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Some aspects of the Aharonov-Bohm effect
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It is shown that the Aharonov-Bohm scattering cross section diverges. This presents a problem since the range of
the scattering force (Lorentz force) is finite. The cross section found by Aharonov and Bohm (AB) results whether

one takes an incident wave function corresponding to particles moving in the incident direction, as was done by AB,
or just takes the incident state to be a plane wave. The mechanism by which a localized force results in an infinite

cross section is not clear. This is an apparent contradiction to recent proofs that electrodynamics is a local theory.

I. INTRODUCTION

In their well known papers that were written
twenty years ago, ' Aharonov and Bohm (AB) at-
tributed the scattering of charged particles by a
whisker of magnetic flux to the vector potential
itself. The effect could be explained on this basis,
and it was considered to beunderstood, even if it
was somewhat unusual. However, within the past
several years electrodynamics has been shown to
be a strictly local theory. "This requires that
the AB scattering be produced directly by the
magnetic Qux in the whisker. This requirement
unfortunately cannot be reconciled with a result
recently found by Purcell and Henneberger. ' They
considered the energy eigenstates of a free elec-
tron confined to the interior of a cylindrical vol-
ume. Transitions from one superposition of states
to another induced by a whisker of magnetic flux
along the 2 axis were computed in first Born
approximation. The paper gives a perturbative
treatment of the AB effect. Free-particle solu-
tions which are superposed have the form

g (k&)eiiweiz z
k, k~l

Transitions from the state

(]/ 2)(~k, k„lg+ ~k, k„l,))
to the state

menta.
This result cannot be reconciled with the ex-

planation that the AB effect is caused by the pene-
tration of the whisker of Qux by the tail of the wave
packet as proposed by Strocchi and Wightman, '
since the Bessel functions are proportional to p'

near the Z axis, so that states of large angular
momentum should be affected less than states of
small angular momentum. This, however, is not
the case, as one sees from Eq. (2).

The result of Eq. (2), therefore, provides the
stimulus for further investigations of the AB ef-
fect as a scattering problem. It is interesting to
consider the result that would be obtained by a
person who wished to draw a conclusion about the
range of the scattering force using only data ob-
tained from scattering. To this end, we first re-
view the method of partial waves in two dimen-

sionss

II. TWO-DIMENSIONAL SCATTERING THEORY

We begin by considering scattering by a potential
having cylindrical symmetry. The stationary
scattering states have the asymptotic form

cos kr — ——+& e, (3)
i/a
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are considered, and the S matrix elements are
found to be

(2)

where 6 is a phase shift that gives information
about the scattering potential. Although the AB
effect is not due to potential scattering, it is in-
teresting to note that the stationary states found

by AB have this asymptotic form. The scattering
solutions in which a plane wave is incident in the
x direction are given asymptotically by

Thus transitions are induced only between super-
positions of eigenstates of L, having eigenvalues of
opposite sign. A more remarkabl, e result, how-

ever, is the fact that S&, depends only upon the
relative sign of the angular momenta. States in-
volving arbitrarily large angular momenta give
the same result as states of small angular mo-

e iver +f(g )e ilier/~~ (4)

and these solutions are expressible as linear com-
binations of the solutions given in Eq. (3). By the
usual argument, the differential scattering cross
section (which has the dimension of length) is
given by
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de

%e define 8 by x =r cos8, so that 8 =0 is in the
forward direction, and make use of the relation

(2r cc48 g 'mJ (k } Im8

It is required to find scattering states

(8)

where G(r, r') is a Green function satisfying

(V2+ k')G(r, r') =-4&I|&(r—r'},
k2=2E/I' and P,(r) is the incident plane wave. It
is convenient to solve Eq. (15) for G(r, r ),by setting

5(r —r') =—,5(r —r') —e' '8~'1 1 (i8)..- 2g

a =i™e@ (8}

and straightforward computation leads to the result

f(8)= gms~

This gives
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that have the asymptotic form of Eq. (4). The re-
quirement that there be no ingoing cylindrical
waves leads to the condition

G(r- r') = P g„(r, r'}e' ' (17)
tls ~

Insertion of Eq. (16) and Eq. (IV) into Eq. (15)
leads to the result that g (r, r') satiifies Bessel's
~nation when rsr'. Hence g (r, r)) has the form

g.(r, r ) =X.Z. (kr, )@&I&(kr,). (i8)

Equation (18) follows from the required sym-
metry of g (r, r') in the variables r and r', togeth-
er with the boundary conditions, ,that g be finite
at the origin and have the form of an outgoing
cylindrical wave at large distances. In Eq. (18),
r& and ~& mean the smaller and larger of r and

r', respectively. Computation of the discontinuity
in

(d/dr)g (r, r')

at the point r =r' gives the result

It is of some interest to investigate the form of
the optical. theorem in two dimensions. Unitarity

of the S matrix, which has elements

SI/ —5,/ —2&(i 6(E/ .—E()T(I,

leads to the relation

(i2)

2&I Q 5(E„—EI )Tm(T„/ =i(TI/- T/m() .

Et is now necessary to relate the scattering amp-
litude to the elements of the T matrix. The sta-
tionary scattering states are given by

so that the required Green's function is

G(r, r') = P i((d (jeer )H"'(kr&}e(m'8~ '.
gs~

Equation (4) with the usual normalisation is

~P(+) e(22+ e(2r
I

„ f(8)
(%)

Making use of the asymptotic form

ff"'(kr) (2/vkr)"-'e'"e "-/""&-
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(i4)
one obtains from Eq. (14),

f(8) =- — — e " ' ' "i&I d (kr') e' ' '(t)" V(r'}r'dr'd8'.
m (F) (22)

The relation

(23)

yields
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The relation

I"~ =(4„v4.")
implies

r„= , —s"'-V(r~)y, &'~,d r~. (25)

r -(-'vk)"'e" 4i(aa /mf. '}f(8) (25)

where the state Int},
"has its incident wave parallel

to the x axis. When the incident wave is in the
direction k and 8 is in the direction of k, Eq. (26)
is equivalent to

Tp„, = (ink~' 'e" "i(28'/ml ')f.„,(k). (27}

With this relation, Eq. (13)becomes
2 )2 y

5(k —k }f'-(k-}f-,%')k "dk "d8"
4 ~L2~ IQ,

=i(T@,-T*„-4). (28)

The quantity L' is the quantization area, k is a
vector whose azimuthal direction is 8 (scattered
momentum) and k ~ P' = kr' cos(8 —8'). Comparison
of Eqs. (25} and (24) yields

m
~

~2

~

t

t
0

~

~

1--, np, m ~. 0
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It is interesting to note that all phase shifts have
the same magnitude. Thus Eq. (11) would give an
infinite total cross section for AB scattering if it
were applied blindly. This phenomenon is related
to the difficulty connected with Eq. (2}, as has been
discussed in the introduction. However, the usual
scattering treatment fails in this problem, since
the phase shifts 6 do not go to zero with increas-
ing ~m ~. The treatment of the previous section
can easily be modified to treat the case in which
the incident wave is

These are of the same form as the solutions ob-
tained in potential scattering given by Eq. (3). This
is not surprising since Eq. (3) is general; the con-
cept of potential scattering was not introduced un-
til the discussion of the optical theorem. The op-
tical theorem itself is a consequence of the unitar-
ity of the S matrix. It could also be derived with-
out reference to a scattering potential.

The phase shifts 6 are thus given by

Setting k =k' yields e ik r cose- jee=einc (s5)

k ra&—
J ~

f(8) ) d8 = ~gk[Itef(0) Imf(O)] .
2 p I

and the two dimensional optical theorem is

o = -2(s/k)'~'[He f(0) —Im f(0)] .

(29)

(3o)

From Eq. (9),

m ~
Substitution of this into Eq. (30) yields Eq. (11).

This serves as a check an the results and at the
same time shows that unitarity places no restric-
tion on the phase shifts.

(31)

III. AHARONOV-BOHM SCAT'f ERING

We now return to the ppoblem of Aharonov-Bohm
scattering. AB found the stationary states

g (r, 8) =&~ [(kr)e'~, m =0, al, +2, ~ ~ ~, (32)

where a = -. eck/ck. In what follows, the quantity
a is assumed to satisfy 0&a&1. The states of
Eq. (32} then have the asymptotic form

which corresponds to the incident wave considered
by AB; this gives a particle flux in the x direction.
A more serious problem is the fact that the asymp-
totic form is valid for the Bessel functions only
if ~m

~

«kr Howev.er, this inequality is always
violated for infinitely many of the terms in a
Bessel function expansion, even at a detector that
is a meter from the scatterer. This problem is
generally ignored in the partial-wave treatment
of scattering found in most textbooks. The con-
sequences are not serious since the phase shifts
are assumed to go to zero with increasing angular
momentum, so that the spherical counterpart of
Eq. (11) gives a finite result. This does not happen
in AB scattering. It is this difficulty that caused
AB to carry out infinite sums before going to
asymptotic forms. Their rigorous treatment is
thus much more cumbersome than the recent one
by Corinaldesi and Rafeli. '

The present approach is similar to the one by
Corinaldesi and Rafeli, with the modification that
it takes into account the finite width of the incident
beam. This is assumed to be of the form

q„,= g i~g (kr)e&~ee &~ee (35)

rP (r, 8)-(
( 2 1/2 tPl7T Q7f 17 g~coskr+ 2+ 2-4epkr

m&0

(33)

m &0.

where c is a small positive quantity satisfying
a»1/kR, where R is the distance from the scat-
terer to the detector. Thus if ~n

~

is 0(kR},
e ' '' is effectively zero. Thus the use of asymp-
totic forms for the Bessel functions is always
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justified. The condition 1/kR e«1 implies that
Im I

«kR for all terms in the sum not cut off by
the exponential. Thus we have Im IS'«}tkR =PR.
But Im I}d is roughly the classical momentum of
the incident particle multipled by the classical
impact parameter. Therefore, the condition on f
merely assumes that the largest impact parameter
(i.e., the beam half-width) be much smaller than
the distance from the scatterer to the detector.
This condition is satisfied in every scattering
experiment.

A requirement that is generally agreed upon in

quantum theory is that the wave function be single
valued' and continuous. This requirement can be
satisfied by demanding that the discontinuity in the
incident wave (let us take 0 0&2w} be cancelled
by the discontinuity in the scattered wave. With
this convention, these discontinuities occur behind
the scatterer (i.e., in the forward direction). The
incident and scattered waves cannot be distinguished
in the laboratory in the forward direction. Thus
the treatment is consistent.

One therefore requires a superposition of sta-
tionary states that have the asymptotic form

( 2i /~ ( mg g't
& & mn m

4)g PI I
coslkr- -- Ie' e ' e ' ~'+f(8) ==+ a cos kr — --+5„Ie'~.
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Thus
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Rr kwk~ . "
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The condition that the coefficient of e '~/Wr on
the right side of Eq. (38) be zero is

[a I e-fd i2me-I I e-f~lmt 0~ ~ (s9)

e 'by 1, and obtain

e'r e'ra e~" '
f(8)=, „fd sin(wo. ')(2nkp'/' Sln38

(45}

Therefore,
mefem -fr -Iml (40)

is a suitable choice for the coefficients. Equation
(39) then becomes

(41)

The phase shifts of Eq. (34) yield

e fr/4e-Era
f(8)=,2 „„2isin(wa) Q e'~e™.

~2nup'/' m~o
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The series in Eq. (43) converges uniformly to give

(44)

lf 8»4, and (2w-8)»&, we may approximate

If I8- w
I
» c, we may put e ' =1 after the summa-

tion has been carried out. In this approximation,
the second factor in Eq. (41) vanishes. If 8- w is
0(c), then the square bracket is also of order e,
while the sum is of order 1/c. Thus the incoming
cylindrical wave vanishes everywhere except in
the backwarddirection where it is indistinguishable
from the incident wave.

Straightforward algebra then gives

efr/4f (8) (edfdme dra e lac)eddee-Iml -d (42)(2wk)"' ..

This gives for the differential cross section the
well-known result

d(r, , sin'(w c.)
d8 I I 2wk sin~d8 ' (46)

This is not the case for AB scattering, since phase
shifts for positive and negative m values have the

where 8 =0 defines the forward direction. In the
forward direction, Eq. (44) shows that f(8} is of
order I/c and do/d8 is of order 1/e'. Thus the
total cross section can be made extremely large
by employing a wide incident beam and placing
the detector far from the scatterer. This result
is consistent with that of Eq. (2). The total cross
section may be considered to diverge.

A final question to be explored is the importance
of having the particles (rather than the waves)
incident in the x direction. If the mechanism of
scattering were not understood, one might assume
the incident wave to be of the form e'~' rather
than e'~ ' . The cross section would then be ob-
tained directly from Eq. (9) suitably modified to
take into account the finite beam width as before.
The phase shifts are given by Eq. (34). To be
sure, these phase shifts could not be due to scat-
tering by an axially symmetric potential. Such a
potential gives stationary states that are related
by

(r, 8) = 0, (r, -8) .
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opposite sign. On the other hand, the scattering
could not be due to an asymmetric potential be-
cause the Z component of the angular momentum
is a good quantum number.

Suppose that in spite of these difficulties, one
takes the scattering cross section to be that of
Eq. (9), modified to take into account the finite
beam width. One then finds

~-ie/&
f(e)= ' „, (e "'—l)e'~e '+Q (e'" —l)e' e ')(2vu)'~' .,

e-ir/4
re W~-m ~ «8e-I ml

{2v~)'~' (47)

f(e ) ~,
1 s1n (v D )

2mk sin &8
(49)

which is identical with Eq. (46), the result found

by AB. This result is certainly comforting, even
to those who do not find it surprising. Had Eq.
(49) given a result at variance with Eq. (46), one
would be faced with the problem of having to under-
stand the nature of a scattering force before one
can analyze the scattering. But the purpose of a
scattering experiment is precisely to gain informa-
tion about the nature of the force.

IV. CONCLUSION

In a scattering process, the momentum of the
scattered particle is changed, and this momentum
change must be caused by a force. The only
available force in AB scattering is the Lorentz
force which is nonzero everywhere except in a
small neighborhood of the Z axis. One purpose
of a scattering experiment is to obtain information
about the range of the scattering force. In the case

The third term on the right of Eq. (47) vanishes
for angles deviating from the forward direction
by much more than a. This term contributes only
to forward scattering. The effect of such a term
could not be distinguished from the incident beam
in a laboratory experiment; the term may there-
fore be dropped. Such a forward scattering term
was dropped in the recent treatment by Corinaldesi
and Rafeli. ' This term, however, is necessary
for the unitarity of the S matrix.

The remaining sum in Eq. (47) may now be car-
ried out rigorously and for angles deviating from
the forward direction by more than t, one obtains

1 1

f(g)8 juncos(p8 —vR+gv)~(46)
2mk . sin28 ] '

A bit of algebra then gives

I

of AB scattering, the theoretical result already
implies that we are dealing with a force of infinite
range. However, the diameter of the region in
which the (Lorentz) force is nonvanishing was as-
sumed to be quite small. We therefore have a
contradiction that is not easily explained. The
problem is compounded by the fact that electro-
dynamics has been shown to be a local theory, "
so that the only mechanism available for AB scat-
tering would seem to be a penetration by the wave
packet of the region in which the magnetic field
is nonvanishing. This mechanism has been sug-
gested by Strocchi and Wightman. '

It may be that a modification of scattering theory
is required, but this is far from clear. Certainly,
one is encouraged by the fact that an incident plane
wave leads to the AB differential cross section,
as seen from Eq. (49), just as the incident state
taken by AB does. If this were not the case, one
would have real cause for concern, since the in-
cident state is always taken to be a plane wave in
cases where the nature of the scattering force is
not clearly understood.

From a mathematical point of view, the AB ef-
fect is characterized by phase shifts all of the
same magnitude but having a sign that depends
on the sign of the Z component of angular mo-
mentum. It is this sign difference that causes
the AB effect; without it, all scattering would be
forward scattering.

The manner in which this problem will be re-
solved is at present unclear. There may yet be
hope for the point of view expressed by DeWitt'
that electrodynamics should be viewed as a non-
local theory.

Note added in proof. The problem discussed
here has since been resolved by the author. Its
resolution has been submitted to the J. Math. Phys.
under the title "Aharonov-Bohm Scattering and the
Velocity Operator. "
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