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Monte Carlo calculation of the Born-Oppenheimer potential between two helium atoms
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Fully correlated Hylleraas-type electronic wave functions and a biased-selection Monte Carlo method have
been used to find a rigorous upper bound to the Born-Oppenheimer potential between two helium atoms.
The potential agrees with the experimental results of Burgmans, Farrar, and Lee (BFL) to within 1.4 Monte
Carlo standard deviations for all nuclear separation distances calculated (4.5-15.0a~). At the potential
minimum of 5.6a& this bound ( —7.10+0.30 Ry) is slightly below the BFL value of —6.70 Ry.

INTRODUCTION

The importance and extremely small size of the
well depth has made the ground-state helium-
helium pair potential the subject of much theo-
retical and experimental attention with estimates
of this depth ranging from -9.1 to -13.5 K. The
recent experimental curves begin with Bruch and
McGee, ' who in 1970 fitted a pair potential with
a well depth of -10.75 K to dilute-gas properties.
Also in 1970, Bennewitz et aL.' found a well depth
of -10.4 K from total scattering cross-section
measurements. Diff erential-scattering cross-
section measurements were made in 1973 by
Farrar and Lee, ' who found a well depth of -11.0
a 0.2 K. Burgmans, Farrar, and Lee' (hereafter
BFL) in 1976 revised this experiment, obtaining
a depth of -10.57 K. Nuclear-spin relaxation in
dilute gases has also been recognized as a sensi-
tive means of studying intermolecular forces.
Chapman' in 1975 performed measurements of
this on dilute helium gas, finding a potential of
the Bruch-McGee form but with a deeper well
depth of -11.5 K.

The theoretical work begins in 1931 with a paper
by Slater and Kirkwood, ' who found a helium-
helium potential (depth = -9.1 K) by joining a re-
pulsive energy term, which worked well for small
internuclear separations, with an attractive
dipole-dipole interaction which they could calcu-
late at large distances. Margenau, ' also in 1931,
extended this formalism to include dipole-quad-
rupole and quadrupole-quadrupole interactions.
This lowered the curve to a depth of -13.5+ 1.5 K,
with the quadrupole-quadrupole term accounting
for only 3% of the depth at the minimum. Con-
figuration-interaction (Cf) calculations were
carried out from 1970-1972 by McLaughlin and
Schaefer' (-12.0 K), Bertoncini and Wahl' (-12.0
K), and others. Attempts to correct or account
for the neglect of a large (200-2000 times the
size of the well depth) part of the intra-atomic
correlation energy missed by these calculations

were done by Liu and McLean" (-11.0 K), Ber-
toncini and Wahl" (-10.8 K), Dacre" (-10.54 K),
and Burton" (-10.55 K). Agooddiscussion of the
problem this correlation energy poses to CI calcula-
tions is given in Ref. 10. A calculation (1976)using
perturbation theory was carried out by Chalasinski
and Jeziorski, "who found a lower "bound" of -13.4
K. When they approximately corrected for intra-
atomic correlation effects, anupper bound of -10.7
K was obtained.

When the integrals are done by the Monte Carlo
method, any form for the wave function satisfying
the boundary conditions is integrable. This makes
it possible to construct wave functions by ap-
propriately piecing together extremely accurate
atomic wave functions" found in the literature
accounting for all (to within 5.0x 10 ' Ry) of the
intra-atomic correlation energy. Since it is not
necessary to subtract the infinite nuclear separa-
tion energy to find the energy at another nucleus-
nucleus distance, these energies are variational
upper bounds. It is also possible to put explicitly
into the wave functions the attractive multipole
terms of the Slater-Kirkwood formalism. "

This work is a refinement of an earlier work, "
with the main differences being an improved form
for the wave function and more Monte Carlo points
evaIuatel to give answers precise enough to gene-
rate a curve. The method of picking these points,
the minimization technique, and the method used
to obtain energy differences between two nuclear
separation distances is exactly the same, how-
ever, and is explained similarly (including proofs
for the various biased selection theorems) in the
earlier paper.

WAUE FUNCTION

Following Slater, ' we start with atomic wave
functions for nucleus A at 8& and nucleus B at
H~, with spin-up electrons at r, and r, and spin-
down electrons at r3 and r„and write the trial
wave function as
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4 (r„rm, r, r ) = (l -P, -P, +P,Q )g&(r„r,)

xgs(r„r, ) exp[ s-U(r„r, ; r„r,)] .

P;~ is the permutation operator between parallel
electrons i and j. The term g„(r„r,) is
Schwartz's" 189-term Hylleraas-type atomic wave
function (Table I) for electrons 1 and 3 on nucleus
A. The function U, which accounts for interactions
for electrons near nucleus A with those near nu-
cleus B, contains terms similar to Slater's
dipole-dipole term, ' and can be written as

U(r„r„r„r,) =u(r„r,) +u(r„r,)'
, +u(r„r ) +u(r; r,),

where

u(r;; r, ) = P V„(r;;r, )+e(r;; r, ) .
V=0

The term Vo is very similar to the interaction
potential energy

V,(r, ;r,) =[(Res+a) '~' —(r;'s+a) '~' —(r,'~+a) ''
+ (i'l, + ~) "]f.(&;~)fo(&,s) (4)

with R»=[R„—Rs[ and r;„=(r;—R„[, etc. The
var&able parameter o., given in Table II, was
introduced to eliminate the singularities in this
term. The term V, is the dipole-dipole term given
as

rj) (+'A+js +3 'A3 js 2s 'Asks)f&(&~)f (r,s),

with x;&, y;&, etc. the x, y, ~ components of r;&.

TABLE I. Parameters c& „reading from left to

5~& ~ „c&~„su t"e The .integers" Ql m, n) are
(1,1,0), (0, 2, 0), (0, 0, 2); (4, 0, 0), {4,1,0), (4, 2, 0),
even powers only.

right in Schwartz's 189-term atomic wave function
in ihe order: (0, 0, 0); (1,0, 0), (0, 1,0); ($, 0, 0), ($, 1,0); (2, 0, 0),
($, 0, 2); etc. Note s includes half-integer powers while t includes

1.000 000 000
1.902 943 036 x 10+~

-4.603 636 465 x 10'
1.037848041x 10 ~

-1.923 960 173x 10+
-2.885 316167x 10+2

-6.698 419033 x 10'
-2.260 694 210 x 10+2

1 215 969 591x 1
-8.394 132 610x 10'

5.303 597 090 x 10+~

9.116479 191x 10+
1.578 020 986 x 10+2

6.162 512 424
6.047 768 Op2 x10+&

4.703 998025xlp &

1 724 975 592 x 10
1.429 921 553 x10'

-3.238 420.Q3Q x 10'
9.943 179167x 1Q 2

2.029 710 542
-5.036 841 Q74

5.948 614 116x 10
7.315085 265 x 10 4

-2.808 997 643 x 10
1.201 623 207

-2.022 013328 x 10
-8.971180790xlp 4

2.321 560 230 x 10
-1.664063669xlp i

3.817256 327 x 10
3.695 lp3 522 x lp
1.303 109147 x 10-5

-8.616083210xlp 4

1.015980 123x 10 2

-3.060459 698 x 10
-5.101264671xlp 5

047403 976 x 10

-5.676206449x 10 &

1.244 899486 x 10'
3.361217 000
1.306 100 183x 10',
2.770 135115x 10+~

2.414 376 047 x 10
-2.913505 181

7.999811368 x 10+
-2.579 764 611x 10+

1.305 978447 x 10+2

1.445 389 874
-8.473 931080 x 10'

3.004 298 892 x 10+'
-8.210878221 xlp &

5.498 596 657 x 10
3.120412 013

-8.879 909 237 x 10
-2.540 266 224 x 10'

8.716 991675 x 10
-3.692 937 706 x 10 i
-4.005407 440

1.235 055 282 x 10+&

-8.737 071 941x 10-2
-3.836 780 819x 10

7.448460 687 x 10
-3.016330 989

3.895799143xlp 2

4.675 354 267 x 10 3

8.254 948 939x 10
4.260428116x10 &

-8.768 071 553 x 10
-1.916123 574 x 10 3

-3.168170870xlp &

4.124 028 815x 10
2 643277259xlp-2
7.933 139599 x 10 4

2.634 949 065 x 10
1.208128 981xlp 5

6.388 872 059x 10 &

-1.026 802 958
-3.069 398 340

3.436 179707
-3.904 835 778 x 10+1

-5.531899 045 x 10'i
6.129375 841

-1.205 385 629 x 10'
-8.255664738xlp &

9.848 670 095 x 10+
7.006 484 610x 10
6.420 011583 x 10'

-6.738 126236 x 10
3 521437 808 x10+'

-1.059 388 848 x 10'
-8.754 168 625

7.212 391498x 10 4

-2.479 212 34Q x I0'
-2.511910999

1.858 350 881x 10 &

7.476 147452
-1.721 607 346 x 10

3.245$51907x10 &

4.364 745 962 x 10
-1.459 459 700

7.635602 081x10 2

-1.452 645 159x 10
-5.237 388 480 x 10

1.693 984 877 x 10 &

-1.566465228 x 10
3.288 568 040 x 10
2.154 616496 x 10
1.789 193139x 10

-8.832 131764 x 10
1 276404132xlp 3

-2.994 343 269 x 10
3.016779448xlp 4

6.751485425 xlp 6

3.601 649 402
7.632 663 324xlP &

-1.469 536 530 x 10+2

-4.799 940 197
-1.695 078 037 x 10+

8.110744 231 x 10+'
1.724 980 398 x 10
7.982 978 682 x 10+'

-1.770 633 923 x &0'
-1.677 336 023 x 10'
-l.951 982 372
-1.038 851 622 x 10+

-1.252 469 963
3 366 445 734 x 10'

-2.452 697 604 x 10+i
1.199648 526
1.002 670 936 x 10+
5.029 554 086 x 10+'

7.138739 963
1.921603082xlp 3

7.758 764 735
1.234 795 512

-1.647 217 345 x 10
8.215236068xlp 4

-1.599 800 986
-3.677896122 xlp &

7.594 162 605 x 10
9.668 982 706 xlp 4

1.951 928 160x 10
6.109913795 x 10

-1.793 108 591x 10
-4.103 343 655 xlp 4

-3.132 109060 x 10
-1.066 184 506 x 10
-4.347 994 712 x 10-3

1.714 345 730 x 10 3

6.119936 532 x10
1 161691551xlp

-2.018472 944
6.422 960 944 x10'
1.121025 918x 10'2
2.399759 883 x10+2
2 374 837 556 x 10
4.525 372 476 x10'&
2.599 9.99412 x 10+
1.267 617020 x 10+2

1.594 372 166x 10+
-2.439 385 675 x 10+

2.799 597 276 x 10 i

8.683 079 P74 x10+~
-2.213 914 998
-3 572 976454x lp'

5.679 962 058 x 10+
-4.621 098 536 x 1Q
-9.812 668 097

1 356 885 188x 10+1

-1.066 658 882
-2.038 107176

1.646348439x10 &

-3.562 579 879
-1.118357309xlp 3

2.793 244 47Q x 1Q

3.528 033 111
1.077 48V 048

-1.824394960xlp &

-2.308 777 869 x 10
-4.446743096xlp &

1.815735190xlp &

1.665 615371x 10 4

1.651409751xlp I

8.678468784xlp 4

2.494 894 907 x 10-'
1.308 412 679 x 1Q

-3.347 126 314x 10
6.474 281 604 x 10 &
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The nuclei are located on the 8 axis. Similarly, the dipole-quadrupole (V,) term is given as

V2(r' rj) [ jABjB +j88jA+ (8 A 'ej 8)(~iA+jB+ 23 jA3j8 38/A8 j8)]f2( jA)f8( jB) '

The quadrupole-quadrupole term (V,) is

( r'A r'8) (8r A r 8[.r 'Ar''8 + A +'8+ 5(8 A 8jB) ] l5(8'A+'8+8 8+'A)'

+8 'ABjB [30(+' A++j8) —70(8 lA +8,'8) + Io58;AejB] + 3~lA+j 8]f3(+ A)f3(+i 8) ~

(6)

The functions f„are splines of the form
6

f(r) = Q a, ((,. r)—'„ (8)

I

wave functions, the term
2

e(r;; r, ) = e(x;j) = g a,'($', —&;,)'„

where x, x&0
(&), =

0, x(0.

The functions f„ therefore become zero for large
values of their arguments and thereby tend to
make the V„ terms a function of the interactions
of the electrons near atom A. with those near atom
B. .Finally, to allow for close encounters of elec-
trons not already accounted for by the atomic

with the cusp condition e'(0) = —I, was added. The
coefficients a;, a,' and knots g,', given in Table II,
are parameters with respect to which the trial
wave functions were optimized. The knots $;
were kept fixed at 2.0, 4.0, 6.0, 7.0, 8.0, and
9.0a&. This wave function includes many more
terms than that of Ref. 16. In addition, the factor
e U ' is now operated on by the permutation op-
erators, and U(r„r„r„r,), which was completely
symmetric in Ref. 16, now contains only inter-

TABLE II. Variable parameters for Eqs. (4), (8), and (10) which, together with Schwartz's parameters, determine
the wave functions.

1.0000 xlp '
5.0

1.0000 x 10
5.6

3.9924 xlp '
6.6

4 ppppxlp
7.5

3.9803xlP 1
9.0

3.9987xlp 1
15.0

3.9835 x 10

Vo
coefs

Vg
coefs

-4.7089xlp 2

4 1521xlp
5.4473 xlp 2

-2.7733 xlp ~

3.1603xlp &

1 1112xlp

-4.0906xlp '
4.4357xlp '
6.3760 x 10-'

-3.Q702xlp 2

3.4495 x lp-2
-1'.2057xlp 2

-1.5583xlp 2

2.2278 x 10 2

'7.8'756x 1Q 2

-3.2257 x 10-1
3.5785xlp &

-1.25pl x 10-~

-1.2673 x 10-'
2.0280 x 1Q 3

7.9808xlp 3

-3.1496xlp 2

3.4546 x10 '
-j..2pll x 10-2

-4.295g x lp-4
-1.0755 xlp 2

1.6640 x 10
-4.3716 x 10-~

4.2082 xlp '
-1.3856 x 10 ~

-2.9824xlp 5

-7.1245 xlp 4

1.2760 x 10-'
-3.4104 x 10-'

3.3041 xlp 2

-1.0910xlp-2

7.4717x lp-3
p3p5 x j p-2

9.p9p2 x lp-2
,—,. 3.gg17xlp '

4.5883xlp &

-1.6297 x lp" i

8.2966 x 10-4
7.1370xlP 4

4.9998xlp '
-2.1873x lp-2

2, 5188 x 1Q

9565 x 10

-4.2037 x lp-2
6.3929xlp 2

-7.2103 x 10
-3.plp4 x 10-~

4.2732 x lp-~
-1.6199xlp i

2.0435 x 10-4

1.8854 x lp-3
2.6079xlp 4

-1.0598 xlp '
1.4426xlp 2

5.4013 x 10

-6.1447xgp 2

1.7560 x 10 i

-3.2004xlp ~

1.7480 x 10-'
3.3g21 x 10-~

-1.6693 x 10-~

7.5887 x 1p-4

-3.5656xlp 3

5.9674xlp 3

1.2614xlp 3

-8.5693xlp 3

3.9646xlp 3

—6.4346 x lp-&

2.Q789 x 10-2
1.2476 x10-~

-5.0135xlp ~

5.6004 x 10-'
-1.9667xlp ~

V2
coefs

-2.4806 xlp 3

2.1474xlp 3

1.7942xlp 3

-1.0797xlp 2

1.2454 x 10-2
-4.3854 x lp-~

-5.5842 xlp 4

9.2387 x 10 4

2.4902xlp 3

-1.1683xlp 2

1.3361xjp 2

-4.7208xlQ 3

-1.2493 xlp 5

-2.4570 xlp 4

4.7pp3 x 10-3
-1.2755 x 10-2

1.2428 x 1p-2

-4.1136xlp 3

2.4690xlQ 4

3.8712xlp 4

1.1790x 10-3
—7.6704 x lp-3

9.6142 x 10-3
-3.5272 x 10-3

-6.1789x 10-4
6.2379 x 10-'
7.8279xlp 5

-2.9010xlp 3

3.9015xlp 3

1.4532 xlp 3

2.5186xlp 4

-7.1978x 10 4

l.3118x 10 3

-7.1619xlP 5

-1.3904xlp 3

6.8425 x 10

V3
coefs

-5.6161xlp 4

2.7491 xlp-
2.267gxlp 4

-1 3134xlp
1.5016 x lp 3

-5.2679x 10 4

—7.6'796xlp ~

7.6504 x lp-&

2.7861xlp 4

—1.2744xlp '
1.4496 x lp-3

-5.1116xlp 4

-1.5489 x 10 6

-5.9322 x 10-6

4.3438 xlp '
-1.2774 xlp '

1.2796 xlp 3

-4.284g xlp 4

-1.4792xlp 5

-4.8365 x 10-'
-6.5031x 1P

6.849pxlp '
9.0871 x lp"4
3.3g56 x 10",4

-4.3603 x 10
1.0740 x 10"3

-3.3810x lp 4

-3.7789 xlp 3

5.5581 xlp 3

2.1221 xlp '

knots
1.1376
1.1143

E-E -2.8192
coefs 3.2066

4.9865 xlp
—1.0998

2.6041 xlp &

8.3781x 10
1.2589
6 4463 xlp

1.3295 x 10+~

=8.0949 x lp
-3.0147

2.3911
-3.2710

1.8616
-l.9430

1.1371
-1.9627

1.1371

8.2220xlp '
1.2083

g 3486xlp-& 5 0101xlp-& 8.2637xlp &

1.1141 7 8747 xlp 1 2083
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actions between electrons on the left of the semi-
colon with those on the right. This allowed the
functions f to be longer ranged so that f(r») could
overlap appreciably with f(x~) without interfering
with the already accurate atomic wave function

4~(r„r.).

MONTE CARLO METHOD

Exactly as in Ref. 16, the 12-dimensional Monte
Carlo points x;, which contain the coordinates of
the electrons, were picked with an average
probability &. This results in the introduction
of ; into the sums to correct for this bias, re-
sulting in

E~~= Z, ,e, (x;)He, (x;)/;
Q N Q~(x )/wg

for the expectation value of II with the wave func-
tion 4,. One sum was taken with N=SV7000 for
the internuclear (hstances 4.5, 5.0, and 5.6a&
and the corresponding differences. Another was
taken over an independent set of points with
N= V82000 for the internuclear distances
5.6-15.0a~.

As is shown in Ref. 1V, the standard deviation
in E„,is given by

Z;, [e,(x;)He, (x, ) -E,4', (x;)]'/ao', .
Nt [Q N @2(x )/~ ]2

(12)

This is easily seen to be zero when H%, (x;)
=EN,@,(x;) for all values of x;.

An electron position in the point x; had proba-
bilities of being picked in the different ways:

(a) With respect to nucleus A. (or 8). In this
case the distances r„„=~r~~~ was chosen with a
constant probability for small distances (intro-
ducing a I/r,'„ into so&) and for larger distances
with probability r» times the square of the Har-
tree Pock atomic -wave function (introducing the
square of the Hartree-Fock atomic wave function
into so,.}.

(b) With respect to any previously picked elec-
tron position r&. In this case the distance r+
= [r, —r, ~

was .chosen with probability r» (intro-
ducing a I/r» into , ).

(c) With respect to a point midway between the
nuclei.

(d) With respect to a huge box centered on the
nuclei.

The final ~& for the pointx; is an average over all
possible ways of having picked this point. This
includes averaging over permutations of parallel-
spin electrons. The averaging technique is rigo-
rous and is explained in the Appendix of Ref. 16.
Note that if any of the interparticle distances r
are small, then the resulting I/r or I/r' in cv,

will dominate all other terms, causing ; to be
proportional to this term. This decreases the
importance of such terms in Eqs. (11) and (12).
It accomplishes this, of course, by greatly in-
creasing the probability of finding such points.
This weighting is exactly that needed to remove
the singularities in the potential part of B.

Using the scaling technique described in Ref.
16, differences between energies at different
nuclear separations also were calculated. These
differences (along with the corresponding standard
deviations) and the values from Eqs. (11) and (12)
are given in Table III.

The wave functions were optimized by mini-
mizing o' and not the energy (see Ref. IV}. The
minimization of g' Eg. (12) with respect to the pa-
rameters in 4, was as follows. A small number
n of the Monte Carlo points x; was selected, then
one (x~) was chosen from these with a probability
equal to

[4', (x,)/u, ]'"
[y 2(x )/g~ ]1/2

This,
' of course, introduces a new w to be used

in calculating a' and to a certain extent brings
back the singularities eliminated above 1000.
such points were found using n = 2. For each point
the fixed values of the atomic wave functions and
their first and second derivatives were stored.

TABLE III. Energies, energy differences, and kinetic energies with standard deviations in
units of 10 ~ Ry.

4,5
5.0
5.6
6.6
7.5
9.0

15.0

41.35+ 1.29
0.16+0.82

-7.16+ 0.33
-4.24 6 0.29
-2.15+ 0.25
-0.81+ 0.22
-0.16+ 0.21

41.19+ 0.68
7.33+0.34

-2.92+ 0.22
-2.09 ~ 0.13
-1.34+ 0.07
-0.65+ 0.07

E,(R;) —s(a„2)

48.52 + 0.93

-5.01+0.24
-3.43+ 0.16
-1.99+ 0.13

E(R;)—X(15)

643 + 25
216 +19
61+16
19+14
17+12
15+ 9
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This enabled the standard deviation of a trial
wave function to be calculated extremely rapidly
over these 1000 points. The simplex method"
was then used to find the parameter set mini-
DHZlng 0

«(R, , (~R),.)= E(R, + (~R), )-E(R,), (15)

and 8Mc(R;, (AR);) is the Monte Carlo standard
deviation of «Mc (R;, (AR); ). The factors A; and
A.; made it possible to test for the relative im-
portance of these terms. The best final result
had error bars about 3%%uo less than would have
been found with ~,. =A.; = 1.0. This yields

Es, (R) =E~F„(R)+Q c, (R —4.0)',(k, -R)'„, (16)

with (c;j=+ 0.558 029 x 10 ', -0.592 108x 10 ',
-0.140675x10 ', -0.349129x10 ', -0.709027
x10 ' Ryja4~, and(k, )=5.6, 6.6, V.5, 9.0, and
15.0as. The term E»~ (R) is the experimental
curve of Burgmans, Farrar, and Lee4 which was
used because it goes to the accepted" limits at
small (R & 4.0as) and large (R & 10.0a~) internu-
clear distances. Est (R) and E~„L (R) for 5.0as
&A & 9.5a~ are given in Table IV and Fig. 1.

The Monte Carlo standard deviation in the fit
can be found by squaring the equation

E~ -E„=— (1V)

and taking an ensemble average. E„ is the true
(N=. ~) energy for 4, and 5; is the error intro-
duced into E„by omitting the ith point. This
yields the formula for the standard deviation of
the energy E„=E~(R) at nuclear separation dis-
tance R on the curve:

.y N N N

&(z,-z )q =(g z a, t ) =(g n) = P r

(18)

Our estimate for this quantity (Table IV) was
found by breaking our total run into 1159 partial
runs, each representing a point i, and re-
doing the curve fit successively leaving each

CURVE FIT

The values from Eqs. (11) and (12) and these dif
ferences —most of which are given in Table III—were
used in a curve fit minimizing

7 2
Ea~(R) -EMc(R;)x'=~

Z;o„c(R;)

«m@;, («);)—«Mcl;, (~);)
~

14)
Z;uMc(R;, (aR);) j

where

TABLE IV. Energies with standard deviations from
the curve fit along with the experimental results of
Burgmans, Farrar, and Lee in units of 10 5 Hy.

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5

0-36
-2.35
-4.22
-5.44
-6.18
-6.57
-6.70
-6.65
-6.48
-6.23
-5.93
-5.60
-5.25
-4.90
-4.54
-4.20
-3.88
-3.59

3031
-3.06
-2.82
-2.60
-2.40

2 +22

-2.05
-1.89
-1.75
-1.62
-1.50
-1.39
-1.29
-1.20
-1.12
-1.04
-0.97
-0.90
-0.83
-0.78
-0.72
-0.67
-0.63
-0.58
-0.55
—0.51
-0.48
-0.45

0.26 + 0.52
-2.51+0.48
-4.44+ 0.43
-5.73+ 0.38
-6.53+0.34
-6.96+0.31
-7.10+ 0-30
-7.04+ 0.29
-6.87+ 0.28
-6.61+ 0.27
-6.30+ 0-26
-5.94 + 0.25
-5.57+ 0.24
-5.20+ 0.23
-4.82 + 0.22
-4.46+ Q.21
—4.13+ 0.19
-3.82+ 0.18
-3.53+ 0.17
-3.27+ 0.16
-3.02+ 0.15
-2.79+0.14
-2.57+ 0.14
-2.38+ 0.13
-2.20+ 0.13
-2.04+ 0.12
-1.89+ 0.12
-1.75+ 0.12
-1.63+ 0.11
-1.51+ 0.10
-1.41+ 0.10
-1.31+ 0.09
-1.22+ 0.09
-1.13+0.08
-1.05 + 0.08
-0.98+ 0.08
-0.91+0.07
-0.84+ 0.07
-0.79+ 0.07
-0.74+ 0.07
-0.69+0.07
-0.65+ 0.07
-0.61+ 0.07
—0.57+0.07
-0.54 + 0.07
-0.51+ 0.07

of these out.
Our outermost energy (-0.160+ 0.208) x 10 ' Ry

at B = 15.0a~ was in good agreement with the ac-
cepted asymptotic result (-0.02Vx 10 ' Ry, as
found in BFL and references therein). Since the
other theories are more accurate in this region,
our energy was made equal to this value at this
point. Through differencing, this had the effect
of slightly raising the rest of the curve. This
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FIG. 1. Upper bound to the Born-Oppenheimer poten-
tial (hatched curve). The curve is two of our standard
deviations wide. Solid line is the experimental curve of
Burgmans, Farrar, and Lee.

NUMERICAL CHECKS

As long as the standard deviation (o„c) is ac-
curate there are defj. nite bounds on how far off
the energy can be. Thi:s standard deviation [Eq.
(12)] is a sum of squares, which makes it in-
trinsically easier to calculate accurately than
the energy estimates. It was, in fact, this ac-
curacy that enabled us to minimize the standard
deviation over 1000 MC points. For 8 = 5.6a~
this minimum o«was 9.V&& 10 ' Ry or about the
size of the well depth. As a check on these o„c's,
energies for partial runs were found to vary by
the amount predicted from Eq. (12).

The standard deviations may, however, be
artificially small if a region of the position space
X is inadequately sampled. One way to be sure
that this is not the case is to test the convergence
property thatch„c should have for large N. If all
regions of the space are sampled enough this
convergence is

oMc tx: I/WN . (19)

also reduced the standard deviation in the.fit to
about equal to the standard deviation in the dif-
ference between these energies from the energy
at 8 = 15.0aa. Consequently, for the internuclear
separations for which E(R) was evaluated directly,
the curve fit (Table IV) gives a better estimate
to these energies than the direct Calculations
(Table III), since more information went into it.

Between these seven calculated energies there
was error introduced by the looping of the fitting
function. It was found that variation of the form
of the fitting function and of the knot locations 0&

produced variations in E(R) between these points
on the order of 0.3 standard deviations. The di-
rectly calculated points themselves, however,
were independent of these variations (to within
O. lv„c). The present fit was used because it
looked smooth and had the qualitative features
expected from the input.

If, however, new Monte Carlo points are picked
in previously inadequately sampled regions, then
the standard deviation for a longer run will be
larger than that predicted from Eq. (19). This is
due to a small weight function ~, for these points
appearing in the sums of Eq. (12). To check this,
the standard deviations of various energies for
ten partial runs with N= 2000 and 10000 were
compared to the average of ten partial runs with
N= 50000. From the runs with N= 2000 and
10000, the values predicted for o„c(N= 50000)
were equal to o~(N= 50000) to within uncertainties
of 2%% and 1%. In addition, it was possible to break
the integration region into sections and sum the
integrals over these to independently test whether
each section was adequately sampled.

An integration by parts of the integral repre-
sented by Eq. (11) yields an integral which becomes

Z t", [C%t(x;) ~ @t(xt) + Vqt't(x;) j/t
'

)ttt P Q @R(x )/g(

where G is the electronic gradient operator. As
a check for coding errors this expression was
evaluated concurrently with Eq. (11) over the
same set of x;. To see the difference in Eq. (20)
from Eq. (11), consider the kinetic-energy term
for the simple atomic helium wave function

=e gri+ra)

For Eq. (20) this is

GC = 8e ~"~'"&~

(21)

with nothing to cancel the integrable singularities
in the potential. The equivalent term for Eq.
(ll) is

ea'e -= 4(1/r, + 1/r, 2)e-"'—"""
with the 4/r terms canceling with potential terms
making II%/4 relatively constant. This, of course,
makes Eq. (11) many times more precise using
our methods than Eq. (21). Since these two equa-
tions are different and also weight differently
the different region@ of space, agreement between
them is a good test for errors and for adequate
sampling of the space of x. These values from
Eq. (20), are in agreement with the results from
Eq. (11) (Table III) but with standard deviations on
the order of 0.019 Ry. Energy differences can
also be calculated using Eq. (20). This lowers
the standard deviation to about 0.003 Ry —still
in agreement with the much more accurate results
from Eq. (11).

As a cheek on the weight functions and differ-
encing technique, our first 80 000 MC points at
A=6.6a~ were scaled to the system of two in-
finitely separated 8, molecules. The relevant
expression is
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, fit»AB(xl» x2)yc D(x2» x4)ayAB(xl» x2)&f&c D(x2, x4)dxldx2dx2dx4
(24)

where JAB is James and Coolidge's" 11-term trial H, wave function for electrons 1 and 2 on nuclei A and
8, and II is the sum of the Hamiltonians for the two independent 8, molecules:

where

@ABy2 +C D34 s (25)

2 2 2 2 2 2
HAgq2 V~+ V2 — — — — + +

+j8 +2A +28 +12 +Ay
1

Note the absence of any cross-potential terms. The Monte Carlo estimate for this energy was

(26)

Xi=i (I+P22+ )24AA (Blxi x»2i)fcD(x2i» x4i)(+AB12+ +cD24)CAB(xli» x2i)Ac DC+2i» x4i)
Ki

8Mc
soooo 1 2 2Z», —(1+P22+P24)CAB(xli»x2i)kcD(x2»»x4i)K

where the x; are electron positions onginally picked with respect to the He-He system and then scaled
to the 2H, system using the method explained in Ref. 16; u; is the weight function used to pick these origi-
nal points multiplied by a scaling factor. The permutations were used to include all possible combinations

with the same weight function and had the effect of reducing the standard deviation by smoothing the inte-
gral and by increasing the number of evaluations. At the nuclear separations (R =rAB =rc D) of 1.2, 1.4,
1.5, and 1.7a~ the energies were -4.416~0.013, -4.674+0.013, -4.612~0.014, and -4.350~0.010 eV
compared with James and Coolidge's -4.41, -4.68, -4.63, and -4.35 eV.

CORRECTIONS

Since our trial wave functions are not exact
eigenfunctions, the variational bounds would be
above the correct eigenfunctions if the calcula-
tions were made over an infinite number of Monte
Carlo evaluations. An estimate of the size of this
effect can be made by assuming that this error
is proportional to o» the part of g' which depends
on nuclear separation distance [cr'=c'„(&}+cA].
During our search for the best wave function
[lowest cB2(N= 1000)], energies were found for two
of the earlier forms of the wave function at
A = 5.6a~. A straight line fitted through the plot
of E (-5.07+0.60, -5.95+0.41, -0.716+0.33
x 10 ' Ry) vs c'„(N= 1000) (10.0, 1.8, 0.9x 10-'
Hy') for these wave functions predicts that a per-
fect wave function [o'„(N= 1000) = 0] would have
an energy lower than our present wave function
by at most 0.18x 10 ' Ry.

Kinetic energy estimates corresponding to the
first term in Eil. (20) were summed concurrently
with Eqs. (11) and (20). From these values (Table
III), it is evident that our wave functions do not
satisfy the virial theorem. This is not surprising
since these wave functions were found by mini-
mizing c2(N= 1000) rather than the energy. At
the potential minimum, introducing a variational

scaling parameter into the wave function and
minimizing the energy with respect to this pa-
rameter" produces a new wave function which
satisfies the virial theorem. The resulting bound
for the scaled wave function is lower than that
for the wave function at A = 5.6a~ in Tables I and

by 1.3x10 ' Ry.
Another correction, in comparing to the scatter-

ing experiments, is that due to our use of the
Born-Oppenheimer approximation. These correc-
tions have been examined by Laue, "who finds
that the leading term which varies as A, is of the
form of an expectation value of the interaction
potential between the atoms divided by the nuclear
masses. Since the expectation value is of the
order of the dip in the Born-Oppenheimer poten-
tial, dividing by the nuclear masses makes this
correction negligible.

CONCLUSION

At the potential minimum, our value is lower
than the BFL result by 1.33a. Since this is at
the 82%%uc confidence level, this curve should be
considered in agreement with the BFL result with
just a hint that the true curve is deeper than the
BFL curve.
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Finally, the standard deviations of the curve
in Fig. 1 and Table IV are all smaller than the
total electronic energy by factors less than 5.0
x 10 '. This demonstrates that by using a com-
bination of good weight-function techniques and
very accurate wave functions, it is possible to
get extremely accurate results from the Monte
Carlo method.
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