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Time-resolved measurements of atomic observables are analyzed using a Liouville space formulation and a
Hermitian unit tensor base, This approach makes it possible to distinguish cleanly the symmetries of a
formation and/or excitation process completed by time t = 0, a time evolution under experimental control
between t = 0 and t = t, and a measuremerit at t = t, even for hydrogenic observables. Each observable is

labeled by a time-reversal quantum number, allowing exploration for the first time of the close relationship

between time-reversal symmetry and the time evolution of atomic observables. The experimental

reconstruction of atomic observables (at t =0) from subsequent time-resolved measurements of the

anisotropy and polarization of emitted electric dipole photons is discussed, Hydrogenic observables are
stressed and the use of strong fields is included, thus generalizing Fano and Macek's approach.

I. INTRODUCTION

Recent measurements of electric dipole radia-
tion from hydrogenic states prompted us to
extend Fano and Macek's treatment of ~1 radiation
from nonstationary, nonhydrogenic states ' to
include hydrogenic states decaying in the possible
presence of strong external fields. The hydro-
gen problem is much more complicated owing to
the large number of /= 0 observables which deter-
mine the subsequent unresolved emission of $1
photons. Many source observables are involved
in addition to the orientation vector and the align-
ment tensor of Ref. 13. Frequently, in fact,
strong laboratory fields must be used to sort out
the large number of source observables. The
numerical calculations required by strong fields
further complicate the analysis and planning of
hydr ogen experiments.

We analyze such time-resolved measure-
ments in three stages: A formation and/or ex-
citation process which is completed by t=0,
the time evolution between t = 0 and t = t in the
possible presence of strong laboratory fields, and
a measurements at time t. The clean separation
of these three stages is possible because we work
in Liouville space, whose vectors represent the
operators of the usual Hilbert space of quantum
mechanics (such as the density operator and the
Hamiltonian}. We are able to focus upon the
spatial and time-reversal symmetries of each
stage (without explicit numerical calculations)
because we use a Hermitian unit tensor base.
Projections of these unit tensors upon the / =0
density operator are the observables which deter-
mine the t=0 state. Components of a I iouville
evolution operator (in this base} describe the time

evolution between t=0 and t=t. Projections of a
Hermitian detection operator on the Hermitian base
characterize the t = t measurement.

A new feature of our analysis is our use for the
first time of time-reversal symmetry to study
time evolution. Each of the Hermitian unit ten-
sors defined in Sec. ll (building on the work of
Pano, f ombardi, a.nd Omont } is labeled by a
time-reversal eigenvalue. We use these eigen-
values in Sec. III to classify the form of compo-
nents of a Liouville space evolution operator. We
focus in particular upon the experimental recon-
struction of hydrogenic observables at t = 0 made
possible by subsequent time-resolved measure-
ments of the anisotropy and polarization of emitted
~'1 photons. We are, however, able to provide
insight into the time evolution of hydrogenic and
nonhydrogenic observables alike. In a later paper
we shall show that our approach can also be used
to analyze the time evolution which occurs during
electr on-atom collisions.

II. HERMITIAN UNIT TENSOR BASE

A. Definitions

We define the Hermitian unit tensor base using
a two-step unitary transformation of irreducible
spherical tensors T,(nF, PG) in the standard rep-

resentationn"

'.

T,'(&» PG) = 2(-i)' "
I o~M& &pGfv

I
(I"'I, G —&

I &q& .

Both the state vectors I
&I"~& and the spherical

tensors are eigenfunctions of the angular-momen-
tum operators F2 and I",. Omont summarizes the

138 1980 The American Physical Society



22 SIGNIFICANCE OF TIME-REVERSAL S YMMETRY FOR. . . 139

many equivalent designations of these tensors in
the literature.

.To emphasiz e the analogy between unit tensor s
in I iouville space and unit state vectors we shall
frequently employ a bra and ket notation similar
to that used by Baranger. The spherical tensors
of (2.1) are designated by ~

(»)(PG); kq&; the
Hermitian conjugates by ((»)(pG); kq ~. A bra
operator joined to a ket operator represents the
trace of the product of the two operators. The
unit spheriqal tensors are thus orthonormal in the
sense that

((»)(PG)'; kq I (») (PG)'; kq) = 5 „
(2.2)

Transf ormations of vectors in I iouville space are

written reminiscent of the transformation of state
vectors. Rotations by Euler angles o, p, and

Y, for example, are written

R(~Pr) l( E)(PG)';kq&

G;kq kq R& y kq, 2.3

using the same rotation matrix elements as for
state vectors. These are expressed below in
terms of the real Wigner rotation matrices, d-'„(p);

(kq IR(~P~) lkq& = 8 '"d;".(P)e '". (2.4)

Following Fano, we first replace each standard
spherical tensor component by a linear combina-
tion which is an eigenfunction of R,(m) (rotations
of & about y) rather than an eigenstate of E,:

i
(»)(PG)';kq~& =k,.(q, o)[~(- I)'" l(»)(PE)'; kq&+ l(»)(PG)';k- q&]

with q~0, &=+1,

(2.5)

(2.6)

(2.'I)

and (-1) interpreted as i These .operators differ from those of Fano by a factor of (-1) so that

R„(~)~(»)(PG)'; k«&=» ~(»)(PG)'; kq~&.

When q = 0 they vanish unless e = (-1) in which case they reduce to q = 0 spherical tensors. They are
orthonormal in the sense of (2.2) and are Hermitian when oE=PG, the case considered by Fano. They
transform under rotations by the real matrices

+e

(kqE ~R ~kqE& =
[( „„~,z [d-, (p) cos(qu+qp) + E(-1) "d,- (p) cos(qu —qy) ],

+e+e

(kq- & ~R ~kqE& =
[( „„„,[d";,(p) sin(qo' +qz)+ e(-I) ~d,- (p) sin(q& —qy)].

(2.6)

(2 .9)

(2.10)

(2.11)

If we further assume that the state vectors
~
»M& have definite parity ~, the tensor components of (2.5)

are eigenfunctions of the parity operator P,
I ~(»)(PG)'; kq~& = m. w, ~(»)(PG)'; kq~&.

Following Omont we further replace each "real standard" component of (2.5) by a linear combination
which is Hermitian even when aE+ PG,

I
(»)(PG)'; kq~P& =k»(», PG)[l (»)(PG)'; kq.&+P(-1)' ~' l(PG)(»)'; kq~&],

using the normalization constant of (2.6). These
Hermitian unit tensors undergo the same spatial
transformations (2.7)-(2.10) as the real standard
components of (2.5). We further take the state
vectors

~
»I& used to define standard spherical

tensors in (2.1) to be real in the sense that the
antilinear time-reversal operator & transforms
them in the same was as does R„(w). The quan-
tum number p is then the time-reversal eigen-
value with possible values +1 and -1,

I~I(»)(pG)'; kq~f» =f I
(»)(pG)'; kq&P& (2 12)

This eigenvalue will play a crucial role in our

subsequent analysis of time evolution. %hen O.I"
= pG the Hermitian unit tensors vanish unless p
= (-1); that is, the tine-reversal eigenvalue is
determined by the tensor rank. A familiar con-
sequence is the inability of an elementary particle
(i. e. , »=PG) to possess an electric dipole mo-
ment (i. e. , p=1, k=1). The Hermitian unit ten-
sors are orthonormal in all quantum numbers
providing that the enumeration of states includes
(», PG) or (PG, nE), but not both. Care must be
taken here since ~(»)(pG)t;kq&p& can differ in
sign from

~
(pG)(»)~; kqep&. All summations used

in this paper will assume such an enumeration un-
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less specifically indicated. The Hermitian unit
tensors of (2.11) differ slightly from those defined
(but not used) by Omont. Our definition simpli-
fies symmetry relations and interpretations.

B. Density operator

The operators we encounter in the rest of this
paper are treated as vectors in I iouville space and
expanded in the orthonormal Hermitian base.
The density operator is one such vector of parti-
cular interest. Its expansion is

I p& = Q l(~R(&G)'; kq~u&&(oe(PG)" kq~& I p& .

(2.18)

The summation runs over k ~ 0, 0 ~ q ~ k, & =+1,
p =+1, and includes all unordered pairs (nI', PG)

&(~~)(~G)'; kq~p I p& = &T,'„(~~,CG)&. (2.i4)

T„~(&E,PG) is just the more common way of
writing I (oI')(PG); kqcp&. The observables are
linear combinations of either real or imaginary
parts of the density matrix elements in the Hil-
bert space of state vectors depending on whether
& =p or e =-p. Specifically,

as discussed in the last paragraph. Because
~ p&

is Hermitian, the projections of the Hermitian
unit tensors upon p& are real. When a standard
spherical tensor base is used, this Hermiticity
manif ests itself instead as a relationship between
complex density operator components. Each of
our projections on the density operator is thus a
real observable, in the sense that each is the
average value of a Hermitian operator. '

&( )( )t.
I & Q ( )G N &(-1)""&&~,G-&lkq&+V'~, G-lv k —

q&

(i+ 6„)'~'(1+6 „)'&'
x [( 1)'&-ll (~~~I p ISG~&'"+lm&&kM

I p I
uG~» .,], - (2.16)

with Re and Im designating real and imaginary
parts. We shall show that considering these ob-
servables, thes particular linear combinations of

ordinary density matrix elements, will provide in-

sight into atomic processes in addition to that
gained using elements of the usual density matrix
or standard spherical tensor components. ""

C. Explicit constructions

In one sense the observables which specify the
density operator require no further interpretation.
They are identified by their properties which are
readily apparent from their quantum numbers.
Often, however, it is useful to identify specific
observables as average values of tensors made
from familiar vectors, such as the position vec-
tor, the momentum vector or the angular-momen-
tum vector. The diagonal operators (i. e. , oE
= pG) have long been so interpreted. T„~(&I",o'+)
is proportional to the component +„of the tensor
made by coupling k angular-momentum vectors,
F. All diagonal observables are therefore average
values of angular-momentum tensor components.
Fano and Macek, " for example, focused particu-
larly upon the diagonal tensors of rank 1 and 2

(the orientation and alignment) because these ex-
haust the information available in electric dipole
radiation from nonhydrogenic states. An alter-
native identification of diagonal observables using
electric and magnetic multipole moments is also
very common. Since p=(—1) and m =+1 for non-

p=1
p —-1

& = (—1), electric multipoles (2.16)

& = (—1), magnetic multipoles

(2.iv)

p=-i, ~=( i)',
p=1, w=(—1) '

(2.18)

(2.19)

Tensors in category (2.18) can be constructed,
for example, by coupling a rank k position ten-
sor to an orbital angular-momentum vector. A

rank 1 example is rx I . Tensors in category
(2.19) can be constructed by coupling a rank k —1

position tensor to a second rank orbital angular-
momentum tensor. Both of these choices must of
course be symmetrized to make Hermitian ten-
sors. Of the many other possible choices a useful
variation can be obtained by multiplying our sug-
gestions by powers of the position vector magni-

I

vanishing diagonal observables, they are included
in the two categories indicated in (2.16) and

(2.17) and are proportional to electric or magnetic
multipoles, respectively.

Hydrogenic observables have recently been cal-
culated and measured which cannot be so easily
identified. "' '" in particular, the observables
&(nL)(nL); kqep I p& for which L & L cannot be iden-
tified as average values of orbital angular-mo-
mentum tensors. Half of these observables, those
classified in (2.16) and (2.17), can still be identi-
fied as electric and magnetic multipoles. The
remaining two categories, (2.18) and (2.19), are
much less familiar and warrant further study, '
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tude. The vector ryL, for example, could be
replaced by ~ r x I and identified as the tangential
component of the linear-momentum vector. This
is an important quantity which has been mea-
sured ' ' but not well understood. Use of the
linear-momentum vector in this case, ' or of
the time derivative i[H, ~„]of position multi-
poles more generally, ' obscures the interpreta-

tion since the average value of all of these vanish
when small, nonessential, non-Coulomb terms in
the Hamiltonian are ignored.

Whichever operator components Q„are used to
identify the unit tensors, their projections upon
the Hermitian unit tensors can be simply expressed
in terms of reduced matrix elements (using the
conventions of Ref. 20),

&(»)(oG)'; kqv I e,'.&
=k.*,(», eG)(ak+»'"[&» ll@ ll~~&+~(-I)' "&e~ lie' ll»&]. (a.ao)

&&G II@ II»& = (-»' '&oEII@ II&G&*,

&~G II@ II»& =t (-»' '"(»ll@ II&&&.

(2.21)

(2.22)

D. Direct and irreducible products

We conclude our introduction to Hermitian unit
tensors by discussing reducing transformations.
So far we have expanded the density operator only
in terms of irreducible Hermitian unit tensors.
The irreducible base is often very useful for de-

To be directly useful, Q„must be Hermitian and
and have definite time-rever sal symmetry. Its
reduced matrix elements must thus satisfy condi-
tions (2.21) and (2.22), respectively:

l

scribing a time evolution, for example, that of
hydrogenic hyperfine states. Sometimes it is
desirable, however, to use instead a reducible
direct product of irreducible Hermitian unit ten-
sors from the orbital, electronic spin and nuclear
spin bases. For example, when hydrogen hyper-
fine states are produced from spin-unpolarized
hydrogen atoms by way of a spin-independent in-
teraction, the reducible base is desirable because
only the orbital observables contain dynamical,
nonstatistical information. The projections of
these direct product operators upon the density
operator are also observables (because the Her-
mitian operators from the separate spaces com-
mute),

([(nL)(nL); kI qr&~P~][SS~; ksqsesPs][II"; krqze, ] lp& =(T, , & (nL, nL)T, , & (S, S)T ',
& (I, I)&,

and they measure the correlations of orbital, electronic spin and nuclear spin operators.
The transformation which reduces the direct pr'oduct,

((»)(o'E); kqep I [(nL)(nL) i kr qr &r pr 1[SS i ksqs&sps)[II I krqq~rpq]&

(2.23)

(2.24)

is real and of course preserves the eigenvalues of
P, K, and R„(v) so that

P —PLP&PI )

s

(2.25)

(a.as)

We will use the simple and obvious relationship
(2.2S) to advantage in our discussion of time evo-
lution. This important result is obscured by
using density-matrix elements or standard spheri-
cal tensor components instead of Hermitian unit
tensors. The transformation coefficient of (2.24)
contains dynamical information in the form of
overlaps (nLML, , SMs, IM,

I
»M& of the direct pro-

duct states In LM~, SMs, IM,& upon I »M&, the
eigenstates of the total angular momentum and the
Hamiltonian. These proj ections can theref ore
only be calculated in general by solving the Schro-
dinger equation numerically. When a geometric
coupling scheme such as [(LS)JI]E is dynamically
appropriate, the transformation coeffient (2. 24)
is proportional to Clebsch-Gordan coefficients
and a recoupling coefficient.

p(t) =u(t, o)p(o)u(t, o)', (3.2)

where u(t, 0) describes the evolution of state vec-
tors and satisfies Schrodinger's equation. A mea-
surement at t thus determines (D I V(t, 0)

I p(0)).
We expand the measured average value in the

Hermitian unit tensor base,

III. TIME EVOLUTION OF ATOMIC SYSTEMS

A. Formulation

A measurement at time t determines (D I p(t)&,
the projection of the density operator upon a Her-
mitian detection operator ID&, which identifies
the particular measurement. Because we are in-
terested in aseertaining the state of the system
at some t = 0 (e.g. , the end of a collision) we use
an evolution operator U(t, 0) which transforms
lp(o)& into lp(t)),

Ip(t)&= II(t, o) Ip(o)&.

This Liouville space statement is of course equi-
valent to the more familiar but less convenient
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&D I v(f, o)
I p(o)& =g (D

I

(»') (pG); kq~p&!(a~)(pG); f q~p &(f, 0) I (»)(pG); kq~p&((») (pG)', &q~p I p(0)&,

(3.3)

using the summation convention discussed earlier. A measurement at t is especially useful when
its operator D has only a few nonvanishing components, (D I (nF)(pG); kqep&. Control of the environment
between t = 0 and t = t can similarly ensure that only a manageable number of evolution operator compo-
nents

(( ~)(~G)'; ~q~p I ~(f, o) I( J')(~G)'; 4.p&

will not vanish. We can therefore learn from (3.3) which measurements at f must be made to deter-
mine specific observables at t = 0,

&(»)(&G)' &q&p I p(0)&,

including those not accessible to t = 0 measurements alone. Thus, the measureable t = 0 observables, the
time evolution dynamics, and the role of the measurement at t are clearly and simply distinguished
(in the spirit of the Fano-Macek approach) and can be discussed separately. Both spatial and time-rever-
sal symmetries are easily studied owing to our use of the Hermitian unit tensor base.

B. The detection operator for electric dipole radiation

The unnormalized detection operator for &l radiation,

(3.4)D=Z~ d f&(f l~
S~&

is so familiar that we will discuss it only enough to reveal its time-reversal properties and facilitate
comparison with experiment. The sum is over spectroscopically unresolved atomic final states f&, and

over the detected photon polarization e (not to be confused with the quantum number e), d is the atomic
electric dipole operator and we assume that Q If&(f I is a scalar. The nonvanishing projections of this
detection operator upon the Hermitian unit tensors,

G

&D (»)(&G)';~qv»= 2-(1')"'f 1+&....l '"&.(&, q, ~) Z &~+IIId'III~y+~&&~,&, llld'II~G& (3.5)

are of even parity (i.e. , v„=v~), satisfy electric
dipole selection rules for transitions from &I" and

PG to &&+&, and most important for our purposes
satisfy

p =(-1)". (3.6)

The photon tensors S„(8,Q) depend upon the pho-
ton direction given by 8 and @ and the polariza-
tion detected. They are tabulated in Table I for
the four easily measured Stokes parameters
(referred here to the & axis of a spherical co-
ordinate system with x being the propagation di-
rection for the detected photons), sirice measure-
ment of these exhausts the information carried by
photons of a given wave vector. Fang and Macek
avoided calc'ulating the electric dipole reduced ma-
trix elements by considering only cases where
the sum over &&I"& reduces to a single term. The
reduced matrix elements can then be factored out
for all k, q, and & leaving only the 6-j symbol
and the phase. This shortcut is not always avail-
able, particularly for the decay of hydrogenic
states.

We have found Table I to be very useful in plan-

ning experiments. Notice that eight of the nine
distinguishable photon tensors can be determined
solely from the Q dependence of measured Stokes
parameters for photons traveling perpendicular
to z (i. e. , &=-,'v). When the radiation comes
from an even-parity density operator component
(such as when radiation from a single multiplet
is spectroscopically resolved) and when the radi-
ating state has reflection symmetry in the xz
plane, then only the five average values considered
by Fano and Macek are nonzero. All of these can
be determined from the P dependence of the Stokes
parameters. We have used this "P-rotation"
technique to study the orientation and alignment
produced in fast ions scattered from solid sur-
faces at grazing angles and that produced in fast
ions leaving carbon target foils. The effective
photon detection angle g was changed by rotating
the reflection symmetry plane about the z axis.
No rotation of the optical system was thus required.

C. Time evolution via scalar Hamiltonians

We begin our study of time evolution symmetries
by displaying the evolution operator components
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TABLE I. The photon tensor components for the Stokes parameters.

Soi
0

icos(0)

Sii
i csin(0) sin(Q)

v 2 sin(0) cos(P)

Soi
2 ~ [1+3cos(20)]

12'
1

sin(20) cos(@)0'2

1—~ sin(20) sin(fIJ&)
v2

[1—cos(20) l cos(2&)
1

2v2

1~ [1-cos(20)] sin{2$)2v2

1 3
[1—cos(20)

1—~ sin(20) cos(P)vY

1—~ sin(20) sin(P)v2

[3+cos(20)] cos(24)
1

~ [3+cos(20)] sin(2$)
1

csin(0) gin(y)

—v-2 sin(0) cos(Q)

-y 2 cos(0) sin(2$)

icos(0) cos{2&)

for systems developing from t=0 to t=t via a
scalar Hamiltonian.

&(o&)(p&) i aqua I U(t, o) I (&+)(pr)'; r qv»

~

~

cos[(u(o+) —(o(pa)]t, p =p ( )p(-1)' sin[(u(o&) —(u(pG)]t, p =-p .
Components which preserve the time-reversal
quantum number oscillate as the cosines of eigen-
frequency differences. Components which do not,
oscillate as sine functions and thus vanish at f, = 0.
In Sec. III F we shall show that an exponential
factor,

—,'[r(uz) + r(pG)]t},

containing the appropriate decay widths can be
multiplied into (3.7) to describe most decaying
systems.

actual measurements could include an integral
of (8.7) over time, weighted by the detector's time
resolution. It is instructive to consider the case
of no detector time resolution at all. %e inte-
grate (3.V) with decay widths included to obtain

&(cI")(pG)'; &q&j I v(t, o) I
(cI')(pG)'; &q&ti&dt

0

„-,'[r(oz) + r(pa)], p =p
(-I)'p[&(o'&) —&(pG)], p =-p

The time integration weights the p =-p compo-
nents over the p=p components by a ratio of a

frequency splitting over a decay width. In so far
as (3.V) is approximately true for hydrogenic de-
cay within electric fields (Sec. III E) this weighting
provides an important constraint upon measure-
ments of the n=2 density operator for hydrogen
excited by electron impact. The electric dipole
moments

&(2s)(2p); Iq~ 1
I p(o)&

is much easier to extract from time integrated
Lyman & intensity measurements in the presence
of a laboratory electric field than are the compo-
nents

&(2s) (2p)'; Iq~ —I
I p(o)& .

Measurements of these components following he-
lium-hydrogen collisions have already been limited
by this constraint.

We can immediately apply (3.V)-(8.8) to EI ra-
diation measurements. The detection. operator
components vanish unless p= (-1) . Cosine and
sine oscillations in &1 radiation measurements are
therefore associated with t = 0 observables for
which p = (-1) and (-1), respectively. This
separation of the t = 0 components with different
time-reversal quantum numbers might serve to
detect the effect of interactions which violate time-
reversal invariance.

To be more concrete, we consider the &1 radia-
tion from an (JI)+ coupled atom. We assume ini-
tially that the atom is unpolarized with respect to
nuclear spin at t = 0 and that final-state hyperfine
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structure is not resolved. After the appropriate transformations (Sec. 11D) and trace evaluations we find

((«)(uJ) '&q~(-1) IU(f, 0) l(«)(o'J)';~qV)

g (2F+1)(2E+1) F F & cos[~(«IF) &u(—«IE)]f, p=(-1)
2I+ 1 J J I sin[~(«IE) —~(nJIF)]f, p = (-1) '. (3.9}

This sum and the others in this section are restricted only by the requirement that the levels summed over
contribute to the spectroscopically unresolved radiation. lf the atom is also (LS)J coupled and unpolarized
with respect to electron spin at t = 0, and if final-state fine structure is also not resolved, then,

(2E+ 1)(2E+1)(2J + l)(2J+ 1)
((nL)(nL); kqe(-1)

I
U(f, 0) (nL)(nL); kqep) =

J' J yFI J J I L L S

cos[u&(nLSJIF) —e(nLSJIF)]t, p = (-1)
sin[tv(nLSJIE) —ur(nLSJIF)]t, p = (-1) '

~

The full reduction coefficients (2.24) must be evaluated when the t = 0 system is unpolarized with respect
to electronic and nuclear spins but fine and hyperfine frequencies can be detected simultaneously (i. e. , the
atom is not [(LS)JI]Fcoupled):

((nL) (nI ); kq& (-1)
I U(f, 0) I (nL) (nL); kq&P)

([(nL)(nL)'; kq&p][SS'; 0011][II';0011]
I
(oF)(oF)'; kqep)'

sin[(u(oF) —(u(o.F)]t, p = (-1)" '

(3.11)

The three evolution operator components above are
generalizations of the "modulation factors" in Eqs.
(3V), (40), and (44) of Fano and Macek. ' They
considered only nonhydrogenic systems which are
diagonal in the dynamically important angular-
momentum quantum numbers, J =J for (3.9) and
I =I for (3.10) and (3.11). The time-reversal
eigenvalue for such diagonal observables is fixed
at P = (-1) as discussed in Sec. II A, explaining
why Fano and Macek found only cosine oscilla-
tions. Sine components of the oscillations have
been observed in the -decay of hydrogenic
states. ' ' Our discussion shows that they are
detectable because I= 0 observables with p = (-1) '
contribute to later E1 radiation.

In (3.9)-(3.11) we assume that the I = 0 state
is unpolarized with respect to nuclear and/or
electronic spin. whether or not this is so may be
experimentally investigated by measuring the
phase of oscillations occurring in ~1 radiation
decay. Each irreducible component of the t =0
density operator is associated with sine or cosine
oscillations by, 3.7) and is linear in a weighted
sum of density operator components in the base
where L, S, and I are uncoupled (2.23). The re-
duction transformation (2.24) preserves the time-
reversal eigenvalue (2.25). Failure to observe
sine oscillations does not therefore indicate that
the t = 0 state is unpolarized with respect to spins,
but only the vanishing of the uncoupled density
operator components with odd k~ + ks + k, + k

f

which otherwise would contribute to the radiation.
When (LS)J coupling applies, the time-reversal
condition (2.25) separates into two parts:

(3.i2)

(3.i3)

LS coupling thus simplifies the test of t = 0 polari-
zation when &I-J= I-J since p& is then equal to
(-1) ~. lf no hyperfine sine oscillations are pres-
ent in this case, then all density operator compo-
nents which should contribute to the radiation
vanish unless k~ +kI+k is even. Similarly, the
lack of fine-structure beats with sine phase indi-
cates that all such t = 0 components are zero un-
less kL, +k~+k is even.

Ellis recently derived the relationship between
t= 0 polarization and the phase of quantum beats
for the special case of ~1 radiation from an ~S
coupled multiplet. Because he considered only
cases for which the time-reversal quantum num-
bers were determined by r'otational quantum num-
bers and because he assumed an explicit coupling
scheme, he was able to base his conclusions upon
the properties of a 9-j coefficient, without any
reference to time reversal.

D. Time evolution in strong laboratory fields —spatial
symmetries

In general, many components of the t = 0 hydro-
genic density operator determine the subsequent
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The evolution operator for even-parity V (V pro
portional to even rank electric or odd rank mag-
netic multipoles for example) thus connects only
t = 0 density operator components to detection
operator components of the same parity. Only
even-parity components of the t = 0 density opera-
tor can therefore be determined by ~'1 radiation
measurements when V is parity even.

When V is odd under parity transf ormations
(when V is proportional to odd rank electric or
even rank magnetic multipoles, for example),
parity condition (3 ~ 14) relates evolution operator
components for V and -V. The sums and differ-
enc es of average values measured in the presence
of these potentials,

(DI U(v) ls(o)&. &D
I
U(-v) lp(0)&, (s.15)

are linear in products of density and detection
operator components with the same or opposite
parities, respectively. Since the F1 radiation
detection operator (Sec. IIIA) has even parity,
the sums and diff erences for ~1 radiation inten-
sities are proportional to even- and odd-parity

unresolved electric dipole radiation. While a
much more complete picture of the t = 0 hydrogenic
state is thus potentially possible (as compared to
a nonhydrogenic state), the extraction of t = 0
components is also more difficult. A more com-
plete separation of t = 0 components is possible
when the hydrogenic system evolves from t = 0 to
t = t in the presence of a laboratory field. We
consider laboratory fields that are strong com-
pared to the small energy splittings between the
hydrogenic levels participating in the unresolved
&1 radiation (but are weak, of course, compared
to the t & 0 formation and/or excitation process).
Although the evolution operator components must
often be calculated numerically for strong fields,
the residual symmetry of the external fields (man-
if ested as symmetry properties of the evolution
operator components) can serve to isolate many
desired t = 0 density operator components, as
illustrated below .

We first discuss a use of fields which has al-
ready proved very important in the measurement
of n =2 components of hydr ogenic operators. Let
U(V) be the evolution operator for a Hamiltonian
invariant under parity transf ormations except for
its external field term V. The evolution operator
components for the related Hamiltonian PVP"'
(the parity transform of V) are simply related to
components of U(V),

((oz)(pc)'; aq~p I
U(PVz-')

I
(az) (pc') '; aq~p&

= ~.~,~; ~;&(o+)(pG)';aq&pl U(v)l (o&)(PG)~ &q~p&'

(s.14)

components of the t = 0 density operator, as point-
ed out by Lombardi, Giroud, and Mac ek for
spatially uniform electric fields and observed
earlier by Eck ' in an explicit two- state calcula-
tion of the F1 radiation of hydrogen n = 2 states.
The usefulness of this "field reversal" technique
has been clearly demonstrated by time-resolved
measurements of ~1 radiation from hydrogen n = 2

states produced by passing protons through thin
carbon targets '; w e discuss such measurements
in another paper. This technique has also been
used to measure hydrogen density operator com-
ponents for excited atoms produced by Hq dissocia-
tion and by collisions with sodium and helium.
Time integrated measurements of Balmer alpha
radiation from hydrogen atoms excited by electron
impact have also revealed a dependence upon the
sign of an electric field. This measurement has
been interpreted using sum and diff erence curves
in Ref. 25.

Consider next the relationship between the evolu-
tion operator components for V and A, (m) VR, (m)

t

given by

((oz) (pc)'; aq~p I
U(z. (m) Vft, (m) ')

I
(nz) (p G) '; kq~p)

= (-I)'"((o~)(CG)'; ~q~p
I
U(V)

I
(~J)(SG)'; ~q~p& .

(s.16)

Hamiltonians for spatially uniform electric fields
parallel toe are invariantunder R,&w), hence their
evolution operator components vanish unless g + q is
even. If instead these fields are perpendicular
to z, the sums and differences of average values
measured with V and —V will be proportional to
detection and density operator components with
(-1)'" equal to 1 and -1, respectively. A spatial-
ly uniform electric field which is perpendicular to
z satisfies parity conditions (3.14) as well as (3.16)
and thus

((o,z)(pc) '; r q~p I U(V) I (oE)(pG) '; uq~p&

=( I) ~v. v, ~.-~,-

& &(~+)(PG) '; &q~p I U(v) I
(~J')(P~)'; &q~p& .

(s.17)

This phase simplifies to (-1) ~-&; for &I radiation
from a state axially symmetric about 2 at t = 0.
Ther efore, unpolariz ed intensity measur ements
of photons emitted along y do not determine odd-
parity density operator components. This is why
Alguard and Drake's measurement of I yman-
alpha radiation was insensitive to the values of

( (2~)(2p) '; Io - »
I p(0)&

and

((2s) (2p)'; 10 —1 —1
I p(0)& .
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E. Time evolution in external fields —time-reversal classiGcation neglecting decay

Time evolution under nonscalar Hamiltonians can be analyzed as in Sec. III C provided that the atomic
Hamiltonian is time-reversal invariant and decay is neglected. Suppressing the subspace labels in the
Hermitian unit tensors to simplify the expressions we obtain

&t q~p IUI&q~p& = 2 I, Ite(&H
I T.'„IA&&A I

1"-,";,I») cos(~~)t,
A~B + (3.18)

&&q~p IUI&q~ -p& = 2 I, im(&H I T,"., IA&&A I T;-;,1»)»n(~..t) .
A~B + AB

(3.19)

The summation convention A ~ & refers to an arbi-
trary enumeration of eigenstates of the Hamil-
tonian, IA& and I». These states have eigenfre-
quencies A and B and NAB denotes ~A —B ~

and Im denote real and imaginary parts. Thus in-
stead of the simple sine or cosine components we
obtained for time evolution under scalar Hamil-
tonians in (3.7), we obtain cosine or sine series.
We shall show in the next section that (3.18) and

(3.19}remain approximately true, even when de-
cay is included, provided the atomic Hamiltonian
is time-rever sal invariant.

We now relax the assumption that the Hamil-
tonian B is time-reversal invariant, allowing it to
depend upon a magnetic field, for example, but
continue to neglect decay. We find that compo-
nentS of the evolution operator U(H) and the evolu-
tion operator U(KHK') are related by

&t q~p I U(H) It q~p& =pp&&q~p I
U(IfHIf ) It q~p&.

(3.20)

The association of p =p with cosine oscillations
and p= -p with sine oscillation is no longer true.
Consider, for example, the familiar "weak mag-
netic field. " & is time-reversal invariant except
for a weak magnetic field term, V=-g &&&,.
The evolution operator has components

&(nF)(nE)'; uq~p I Ul (nr}(nI'}; kqep&

= e "»' cos(-g ~Bqt), (3.21)

&(n+) (n+)'; &q —~p I
U I (n~}(n~};qq~p&

I

reversal analysis presented in earlier sections
be greatly complicated by the inclusion of decay.
By using a Wigner-Weisskopf-type approxima-
tion, however, we are able to show that only
time evolution via a nonscalar Hamiltonian is sig-
nificantly complicated by decay. Even for this
case the earlier results (Sec. IIID) remainapprox-
imately true and are useful in analyzing and plan-
ning hydrogen experiments.

We analyze the Hamiltonian which governs the
time evolution in the form

H =IIp+ V +H' „ (3.23)

where &p is the Hamiltonian of the isolated s s-
tem (with eigenvalues tu» and eigenfunctions k&}

and V is the potential energy due to an external
field. The decay term H' couples the states Ik&

to other eigenstates of Ho designated by lf&, which
are orthogonal to k&. Atomic states which decay
by electric dipole radiation are one example. In
this case the states

I k& are direct products of
excited atomic states and the photon vacuum, while
the states lf& are the direct products of atomic
states and single-photon states.

The time-dependent Schrodinger equation for
such a system can be partially solved using a
Wigner-Weisskopf' -type approximation to eli-
minate most of the dependence upon the states
!f&. The remaining coupled ecluations can be for-
mulated as a time-independent Schrodinger equa-
tion with an atomic Hamiltonian H which is not
H er mitian. '

= e(-I)'e " ~' sin(-g. ,Hqt), (3.22) H IA& = ((u„-i,'I'„) IA&,— (3.24)

and the decay factor provides no complication for
this single level example. These components
differ in phase by exactly 90' because

I V) is an
eigenfunction of R„(m}, not because of time-rever-
sal symmetry. The time integrals of (3.21) and

(3.22) yield the familiar resonance and dispersion
functions used to measure decay widths, g values,
and t = 0 density operator components.

with

+et —a~a t —&~Iat + ~ai . (3.25)

The quasistationary eigenstates IA& of the non-
Hermitian Hamiltonian are not orthogonal, develop
in time as exp(- i~„t- ,'I'„t), and are related to-
the atomic eigenstates of IIp by a nonunitary trans-
formation 8':

F. Decay

Decay processes are not time-reversal invari-
ant. We might expect, therefore, that the time- (3.26)
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The final states If) enter into H only within the
matrix element I'&, given by

written as a Fourier series,

&ke&P I
U(f, 0) I kq&P)

10, =2m+H;,*e;, . (3.2"I) = g exp[-2(i'„+ I'~)t][&~ cos(~~t)

The integration over all spatial directions, im-
plicit in the sum over final states in (3.2V) causes
I'~, to be the matrix element of a scalar operator
and hence I"~, vanishes unless the atomic states
Ik) and II) have the same rotational symmetry.
Most often the matrix I' is therefore very nearly
diagonal, since the states which have the same
rotational symmetry are typically widely spaced
in energy compared to the strength of their coup-
ling. I"„ is the total decay width for the state

I l) as given by Fermi's Golden Rule. If we had

taken the states I k) and I l) to be the eigenstates
of HD+ V instead of &0 alone we would have ob-
tained (3.25) without the V». The matrix I' would

not be nearly diagonal with this choice, since the
external field reduces the symmetry of the eigen-
states of Ho+ V, permitting them to be strongly
coupled.

When a system develops in time under the in-
fluence of a scalar Hamiltonian, (i. e. , when V

= 0), the evolution operator components are very
simple. In the absence of closely spaced levels
with the same rotational symmetry ( i. e. , in the
absence of off-diagonal elements I'~, ), the eigen-
vectors of the non-Hermitian Hamiltonian II, are
just the angular-momentum eigenvectors I

aFM).
As a result, I(o'&)(pG);kqe) is an eigenfunction of
U(t, 0) and the nonvanishing components of the

evolution operator are given by (3.7) with the ap-
propriate decay factor multiplied in as indicated
following (3.7). The Eqs. (3.9)—(3.11) can therefore
be similarly modified.

When the system evolves via a nonscalar Hamil-
tonian (V& 0), we proceed as in (Sec. III E) except
we use the quasistationary states for IA) and IB).
Each evolution operator component can still be

+ &~ sin(&a~t)],

C~ = Re(&B IW T„qWIA)&A IW T;;qW IB)),+ AB

S = Im(&B I
jW'&,".~W IA)&A I

P'&4W "IB&)

(3.28)

given here with the subspace labels suppressed.
In comparing this expression with the no-decay
results of (3.18) and (3.19) [which can be derived
from (3.28)] we make the following observations.
The non-Hermitian term added to the Hamiltonian
in (3.24) is typically small compared to the rele-
vant energy splittings, even in atomic hydrogen.
As a result, the transformation 8' is not unitary
at this level and small sine terms are added to the
cosine series of (3.18) and small cosine terms are
added to (3.19). The small terms are of the order
of a decay width over a frequency splitting. We
have found Eq. (3.28) and (3.24)-(3.28) to be con-
venient for numerical calculation of hydrogen
evolution operator components when strong fields
are present.

ACKNOWLEDGMENTS

I am grateful to H. Gordon Berry, Murray
Peshkin, and especially Ugo Fano, for critical
reviews of this manuscript and many helpful dis-
cussions. I am grateful as well for personal sup-
port from a Danforth Fellowship and an Argonne
Fellowship during the earlier and later stages of
this work, respectively. This work was supported
in part by the U. S. Department of Energy and a
National Science Foundation grant.

*Submitted to the Department of Physics, The Univer-
sity of Chicago, in partial fulfillment of the require-
ments for the Ph.D. degree.

)Present address: Department of Physics, FM-15,
University of Washington, Seattle, Washington 98195.

D. J. Burns and W. H. Hancock, Phys. Rev. Lett. 27,
370 (1971).

P. Dobberstein, H. J. Andra, , W. Whittman, and H. H.
Bukow, Z. Phys. 257, 272 (1972).

3M. J.Alguard and C. W. Drake, Phys. Bev. A 8, 27
0.973).

I. A. Sellin, J.B.Mowat, B.S. Peterson, P. M. Grif-
fin, B. Laubert, and H. H. Haselton, Phys. Rev. Lett.
31, 1335 (1973).

A. Gaupp, H. J. Andra, and J. H. Macek, Phys. Rev.
Lett. 32, 268 (1974).

M. Lombardi and M. Giroud, Phys. Bev. Lett. 36, 409
(1976).

A. Denis, J. Desesquelles, M. Druetta, and M. Dufay,
Beam Eel Spectroscopy, edited by I. A. Sellin and
D. Pegg (Plenum, New York, 1965), p. 799.

H. Winter and H. H. Bukow, Z. Phys. A 277, 27 (1976).
SG. Gabrielse (unpublished).

A. H. Mahan and S.J.Smith, Phys. Rev. A 16, 1789
(1977); B.Krotkov 12, 1793 (1975).
J. Stone and R. Krotkov (private communication).
A. J. Dixon. , S. T. Hood, and E. Weigold, Phys. Rev.
Lett. 40, 1262 (1978).



GERALD GABRIELSE 22

U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553
O.973).
U. Fano, Iectuxes on the Many-Body Pxoblem, edited
by E. R. Caianiello (Academic, New York, 1964), Vol.
2, p. 217 ~

U. Fano, J. Math. Phys. 1, 417 (1960).
~ M. Lombardi, thesis, Grenoble, 1969 (unpublished).

A. Omont, Prog. Quantum Electron. 5, 69 {1977).
M. Baranger, Phys. Rev. 111, 481 (1958); 111, 494
(1958); 112, 855 (1958).
M. E. Rose, &lementa~ Theory of Wgulax Momentum
(Wiley, New York, 1957); A. R. Edmonds, Angular
momentum in Quantum Mechanics (Princeton Univer-
sity, Princeton, New Jersey, 1957).
A. Messiah, Quantum 3&chanics {Wiley, New York,
1958).
D. G. Ellis, J. Opt. Soc. Am. 63, 1232 (1973).
J. H. Macek and D. H. Jaecks, Phys. Rev. A 4, 2288
(1971); J.Bosse and H. Gabriel, Z. Phys. 266, 283
(1974).
T. G. Eck, Phys. Rev. Lett. 31, 270 (1973).
M. Lombardi, M. Giroud, and J. H. Macek, Phys. Rev.
A 11, 1114 (1975).
G. Gabrielse and Y. B. Band, Phys. Rev. Lett. 39, 697

0.977).
C. Cohen-Tannoudji, Ann. Phys. (Paris) 7, 423 (1962).
G. Stokes, Trans. Cambridge Philos. Soc. 9, 399 (1952).
H. G. Berry, G. Gabrielse, and A. E. Livirgston, Appl.
Opt. 16, 3200 (1977).
H. G. Berry, G. Gabrielse, and A. E. Livingston,
Phys. Rev. A 16, 1915 (1977).
(unpublished) .
D. G. Ellis, J. Phys. B 10, 2301 (1977).
O. Poulsen, T. Anderson, and N. J. Skouboe, J. Phys.
B 8, 1393 (1975).
C. H. Liu, S. Bashkin, W. S. Bickel, and T. Hadeishi,
Phys. Rev. Lett. 26, 222 (1971); D. A. Church and
C. H. Liu, Nucl. Instrum. Methods 110, 267 (1973);
M. L. Gaillard, M. Carre, H. G. Berry, and M. Lom-
bardi, ibid. 110, 273 (1973); M. Druetta and A. Denis,
ibid. 110, 291 (1973).

+V. G. Pokazan'ev and G. V. Skrotskii, USP Fiz. Nauk
107, 623 (1972) [Sov. Phys. —Usp. 15, 452 (1973)1;
L. N. Novikov, G. V. Skrotskii, and G. I. Solomakho,
ibid 113, 597 (1974) [ibid. 17, 542 (1975)j.

35V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930);
63, 18 (1930).


