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%e have applied the second Born approximation with the Coulomb Green's function to the calculation of the cross

section for electron capture from a hydrogenlike ion of high atomic number Z~ by a bare ion of atomic number Zf,

moving with a high speed u. %ith the aid of a peaking approximation, which is valid when fiu/e &Z~ and

Z~&Z~, we reduced the second Born amplitude to a one-dimensional integral which was evaluated numerically

for 1s~ls capture. It was found that by using the Coulomb Green's function, rather than thePee Green's function,

the second Born cross section is greatly reduced (and is comparable in size to the first Born cross section} when

Av/e' &Zr.

I. INTRODUCTION

Inner-shell electron capture by swiftly moving

projectiles is a complicated theoretical problem
owing in part to the presence of many electrons
interacting with the active electron. Yo progress
towards an understanding of the dynamics of inner-
shel. l electron capture we have begun by studying
the simpler process of electron capture from a
hydrogenlike ion of high atomic number g~ by a
bare ion of atomic number g~ moving with a high

speed u. It is now well-known' that if Sv/e'
» Z~, g~, the second Born amplitude dominates
over the first. (We omit the internuclear potential
from each Born amplitude. ) With v satisfying the

previous inequalities it makes little difference
whether the free Qreen's function or the Coulomb
Qreen's function is used in the definition of the

second Born amplitude. In a recent letter one

of us' evaluated the second Born amplitude (for
Is-1s capture) with the free Green's function
for Su/e'» Z~ and Zr arbitrary. It was found

that the ratio of the second and first Born cross
sections increases rapidly with Z~ and is very
large for 5g/e' ~ Zr. (For example, if Zp = 1 and

hv/e' =Zr =10 the ratio is nearly 15.) It is to be

expected that the contribution from terms of
third and higher order in the interaction between
the electron and target nucleus is significant when

Bv/e' a Zr. Now all orders in this interaction can
be incorporated in the Coulomb Qreen's function.
%e have therefore examined the second Born
amplitude using the Coulomb Green's function,
and the purpose of this paper is to report the
results. We find that (for ls- 1s capture) the
ratio of the second and first Born cross sections
is greatly reduced if the Coulomb, rather than the

free, Green's function is used when hv/e' s Zr.

Hence when the free Qreen's function is used, the
second Born amplitude must destructively inter-
fere with higher-order Born amplitudes.

In the next section we establish a notation. In
Sec. III we analyze the required matrix element
of the Coulomb Qreen's function. This matrix
element is evaluated using a peaking approxima-
tion which is valid when Iv/e )) Zp and Zr» Zp.
In Sec. IV we present the results and a discussion
of them. In the Appendix we show that the matrix
element of the Coulomb Qreen's function with the.
peaking approximation reduces to the familiar
matrix element of the free Qreen's function when

@z /e'» Z, » Z~.

II. NOTATION

Let M„be the mass of a projectile P impinging
on a one-electron ion or atom (e+T), where e is
the electron of mass m, and T is the target nucleus

of mass M~. %e define the mass ratios

a =M,/(m+M, ), p =M, /(m+M, ),
and the reduced masses

v( =Mp(m +M r)/(m+M r+Me),

v~ =Mr(m+M~)/(m +Mr+Mp) .
Let r~ and rp be the coordinates of the electron
relative to T and to P, respectively. Let R~ be the
coordinate of P relative to the center of mass of

(e+T) and let R~ be the coordinate of the center of
mass of (e+P) relative to T. 1.st R be the coor-
dinate of P relative to T. The coordinate system
is shown in Fig. 1. %e have

r~ =-Rr+arr, R~ =PRr+(1 —aP)r„.
Let -e denote the electron charge, and let Z„e

and gape be the charges of 7 and P, respectively.
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FIG. 1. The coordinate system.

Let e, be the internal energy of (e+T) in the initial
state i and let ez be the internal energy of (e+P) in
the final state f. Unless stated otherwise, we work
in the center-of-mass frame of all three particles.
In this frame the total energy E of the system is

E = (g'/2v, )K'; + e, = (5'/2')IPi+ e~,

where hK, is the initial momentum of P, and

5+ is the final momentum of (e+ P), with K, =
I
K, I

and Kz =
I K) I. With v the incident velocity of P

relative to the center of mass of (e+T), we have
SK, = v&v. We define the "average" momentum
transfer vectors

The corresponding approximation to A, is

A. = &()y lvyG: V(1(I'(&

Since the interaction V» will be dropped (see
Sec. IV) we are interested in calculating

f2. =- &6 I vr.G.' V~. I P() ~

In the next section I„is reduced to a three-di-
mensional integral which, with some approxima-
tions, is reduced further to a one-dimensional
integral.

III. ANALYSIS

f"=
&Py I vr. I (I)("&

where

(3.1)

ltt(' &= Ge vs e I()'(&.

Note that

(E+in ff. -v,.—) I yt')&=v, .Iy &

(3 2)

(3 3)

We write Vp, in terms of its Fourier transform:

In this section we set 5 =e =1 for notational sim-
plicity. We have

K =P+ —K„J= o)K, —Q.
Let (t),(rr) represent the initial internal state of
(e+T} and let (f)z(r~) represent the final internal
state of (e+P}. The initial and final wave functions
of the complete system are

P, = exp(iK, ~ Rr)(t), (r r),
/&=exp(iK&. R )Q)(r ),

&$ZP d S fs'(ar ~R&)
s'

We assume the initial state is the 1s state.
Writing

f),(r(r) =f(f,e r'r,

where

N, = (Z,am }'~'/v'",

(3.4)

(3.5)

respectively. The interactions of the electron with
P and T are, respectively, V~, =—-Z~e'/x~ and

Vr, = -Z~'/r~ The interaction between P and T
is V» Z~Z„e'/R. The pe——rturbations in the en-
trance and exit channels are, respectively, V,
=- Vp, + V» and Vz

-=Vp++ Vp ze The scattering
amplitude for the transition i -f is A =A, +A,
where

Az =—
&0y I v( I (I)(&= &6 I ~g I ()'(&

and

and where for the moment we leave p, , arbitrary
but later set p, =Z~m, we have from Eqs. (3.3}-
(3.5},

(E+in e, V„,)-()f''(r—„,R )

$

2H
real (r '(arr-K )-)) r +iK 'Kr (3 8}

We now express the Rr dependence of (I)(t'l(rr, R„)
as a Fourier transform:

Am -=&@I&rG'V( I(j)(& r, "( „,R„)=Jd' e "' " ''"
r, "(r„,s). (3.7)

where Q' is the full Green's function for the
system with energy E+iq, where q is positive
but infinitesimal. If H, denotes the Hamiltonian
obtained by excluding all interactions,

G'—= 1/(E+iq —Ho —V( —Vr, }.
We approximate G' by the Coulomb Green's func-
tion G,+ which differs from G+ by the omission of
V&,

' thus

G~ =1/(E+in -Ho ——Vr, ) .

Substituting the right-hand side of Eq. (3.7) into
the left-hand side of Eq. (3.6) we find

P"(r, s) = —(Z &,/2v's')X(q, r ),
where q =as and where

(3.8)

(
V„- —Z r —(g y(q, r) =-e"' )'i", (3.9)2am

g =E+iq —(1/2v, )(|l/a —K, ) . (3.10)

Combining Eqs. (3.1), (3.7), and (3.8), and writing
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1) 8/I

y~r )
~

dsp f N Ip'( Rr) (3 11)
2'F j

where

(3.12)

g = 2 tllV +V ~ p+6y + l'g y

21/2 T P 1 ~ y ~

Equations (3.16d)-(3.16f}become

(3.20)

we obtain

. A,*rq/~+ K)1'(q), (3.13)

X= (-2mb)"'

& =z,m/x,

Pl =P —K P2 =-P —PSV.

(3.22a)

(3.22b)

(3.22c}

&(fl) =— — e'" ""XR,r). (3.14)
To proceed further we assume that v» gp and

that Z„» Z~. Since the presence of pp(p) in Eq.
(3.21) restricts the significant values of p to (p~
~ tP2gpy we have

rg) =8wxm( . ) 2l/2 T Wl esp y+ y (3.23)

P» -2(« 4x'pi -p}p+~i&.p''

where with i = I or 2 and with p2 =0,

&g = (x p+(}' p+&,

« =-p» &i+x'-

~i =(x-p i)'+pi

X=(-2am@'",

r =z~m/x,

Px =q i Ph
= & - ~l 's

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

(3.16f)

the contour C starts at p= 1+i@, where the phase
of p is zero, and terminates at p= j. -jq after en-

circling the origin once in such a way as to en-
close no singularity of the integrand other than

the one at the origin.
Kith v along the polar axis, the integration over

the azimuthal angle of g can be performed in Eq.
(3.13}if p~rs} is isotropic in s; this leaves a
three-dimensional integral to be evaluated. Note

that setting y =0 is equivalent to replacing 6,'by
the Green's function for three noninteracting

particles.
We now neglect corrections of order m/M„and

m/M~. We have

(3.24)

(3.25)

D2 = E2 = Z2 + P2,

D, = (x+ p. ,)'+ff',

F,= (x- p. ,)'+Id',

E,E, —4X'p, p, =2(mo)'(j'+p', ),
X= -in',
r =iz„/u

(3.26)

(3.27)

(3.28)

(3.29)

Since 7 is now pure imaginary, we can write

dp 0 ~ 0 2 dp 0 0 ~ ~ (3.30)

8 ~ ds QQ+ p
~Wl O

(3.31)

where a and b depend on p, , and p, and writing

%ith regard to the denominator in the integrand of

Eq. (3.15), we see that the coefficient of p is much

larger than the coefficient F,I2 of p2. Since p
varies from 0 to 1 we could drop the term in p'

with little error, but we did in fact retain this

term in our calculation. The constant term D,D,
in the denominator is also much smaller than the

coefficient of p, but this constant term cannot be

dropped for otherwise the integrand would have a
pole at p=0.

With these approximations Frq) is isotropic in

p and the integration over p in Eq. (3.23) can be

readily performed. In fact, writing

K+J+mv =0, (3.17}

(3.18)

d f' ]g y

b2+p2 4g y
(3.32)

K +2186) = er + 2Mgy.

Defining

p-=Q+K,

Eqs. (3.10) and (3.13) become

(3.19) we have

g &/2 g l 4''I = — — dps P~(r) e ~' (3 33)
2C g

the integration over r is stra, ightforward to per-
form. Note, however, that if p~rr) is not isotropic
in r, the right-hand side of Eq. (3.33) is identically
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zero from the angular integration over r; our
approximations and therefore inapplicable to final
states other than s states. Evidently the cross
section for capture to the 2P state is significantly
smaller than that for capture to the 1s state when

Z~» Zp and v» Z~ To obtain a nonzero estimate
of I„when the final state is not isotropic we re-
place Eqs. (3.25) (3.29) by (where v=0/v)

D, = (p, —imv)'+K'+2p. (J-i p, &), (3.25')

E,= (imv+ p, ,)'+K' + 2p ~ (J ip-, S), (3.26')

E,E, —4X~p, ~ p, = 2(J'+p. ', )[(mv)'+2mv p],
(3.27')

(3.28')

(3.29'}

X=—i(mv+ 9 P),

r=iZrm/(mv+ft g).
However, the integration over p is now much more
difficult to perform.

The reason that capture occurs predominantly
to s states when Z~» Zp and v» Zp is the follow-
ing: In order to be captured the electron must
acquire during the collision a laboratory velocity
that differs from the projectile velocity v by at
most of the oider of the final characteristic or-
bital speed Zp. Since v» Zp the projectile P,
which is barely deflected during the collision,
must penetrate the target electron cloud in order
to impart the necessary velocity to the electron.
Since the characteristic radius of the target elec-
tron cloud is 1/Z„ the electron must emerge from
the collision within a distance of order 1/Zr of P
The final orbital angular momentum of the electron
relative to P is therefore no more than the order
of Z~/Z~ Hence if Z~/Zr«1 the electron is cap-
tured primarily into s states.

IV. RESULTS AND DISCUSSION

With corrections of order m/Mr and m/M~
neglected, the cross section for electron capture
ls

o =(2H'v')-' ~W f'K,dK, ,
0

where

K, =(K' -K')'"
II

with

Kl= —mv/2ff —(ez —e, )/vff .

(4.1)

(4.2)

As first pointed out by Wick, 4 when corrections of
order m/Mr and /Mm~ are neglected the value of
o is independent of whether or not the internuclear
potential V» is included in the Hamiltonian of the
system. We exclude V» from the Hamiltonian
since its inclusion would yield a spurious contribu-

8lab
(MeV/amu) &z

2.5
2.5
5.0
5.0

10.0
10.0

10 0.51(-5) 0.34(-5) 0.84(-4)
20 0.17(-7) 0.32(-7) 0.14(-5)
10 0.14(-5) 0.84(-6) 0.14(-4)
20 0.45(-7) 0.53(-V) 0.20(-5)
10 0.14(-6) 0.64(-7) 0.83(-6)
20 0.40(-7) 0.23(-7) 0.10(-5)

0.67(-6)
0.18(-8)
0.20(-6)
0.33(-7)
0.23(-7)
0.11(-7)

tion to the cross section obtained by truncating
the porn expansion of A. The first Born cross
section o, is then defined by approximating A. in
Eq. (4.1}by I, where

ii = &6 I l's I 6& =
&4y I lI'r~

I 0& ~ (4.3)

The second Born cross sections o„and o2p are
defined by approximating A by I, +I„and by I, +I„,
respectively, where

I20 = &6 I P'reGoP~e I ki& (4.4)

and where G,'—= 1/(E+iq -II,) is the free Green's
function. The cross section o, is defined by ap-
proximating A by I,/(I, -I„};this approximation
follows from the Schwinger variational principle. '

We calculated the cross sections for 1s- 1s
capture for various values of E and Z~ with Zp =1.
Some results are shown in Table I. We calcula-
ted o„and o, by using the peaking approximation
described in the preceding section. We calculated
o» by setting z =0 and using the same peaking
approximation. In Ref. 2, o» was calculated by
using a less restrictive peaking approximation
which is valid under the single condition kv/e'
»Zp. The agreement between the present values
of o„and those reported in Ref. 2 is rather good;
the discrepancy is about 15@or less. This in-
dicates that the approximations used here are
reasonable.

We see from Table I that o„ is very much
smaller than g» when kv/e» Z~ and Kv/e' SZ„.
In fact for v in this range o„does not differ
greatly from o,. Only when lv/e» Z„, Z~ are
o„and o» similar in magnitude. The terms
I2p and I„each correspond to a double -scatter ing
mechanism in which the electron undergoes two

TABLE I. Electron capture cross section in units of
&ao for various values of the projecti1e laboratory energy
E~~~ and target atomic number Zz. The projectile
atomic number &p is unity and the initial and final states
are both 1s states. The notation for the cross sections
is 0&, first Born; o&~, second Born with Coulomb
Green's function; 020, second Born with free Green's
function; a„cross section obtained from Schwinger
variationa1 principle. A number in parentheses is the
power of ten by which the preceding number should be
multiplied.
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collisions, the first with P and the second with 7'.

This mechanism was originally considered within

the framework of classical, mechanics by Thomas. '
The propagation of the electron between the two

collisions is described by Q, in I,o and by 6, in

I„. Thus in I„the electron propagates freely be-
tween collisions whereas in I2, it propagates in

the Coulomb field of T No.w if Rv/e'» Z~ and there
is to be a significant probability of capture the

electron must emerge from the second collision
with a velocity nearly equal. to that of P. The

velocity of P is almost constant and equal to v in

the laboratory frame. Since m/Mr«1 the second

collision is almost elastic in the laboratory frame,
and therefore in this frame the electron must pro-
pagate between collisions with an energy roughly

equal to —,'mv'. Since the motion of an electron
with energy —,'mv' in the field of a nucleus of
charge Z~e is very different from the motion of

a free electron when 5'v/e' & Zr, it is not surpris-
ing that I,o and I„differ substantially when v is
in this range.

To gain further insight into the difference be-
tween I,o and I„we make the impact parameter
approximation and write R~=b+vt where b is the

impact parameter and f is the time. We define

~,(V„t) by

y(1)(r t}—el K( 'Rr( (r I)

so that from Eqs. (3.7) and (3.8) we have (with

K=e =1}

g,(r„t)= ~~
'

@
e " &""")t(s',r,).

(,(rr, t) is the first-order correction to the time-
dependent electron wave function. The absolute

square of the sum of P,.(rr) and $,(rr, t) gives the

time-dependent charge distribution which evolves

during the course of the collision. ' $,(rr, t) can

be expanded in terms of the eigenstates of the
"atom" (e+T); the expansion coefficients are, in

the limit g- ~, the first Born amplitudes for direct
excitation and ionization (into Coulomb waves) of

(e+T}.Since the first Born approximation for
direct excitation and ionization (into Coulomb

waves) in fast asymmetric collisions is reasonably
well-founded, ' $,(rr, t) is expected to give a good

description of the overall time-dependent charge
distribution. The subscript c on 8, emphasizes
that g, contains the Coulomb Green's function. Let

$o(rr, t} be defined by replacing G, by Go in $,.
lf F„(rr, t) is expanded in plane waves, the expan-
sion coefficients are, in the limit t- ~, the first
Born amplitudes for direct ionization of (e+T)
into plane zoaves. Now if the speed v, of the

ejected electron is small, that is, if v, ~Z„e'/g,
the first Born amplitude for ejection into a plane

wave is a poor estimate of the exact ionization

amplitude and greatly exceeds the first Born am-

plitude for ejection into a Coulomb wave. ' There-
fore 4(rr, t) is expected to give a poor description
of the time-dependent charge distribution, at least
for those components with v, 6 Zre /h.

Pow I» and I, are obtained by projecting
e'" &go and e«~'~r8„, respectively, onto /&V~, .
We have

el Ky R~ y el SKg Rr+ t(1 („p)K

ef W ~ Pg efBRg ' Ãz ~
V'g y

where in the last step we have used (1- aP)K&
=mv since m/M„, m/M~«1. fn momentum space,
only the momentum components of ftj&V~, with mo-
mentum s Z~me'/h are appreciable. Since tfv/e'

» Zp it is clear that the Projection Picks out main-

ly those components of go and E, corresponding
to the electron being ejected with velocity close to

Therefore if Svje'zZ~ we expect I„to be
larger than I„.

We note, looking at the results in Table I, that

0, is considerably smaller than o„. However, the

Schwinger variational princi. pie does not seem to

provide a sensible approximation for electron cap-
ture since it cannot yield the proper asymptotic
form A=I2o when Sv/e &&Z&, Zp.

APPENDIX

We now show for 1s- 1s capture that if v» g~
» Zp the matrix element I„approaches I,o. This
provides a check on our approximations. For no-

tational simplicity we set S=e=m =1. I„has the

asymptotic for m'

I„=&' (v ZrZ~)'"K '(v' If'+t2Zrv) ', - (A1)

when v» Z~» gp.
We neglect the term E,E,p' in the denominator

of the integrand of Eq. (3.15), we use the approxi-
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1
Y(fi) = 1-6wiv Jl dp

Bpy 0 C+dp '

where

(A2)

mations given by Eqs. (3.25)-(3.28), and we set
7. =0 after using Eq. (3.30). We obtain

8m

rd'(v' —fd'+i2Zrv) '. (A6}

forward. Setting p. , =Z~ and dropping corrections
that are negligible when v»Z~» Z~ we obtain
(noting J'=If }

c =[(p, —iv)'+ff'Q, ,

d =-4v'(J'+ p', }. (A4)

the term i2Z~v in the denominator is not neglibible
compared to the term v'-K' since we may have
K = v. Note that asymptotically Y(tl) is independent
of p. Combining Eqs. (3.23} and (A6), and using

Performing the differentiation in Eq. (A2}, we
obtain ep 2~ 3/2p+ 0 (A7)

Y(fi) -32vzv p
( d )2 (A5)

The integration over p in Eq. (A5) is straight-

we find that I„is asymptotically equal to the
right-hand side of Eq. (Al), as we had set out to
prove.
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