nuclear photodisintegration, in addition to
atomic and molecular photoionization.

The most complete previous formulation of
MQDT was the study of atomic photoabsorption
by Lee and Lu. ' They expressed cross sections
in the discrete, autoionizing, and open portions
of the spectrum in terms of two sets of parame-
ters. The first set consists of rapidly varying
but simple parameters which summarize the effect
of the long-range Coulomb field. The second set
compactly characterizes the short-range many-
electron dynamics, and accordingly this set varies
slowly with energy. The MQDT analysis was later
extended by Lee to treat negative-ion photode-
tachment, allowing for the energy dependence
characterizing the long-range centrifugal field
alone rather than the Coulomb field. Together,
Refs. 1-4 have been instrumental in interpreting
a large number of experimental photoabsorption
measur ements. '

More recently it became apparent that Seaton's
classification of Coulomb field parameters' and
Lee's classification of centrifugal field parame-
ters could be extended to arbitrary long-range
fields. The article referred to below as Greene,
Fano, and Strinati (GFS)' demonstrated this
generality of MQDT and showed that the es-
sential properties of any long-range field can be
summarized by six basic para, meters. In the pres-

ent article, I will show how these parameters af-
fect photoabsorption by different systems. The
incorporation of the technology of GFS into the
formulation of Lee and Lu is straightforward,
though somewhat laborious. I present these re-
sults here to streamline applications in a broad
class of systems, and also to introduce a matrix
notation that may simplify future numerical im-
plementations of MQDT. The advantages of such
an analysis can be summarized as follows:

(a) The strongest contributions to the energy
dependence of cross sections —namely, long-range
field effects —are automatically built into the for-
mulation. Thus experimental data near excitation
thresholds can often be fitted in terms of a small
number of constant or slowly varying short-range
parameters.

(b) Ab initio calculations need to be performed
only within a short-range "reaction zone" (r& ra),
since the outer field properties are already para-
metrized. Consequently, the calculation needs to
be performed only over a coarse mesh of ener-
gies 4q & r,'m ' a.u. , where m is the mass of the
escaping particle in a.u.

These two advantages are illustrated in two re-
cent articles: The semiempirical use (a) of the
formalism of this paper (I) is demonstrated in a
study of H photodetachment', and the simplifica-
tion of an ab initio calculation (b) of K photode-
tachment is demonstrated in the paper (II) follow-
ing this one. '

The parametrization of photoabsorption cross
sections developed below (Sec. II) has distinct
limitations which I will take care to point out.
First, this formulation is not meant to include
the photoeffect with more than a single escaping
particle. The extension to multiple ionization
processes is nontrivial and is a subject of current
interest. ' Second, only those single-particle
ejection processes are treated for which the long-
range potential v(r) (between the particle and the
residual aggregate) has certain properties. The
potential must be local and central at sufficiently

149 1980The American Physical Society



150 CHRIS H ~ &REEVE

large radii r )rp At first sight this might seem
to exclude the dipole polariza, tion potential a-/2r4,
which results from an off-diagonal r ' potential in
the close-coupLing equations. The Appendix of the
following paper' shows, however, that an MQDT
treatment of this potential can be justified at suf-
ficiently large radii by an adiabatic diagonaliza-
tion. Finally, the. potential v(r) is assumed to
become constant at r- ~, which excludes photo-
absorption in the presence of external electric
and/or magnetic fields. Yet some adaptation of
the present MQDT procedures might prove useful
for these problems as well.

II. PARAMETRIZATION OF THE PHOTOABSORPTION

PROCESS
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The key conclusion of GFS to be used below is
that relationships between three alternative pairs
of independent solutions determine the energy de-
pendences induced by the outer field. One pair of
solutions (fo, g') is independent of the energy q

at small radii r-0, and is analytic in p at all
finite r. A second pair of solutions (f,g) oscil-
late 90' out of phase at large r, each with the
energy-normalized amplitude (2m Ink)'~'. The
reduced mass m of the escaping particle was set
equal to unity in GFS; by including it explicitly,
I allow for the escape of particles with different
masses. Finally, the third pair of solutions (f,
f') are incoming (outgoing} waves at q &0 and ris-
ing (falling) exponentials at q &0. The relation-
ships between these three pairs of solutions were
written formally in Table I of GFS in terms of
six energy-dependent parameters: (P(v, I), D(v, I),
A(v, I) and 9(q, I)] occur at q= —I/2mv'&0, and

(q(k, l}, B(k, f) and Q(q, f)} occur at q=k'/2m o 0.
To summarize briefly, the connection between

the three alternative base pairs can be paramet-
rized in general as

The parameters q and P are thus interpreted as
long-range field contributions to the phase shift,
while B and A are amplitude parameters which
relate f and f'. The mixing parameter 9 was in-
troduced by Seaton for the long-range Coulomb
field, and has an analog for all other fields, as
discussed in GFS. Finally, the parameter D re-
scales the falling and rising exponentials (f', f )
for negative energies. These parameters are
tabulated in Table I of GFS for the attractive Cou-
lomb field, zero field, and for the dipole field.
[Note, however, that the expression for the Cou-
lomb field amplitude parameter B, given in Table
I of GFS, should actually contain an additional
factor e' ', as in Eq. (2.25) of that reference. ]
Next, I will show how these parameters enter the
photoabsorption cross section.

k';/2m, , q; ~ 0

—I/2m .v. , g . &0,
(2.3)

The amplitude for the photoabsorption is propor-
tional to the dipole matrix element (P&!Q,z, !P,),
where g, is the initial state of the compound,
where the summation includes the z coordinates
of all particles, and where P& is a final-state wave
function satisfying appropriate boundary condi-
tions at r- ~. MQDT postpones the application
of this boundary condition, 2 and instead considers
a set of N independent, unnormalized solutions
of the Schrodinger equation in the outer field:

P,'=r '6 g P,!f,(r)5&, -g,.(r)K, ,],. r~ xo.
j-1

(2.4)

In this expression (f„g,.} are the energy normal-
ized solutions appropriate to the long-range field

A. Dissociation and eigenchannel representations

As in Ref. 3, I consider N dissociation channels
i characterized in jj coupling by the energy &,.
and angular momenta (s,l,.)j,. of an escaping photo-
particle with reduced mass m, , and by a residual
aggregate of particles (e.g. , an atom) in a discrete
state with energy E,. and angular momentum J,
If the escaping photoparticle has internal degrees
of freedom, then corresponding quantum numbers
must also be specified in addition to the internal
angular momentum s,. of the photoparticle and the
orbital angular momentum l,. of the photoparticle-
aggregate compound. Conservation of the total
energy E requires

E=E,.+ q, ,

where
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0'=If 4g&,-r~ r„ (2.5)

where g,', is an N x N matrix representation of N
independent solutions (j = 1,2, . . .N). Thus each
column of P' is a separate solution, while the fth
rom of that column is its component in channel j.
Both Pf and Pg are diagonal matrices where, for
example, the jth element of pf is r 'eg, f, As in.
Ref. 3, I shall represent the "smooth" reaction
matrix A in terms of its eigenvalues tangy and
its eigenvectors'U, - by formally solving

at x~ r, in channel j. The quantity g& includes
the wave function of the residual aggregate, any
internal wave function of the photoparticle, and
the orbital and spin-wave functions of the com-
pound. The calculation can be performed sepa-
rately for each value of the total angular momen-
tum J, so p1 also includes the angular momentum
coupling in the scheme [(s,.f,.)j,.Z,.]Z. While P,. is
usually independent of z, it may include an adia-
batic dependence on y, such as that described in
the Appendix of paper II. Finally, in Eq. (2.4),
6 is an antisymmetrization operator and E,, is
the symmetric "smoothed" reaction matrix which
was denoted —pE"' in GFS.

The solutions (2.4) can be written in a matrix
notation similar to that used by Seaton'.

channel i can be expressed in terms of a Wron-
sklan as

W(f, , y'.k,.)=0, icQ~, (2.8)

where f; is the falling exponential solution in the
outer field of channel i. This Wronskian can be
evaluated using Eqs. (2.1), (2.7), and (2.8). This
gives

N

g F,.a.=o, (2.10)

where

E, =
U, ,sin(p, . +wi1,), ieQ~. (2.11)

[Here P,. has been introduced as a shorthand for
P(1;, &;).]

(ii). Open channels (i e P~). The open 'dissocia-
tion channels must satisfy the complex incoming
wave boundary condition. But before applying
this boundary condition I will adopt the usual
MQDT approach, and first identify an intermediate
set of N~ real solutions, the collision eigenchan-
nels p. These diagonalize the open channel portion
of the short-range scattering matrix (which was
denoted S«by Seaton'). The pth collision eigen-
channel wave function (~P), = 4,, has a common
phase shift 5, in each dissociation channel i at

K U= U tangy. . (2 5)

The set of solutions g', , is then transformed into

a new representation g, , in which E is diagonal:

g=g'Ucosmp, ,

or

$ = Qf U cos11i1 —(f)g U s1nwp, ~ t ~ f'o ~

(2 7)

A solution satisfying particular boundary condi-
tions at r- ~ will be written as a column vector
4,. and is specified by a superposition of the N

columns of g, , with coefficients a:
4 =/K. (2.8)

B. Boundary conditions

The boundary conditions differ for the open and

closed dissociation channels. Accordingly, I will

adopt the notation of Lee and subdivide the N dis-
sociation channels i into a set PJ of N~ open chan-
nels, and a set Q J of N~=N-N„closed channels
at a given energy R. Though I deal with specified
values of the parity g and total angular momentum

4, the labels t' will be suppressed unless neces-
sary.

(i).Closed channels (i c g~). The component of

the wave function in each closed channel must
vanish exponentially as r —~. This condition on

— r-'ay, .(2m,./vt, .)'"
x sin(k, r —i g,. ln r+ 1i,.+ 5,}T,, (2.12}

(2.13)

The boundary condition (2.12) can also be ex-
pressed as a pair of Wronskian conditions, "
W( f, cos 5, -g,. sin5„r.+,,}= 0,

J ~

W( f, sin5, +g,. cos6, , r4. ',,) = T,,{2/p),

(2.14)

The first of these two equations, when combined
with Eq. (2.1), gives a joint condition on5, (E) and

a p(E):

g F,.(E, 5,)a.,(E) = 0, (2.15)

where

(The parameter g, equals i/0, for an att.ractive
Coulomb field, and vanishes otherwise. ') Here
the collision eigenphase shift 5, and the real or-
thogonal matrix T,.„remain to be determined.
Note also that each solution vector (4')z(p = 1, . . . NI )
is a superposition with a different coefficient vec-
tor (a), =—a „where now a is an N xN~ matrix.
Thus Eq. (2.8) is generalized in the presence of
more than one open channel to the form
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F, (E., 5 )=
sin( —5, + vp, ), ic P~

Ii,. sin((6,.+vp ), i&I& ~

(2.16}
2

gU, cos(-5, + wp, ,)a„(E) . (2.2])
iEP g 0.'

'C. Solution of the homogeneous system

The homogeneous system, Eqs. (2.15) and (2.16),
reflects the quite different physics in different
portions of the spectrum.

(i) Discrete spectrum (all channels closed). In
this energy range there are no undetermined pa-
rameters in the matrix F,,(E) of (2.15). Thus, at
an arbitrary energy E the determinant of coef-
ficients detF will usually fail to vanish and no

solution will exist. However, P,. is usually a rap-
idly varying function of the energy, and at certain
energies the determinant may vanish detF = 0.
This implies the existence of a bound state of the
compound system at energy E„. An unnormalized
solution vector a(E„) of the system (2.15) is then
given by

X/2

a.(E„)= C,.„(E„) g C,'..(E„)
t

(2.17)

Q s.. rr s(s((S +S.„.)).... .,
cia ~

(2.16)

where C,- is the inth cofactor of the matrix F.
[Note that different choices of the index i on the
right-hand side of (2.17) yield equal results. j This
solution determines the final-state wave function
(2.8) at energy E„ to within its normalization in-
tegral, given by QFS Eq. (2.53) to be

N„'=v' Q [a rJ, cos(P, +7.)p )j

The element T,, is the amplitude of the ith dis-
sociation channel contained in the collision eigen-
channel p.

(iii) Open continuum (all channels open). In
this portion of the spectrum, the system (2.15)
is solved by inspection,

1q D=p
+0i p np

0, ntp

5, = g))p, 6,= ~p, ,

Ui~~np= U;p ~

(2.22)

NP=1.

W(f, r+ .) = &,,.(2k,m./v) ~ (2.23)

These functions +,, can be constructed by super-
posing the collision eigenchannels in the form

(2.24)

D. Reduced dipole matrix element

Calculation of the cross section for photoioniza-
tion into a specified open channel j, requires the
final-state wave function 4~ to satisfy the "incom-
ing-wave boundary condition" specifying that the
outgoing wa, ve (2i) '(2m, /mk, )'~'Q, f,', .has non. zero
amplitude in the jth channel alone. I indicate this
final-state wave function by (4' ),.; its ith compo-
nent 4, must satisfy

7 p U cos &p+ op. a p
E +p

where

(2.20}

(ii) Autoionizing spectrum (some channels open,

some closed). In contrast to the discrete spec-
trum, there are now N~ allowed solutions to the

Schrodinger equation at all energies. This is re-
flected in Eq. (2.15) by the presence of an unknown

parameter 6, in the matrix F, (E, 5,). Its det. er-
minant det F must be forced to vanish by varying

5p. The value of (5P at a zero of det F is then the

desired collision eigenphase shift. The unnormal-

ized coefficients entering Eq. (2.13) are then

X/2

a„(E)= C, ,(E, 6,) g C', ,(E, 5,), (2.19)
i

where again C,. is the cofactor of F, The or-
thogonal matrix T,, (denoted (i

~
p) by Lee') is now

constructed by evaluating the second Wronskian

of (2.14),

where

e-i(n. 5P)T
Pj gp ' (2.25)

(2.27}

where co is the photon energy in a.u. The total

That (2.25) satisfies (2.23), follows from the or-
thogonality of T,, and from the large-r form
(2.12) of 4,, Then the reduced dipole matrix
element is, in the notation of Lee,"

D(j, Z)= ps""' 'T., QDs /N). (2.26,)„
P~l Oi

Here, D is the matrix element (P ~Z,z, ~g,),
where g is the o.th eigenchannel solution whose

asymptotic form contains components P,. in each
dissociation channel i. The ground-state wave
function of the compound system is written as g, .
The photoabsorption cross section corresponding
to channel j and angular momentum J is then (in
a.u. ),

cr( j,J)= (47t'(()/137) ~D(j,J) ~',
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cross section instead is given by

=( ) QN (QD,a„) (2.28)

0"=4f' (3.2)

This implies that the energy dependences of A

and P' are given by

The angular distributions and spin polarizations
of ejected particles can be calculated by directly
inserting the calculated dipole matrix element
D(j,J) into the formulas of Lee"

Finally, I note that the formulas of this section
also provide a parametrization of the full scatter-
ing matrix, given by

S,, = exp(i ([7,+ —,'f,.~+ i &, ln 2. k,.) j

�

Q 7;,e' "T,,)exp[i(q, .+ -, i,.w+ ii,. ln 2i,)],
P

(2.29)

where the quantity in large parentheses is usually
called the "short-range scattering matrix. "

z = (r„+I „if'){r„+I „xo)-',
~io (I + I Ifo)-1

(3.3)

where the matrices I"&&, I"&, etc. are diagonal
in ij. The eigenchannel representation in the
transformed basis (f,' , g', )is g. ive. n explicitly by
(2.6) and (2.7), provided P, &, U, and p, are re-
placed by g', K', U', and p'. The two sets of
eigenchannel solutions are then related by

g= [t' ((I'«U cos [[p, + I
&

U'sin wpo) 'ftcos 7[.p, ] .

(3.4)

This same matrix in (3.4) also relates the D to
the smoother D':

D=D'(. . .). (3 5)
III. FURTHER REDUCTION OF PARAMETERS

A. Removal of strong energy dependences

The short-range parameters p. , U, , and D
discussed above, were defined with reference to
the energy-normalized pair of long-range field
solutions (f„g,.). These solutions are nonanalytic

functions of &,. and may have a strong energy de-
pendence near an excitation threshold, where

q,.-0. This nonanalyticity is very weak for the

attractive Coulomb field and has been justifiably
ignored in usual quantum defect theory (QDT) ap-
plications, though it did prove important in a study

of neon photoabsorption. " The energy dependence
of (f,,g;) for other fields is essential, e.g. , giving

rise to the Wigner threshold laws in a purely cen-
trifugal outer field. In the following, I will further
parametrize the energy dependence of p, , U, ,
and D resulting from that of (f,,g,); it involves
the long-range QDT parameters A(v, l), B(k, I),
and 9(q, l) which relate (f, , g, ) to the analytic base
pair (fo,go) through Table I of GFS or Eq. (2.2)

above.
The most general possible form of the trans-

formation will be considered initially, written
for the ith channel as

(3.1)

Since the Wronskian W(f, , g,)=2ln is independent.
of energy, it is conventional to normalize W(f,',go).
to 2/w as well, which implies that I'&& I",', —I'&,I

&

= 1 for all channels. The set (2.5) of N independent

solutions g' to the outer field multichannel Schro-
dinger equation can be replaced by a new smoother
set g~ defined by its large r form

For those dissociation channels i strongly open

(i.e. , &, »r~~m. '), the threshold nonanalyticity

has no consequence, and the transformation ma-
trices should be taken as I' =1 ff 1 I'fg I'gf 0.
For other channels with q,. =0, the strong energy
dependence should be explicitly removed by set-
ting

I" =A'~'(v, , l,.),

g. (0I t 0fg (3 6)
I",'f=A 'i'(v, , l,.)8(g „l,.),
I" =A '~'(v, , l,.),

/

and identical expressions with A(v, , l,) replaced
by B(&,, l,) for channels with q,. ~ 0. See Table I
of GFS for a tabulation of these parameters for
different long-range fields.

The following paper discusses a different use
of the "smoothing" transformation I', whereby
the outer region can be treated in successive
stages of approximation. A sensible first approxi-
mation to the negative-ion photodetachment prob-
lem takes the electron-atom potential at large
x to be zero field alone; this requires setting the

boundary of the inner region at a large radius

(r, -10' a.u. ) so that the polarization field is neg-
ligible for r&r, In such a. treatment (fo, g') are
simply the spherical Bessel functions renormal-
ized to be energy independent at r = 0; effects of

the polarization field must then be regarded as
"short-range" dynamics. This point of view was

adopted by Norcross and Taylor' in their close-
coupling studies of the problem. They found, how-

ever, that the short-range dynamics caused a fast
energy dependence of A' and Do in the zero field-
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B. Frame transformation treatment

For most atoms and negative ions the exchange
energy is much larger than the spin-orbit energy
when all electrons reside within y & yo. To this
extent the short-range n eigenchannels should be
approximately LS-coupled, while the long-range
dissociation channels i are jj coupled. To reflect
this feature of the atomic dynamics, the orthog-
onal matrix U,. is written as a product of two
factors:

U =XV (3.7)

The matrix X,.—is the geometrical transformation
from LS-coupled c7 channels to jj-coupled i chan-
nels. The orthogonal matrix V~ is then approxi-
mately block diagonal in L and S.

Two simplifications result when V-' is block
diagonal. Firstly, the number of independent
parameters to be fitted in a semiempirical anal-
ysis of data is reduced; Lee's study of Cs pho-
todetachment' demonstrated this for a four-chan-
nel problem. Whereas a 4 x 4 U,. would have six
independent elements, each of the two submatri-
ces V- has a single independent parameter (a
mixing angle of sp and ps for the singlets and one
for the triplets). Similarly, I ee had to fit only
two dipole matrix elements connecting the initial
and final singlet states, rather than four. Second-
ly, block diagonality of V' implies a simplifica-
tion of ab initio calculations of the photoabsorp-
tion. This results because the matrix V tan mp, V

can be interpreted as a set of uncoupled reaction
matrices Ko(L, S). The matrices Ko(L, S) can
thus be calculated separately for given L and S,
ignoring spin-orbit terms in the Hamiltonian, and
then transformed to jj coupling by the factor X
of Eq. (3.7). The effect of spin-orbit coupling is
introduced finally through the transformation (3.1)
by entering in the elements of the matrices F

basis (see, e.g. , Figs. 5—7 of the following pa-
per'). At the second stage of approximation the
analytic base pairs (f', g') are taken to be the
exact Mathieu function solutions to the polariza-
tion potential Schrodinger equation. Since much
more of the long-range properties are built into
the Mathieu (f', g'), the inner region needs to ex-
tend only to ~, -30 a.u. , and the K' and D' in the
polarization field basis are then essentially con-
stant over the energy range of interest. The ma-
trices I' discussed above are then regarded not
as a, transformation between (f, g) and (f,g ), but
rather as the transformation between the zero
field (f', g') and the polarization field (f', g') at

These details are worked out explicitly in
Sec. III of the following paper.

electron energy values pertaining to each rele-
vant fine- structure channel. Nor cross and Tay-
lor' have successfully used this approach in a
recent calculation of K photodetachment. (While
the frame transformation treatment of the present
subsection has utilized the short-range LS-cou-
pling scheme, the formulation is useful whenever
the short-range Hamiltonian is nearly diagonal in
any standard representation. )

C. Numerical fitting

The multichannel parametrization of energy-
dependent photoabsorption cross sections has
been used in the past primarily to interpret data
semiempirically. This step serves to express a
large number of rapidly varying observables in
terms of a few (fitted) slowly varying parameters
O', , D', and p,'. For example, Starace predicted
photoabsorption cross sections after fitting to
the energy-level posz'tions of perturbed neon Ryd-
berg spectra. " In other applications, a fit to the
total photoabsorption cross section has been used
to predict branching ratios, angular distributions,
and spin polarizations of the emitted photoelec-
trons. ' Here I summarize the procedure to be
followed in numerical fitting.

The basic idea is to guess trial values for the
p', U,. (or P' ), and D', after which the alge-
braic manipulations of Sec. II determine corre-
sponding trial values of the observables near
threshold. (The long-range field parameters A,
B, 9, q, P, and D are provided by an independent
calculation. ) Over an energy range of &c & r, m '
near threshold, the short- range parameter s can
be assumed energy independent at least in a first
approximation. The trial values of p, and U',.
then determine Ko= U tan wp, 'U r. The energy-
dependent reaction matrix K is then given by Eqs.
(3.3) and (3.6) in terms of the energy-independent
E' and of the energy-dependent long-range field
parameters. At each energy E for which a mea-
surement is known, the matrix E should be diag-
onalized as in Eg. (2.4); this determines U; and

p, „, and also D, through Eqs. (3.4) and (3.5). The
matrix F, in (2.14) can no. w be constructed and
solved as in Sec. IIC. When all channels are
closed this procedure determines trial energy
levels. In the presence of N~ open channels, the
procedure determines N~ values of 6, and N, and
the N~x N~ orthogonal matrix T,.„at each energy.
Finally, the observables (e.g. , the total cross
section) can be calculated (Sec. IID) over the
experimental interval and compared with the data.
Standard computer least- squares minimization
programs can be used to repeat this entire pro-
cedure automatically until the values of p, , V,',
and D„are found which best reproduce the ex-
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perimental results. A further energy dependence
of these parameters can be introduced if neces-
sary.

IV. DISCUSSION

The point of view of GFS and the present paper
holds that particle escape in any long-range field

can be treated by MQDT methods once the long-

range field parameters (A, B, 9, P, q, and D)
are known for that field. These parameters have

been specified for only a few potentials; this in-
cludes the attractive Coulomb (-x '+ r '), the at-
tractive dipole (-r ), and the repulsive centri-
fugal or zero potential (+ r '). Paper II calculates
the long-range field parameters for the polariza-
tion potential (—r~+x '). Long-range fields yet
to be treated in this framework include the fol-
lowing:

(i) Combination of attractive Coulomb and po-
larization potential (-r '+~ ' —r ). A polariza-
tion potential induces an extra energy dependence
of the Coulomb long-range field parameters; its
effect could be determined by the methods of Sec.
IIE of GFS. The largest effect (near threshold)
of the z~ potential is to shift the Coulomb param-
eters P(v, I) and q(k, I) by a constant amount, as
is known from perturbation treatments. A nu-

merical or semianalytical method for handling

effects of this outer field should simplify studies
of alkaline earth atom photoionization near ex-
cited states of the residual positive ion.

(ii) Interatomic potentials. An MQDT treatment
of the Morse or Lennard-Jones molecular poten-
tials should relate high-lying vibrational states
to the continuum states of the dissociating molec-
ule. These potentials converge rapidly at x= ~
and modify the parameters of zero long-range
field. The Morse potential may be the simplest
to treat because its radial Schrodinger equation
reduces to the confluent hypergeometric equa-
tion. " By including photodissociation and photo-
ionization channels simultaneously, the competi-
tion between these processes can be analyzed.
Work on this general problem is currently in pro-
gress elsewhere. "

(iii) Repulsive Coulomb potential (r '+ r~) Ef-.
fects of the outer Coulomb field are clearly im-
portant in treating the photodissociation of positive
molecular ions. A parametrization of the effects
of an outer Coulomb field may also prove useful
for treating photoabsorption by nuclei with ejection
of protons or n particles. Adaptation of results
for an attractive Coulomb field is probably
straightforward, but it has not yet been investi-
gated.

(iv) Relativistic effects. Recently Zilitis" and

This work owes much to lengthy discussions
with Professor U. Fano. His suggestions, his
assistance mith the manuscript, and his continu-
ing support have proven invaluable. This work
was supported by the U. S. Department of Energy,
Office of Basic Energy Sciences, and also by an
IBM Graduate Fellowship.

APPENDIX: APPLICATION TO H PHOTODETACHMENT

Very recently the formulation of Secs. II-and
III of the present article was used to fit and in-
terpret a series of H Feshbach resonances con-
verging to the n =3 level of hydrogen. ' Here I
point out a simplified analysis using Fano pro-
files and some additional implications of that an-
alysis. ' Actually two infinite series of reson-
ances exist, since the long-range potential has
the form (in a.u. )

V,.(r) = a,./2r', (Al)

a, =- 5.220,

a, = —14.897.

(In this Appendix I ignore fine-structure splittings
between the 3s, 3p, and 3d levels of hydrogen,
and I also ignore channels with a,. positive. ) For
dynamical reasons discussed in Ref. 7, the coup-
ling between 3+ and 3- channels can be approxi-
mately neglected, and also photoabsorption by
the 3+ channel is 10 to 100 times more likely than

by the 3- channel. These features mere verified
experimentally, "as only a single series of re-
sonances was observed.

Accordingly, to a first approximation the 3-
channel can be ignored entirely. Then the total
photodetachment cross section near H(n = 3) is
a sum of two terms,

NR+ R ' (A2)

The term o„ is a constant nonresonant back-
ground contribution, while oR is the resonant term
in the cross section which contains the infinite
series of 3+ resonances belom the n =3 threshold.

Johnson and Cheng" have independently extended
Seaton's quantum defect theory to describe the
motion of a Dirac electron in a long-range Cou-
lomb field. With modest effort the relativistic
version of MQDT could also be incorporated into

the present framework. Once this work is com-
pleted it should be straightforward to paramet-
rize the escape of a Dirac particle in any long-

range field.
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TABLE I. Ratios of H resonance parameters.

Experiment
(Ref. 18) Eq. (A4)

Callaway
(Ref. 19)

Morgan et al.
(Ref. 20)

Oberoi
(Ref. 21)

Chung
(Ref. 22)

Lipsky et al.
(Hef. 23)

2e f1+
r,gr, .
q2 J%+

r,yr,

0.057 ~ 0.020
0.058 + 0.011
0.830 + 0.170

0.0597
0.0597
1.0
0.1936
0.1936

0.0564
0.0572

0.202
0.243

0.0394
0.0675

0.134
2.5

0.0515

0.1926

0.0444

0.1914

0.0525

0.1935

a, =a (q +( )'/(1+('),
where

( =(&-& )/( r ) ~

(A3)

When the long-range field is of the dipole type,
the profile parameters describing separate re-
sonances are simply related in terms of a para-
meter n = (- a ——,')'", with a given in Eq. (Al):

OR = const,

~m.i =&a ~

r„„=r exp(-2m/n),

exp(- 2m/n) .
For the 3+ channel, exp(- 2w/n) =0.0597, while
for the 3- channel it equals 0.1936. The simple
scaling laws of Eq. (A4) are compared in Table
I with ratios of energy levels, widths, and shape
parameters derived. from an experiment and from
complicated ab initio calculations. Only the +
states were observed experimentally and the ra-
tios agree with the simple predicted values to
within experimental error. The recent calcu-
lation of Callaway" also agrees with the scaling
law, although the earlier calculation of Morgan
et al. 'o is in serious disagreement. (Results of
other calculations are shown in Table I for com-
parison. ) Thus Eq. (A4) can be used to predict
the parameters of higher resonances once a. low-
lying resonance is know; alternatively, Eq. (A4)
provides a check on the internal consistency of
ab initio calculations.

As a final note, the fitted MQDT parameters
of Ref. 7 can be used to predict the partial cross
section for detachment from hydrogen in its n
=3 states. Inspection of Fig. 2 of Ref. 7 shows
that the total cross section is approximately

In Ref. 7 the term crR was parametrized as in
Secs. II and III, allowing for the interference of
the 2+ and 3+ channels. When the interaction be-
tween two channels is sufficiently weak, the cross
section below threshold reduces to a series of the
more familiar isolated Fano profiles at energies
e relative to H(n=3), for m =1,2, . . . :

constant up to a fraction of a volt above threshold,
with values'

crR = 0.121a', , crNR 0.166 a, .
The nonresonant cross section pertains only to
the H(n=1) and H(n=2) channels. However, Eqs.
(2.20), (2.24), and (2.25) of the present article,
when combined with the fitted parameters of Ref.
7, imply that the relative contributions to o.

R
from n = 3 and 2 are 17/o and 83%, respectively.
Thus the ratio of the intensity of the low-energy
electrons to the total intensity is predicted to be
less than 10%,

o (n = 3)/(n„+ a„„)= 0.072 . (A6)

Similarly, the + channel amplitudes for exciting
the separate hydrogenic levels are known by a
simple calculation (see Gailitis and Damburg, "
or Seaton"):

3s qp -0.307

3p ps 0.488

0.530

3d&p -0.543

-0.303 . (A7)

The predictions (A6}, (A8), and (A9) show the
power of the semiempirical analysis, since the
photoelectron angular distribution and some of
the partial cross sections could be derived after
fitting to the total cross section.

Thus the separate contributions to v(n=3) shoul, d
be in the energy-independent ratios

cr(3s): v(3P): o(3d) = 0.094:0.519:0.385 . (A8}

Finally, if the angular distribution of the lowest-
energy photoelectrons is measured without re-
solving the nearly degenerate levels of H(n = 3),
the amplitudes of Eq. (A7) imply a constant asym-
metry parameter (up to -0.1 eV) above threshold

P,(n=3) = —0.614.
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