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in the Hartree-Fock-Slater scheme for atoms
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The dependence of the one-electron eigenvalues and the total energy on the value of the parameter a in

the Hartree-Fock-Slater (HFS) theory is considered. When the HFS wave function is used in the HFS

Hamiltonian and in the Hartree-Fock Hamiltonian (HF) different trends occur. When the Latter correction

to the wave function is used, difFerent results are obtained. E ""(a„„)is lower when Latter's correction is not

used, and E""(aQ is lower when it is used. Use of the a„of Gopinathan et al. given bett'er ionization

energies compared to experiment. No unique "best" a can be chosen.

I. INTRODUCTION

8 4v' 'i' 1/n)+-,'

27 3 (1/n, +»)'"

and for spin-down electrons,

8 4&' '~» 1/n +-,'

27 3 (1/n, + 3)' ''

An average a is obtained from

nt ™ta,t+ nh +tat
Q

n +n

(For closed-shell systems, a„=a„& = n„&.}
Equation (1) can be rewritten as

11 n&+~
(1/n )»/» '

(3)

(4)

If c=0.7275, then Eq. (4) equals Eq. (1) as nt -~.
However, for o.'», the c value approaches 0.68
for large Z values. Therefore, a set of scaled n
parameters was defined by

The Hartree-Fock-Slater (HFS) scheme' simpli-
fies solution of the Hartree-Fock (HF) equations

by replacing the exchange integrals with an aver-
aged universal potential, proportional to the 3rd
power of the local charge density p. The pro-
portionality constant o has been determined by
several different methods. '-'

'The o. parameter of Schwarz, a„~' is deter-
mined by setting the Hartree-Fock-Slater statisti-
cal total energy E"r»(o.) [Eq. (11)]equal to the

configuration-averaged HF energy (E" ) reported
by Mann. ' The main difference between the E"rs(o.}
and the E" lies in the respective exchange ener-
gies.

Assuming a linear variation of the Fermi-hole
density, Gopinathan et al. ' proposed a set of theo-
retical o parameters (a„): If n& is the number of

spin-up electrons then

1/ni+-,'
at, t

——0.68
( /, ),(, (5)

EHFs(o) EHFs(o) (7)

Thus I,"" (exact) I"," gives the-effect of the higher
powers of p»/p. Equation (7) defines the unrelaxed
ionization potential, which is the total energy
difference between the neutral atom energy and

the energy of the ion calculated with the same un-

relaxed orbitals which are obtained from the neu-

tral atom Xn calculations. Incidentally, the se-
cond term on the right-hand side of Eq. (6) is the
self-interaction energy which is included in both
the Coulomb energy integral and the exchange

energy integral of the Xn Hamiltonian H" . When

the self-interaction energy is properly considered,
the eigenvalues calculated from the HFS equations

obey Koopmans' theorem" as do the eigenvalues

and similarly for a,', &.

'The exchange potential in the HFS scheme has
an incorrect asymptotic behavior compared to the

HF scheme. An ad hoc correction by Latter' modi-
fies the tail of the HFS exchange potential so that

it has the same asymptotic behavior as the HF
exchange potential. The total energies calculated
with this modification for the Mn" ion' and Ar
atom" were higher than those calculated without

the Latter modification.
The eigenvalues of the Xn method do not obey

Koopmans' theorem, "and the energy required
to remove one electron from the kth orbital due to

unrelaxed ionization is"
P IHFH(+)

=-&»"r'(a)+ (u'»(1)u, (2) Ig„~u»™(1)u»'(2))+ . (6)

When higher powers of p»/p [where p»(1) = n»u»»(1)

and p(1) =P,. n, u', (1)] are included, I»" becomes
I»" (exact), which is obtained from

I»" (exact) = I" »(res) (exac-t)
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of the HF scheme, and the Xn exchange potential
has the same asymptotic behavior as the HF po-
tential, " and the Latter modification is not re-
quired.

In this paper, the total energies and the one-
electron energies for noble-gas atoms are in-

vestigated using the theoretically derived n para-
meters o.„and a,',. By comparing these results
to those calculated using the empirically para-
metrized n» values, we hope to find which n
value would be best in atomic and molecular cal-
culations.

II. METHOD

The nonrelativistic HF$ one-electron Schrodinger equations are (energies, in rydberg, distances in bohr)

(
If, Jp(2))„,dr, 2v„, (1));.())=r"(tu (,.)), '.

,

where

f, = -~,'- 2Z/r„g„= 2/r„,
and

V» (1)=-3(»[(3/8»)p(1)]'".

The total HFS energy is

E"rs(o() = g n,.(u,-(1)
lf, lu,. (1))+ gg n,.n&&u',.(1)u&(2) lg„ lu,. (1)uz(2))

(8)

(10)

+ -,' g n, (u',.(1) l V»,(1)
l
u', (1)) .

These X(» orbitals u'; can be regarded as approximate solutions of the HF one electron-equations, so that
e~ar(a) is defined by

e," ((») =&u~ (1) lf, lu~(1))+ g n,.&u~(1)u,.(2) lg» lu~(1)u', .(2) —u',.(1)u~(2)) (12)

and the HF total energy using the Xn orbitals is

E" ((») = gn (u, (1) lf, lu, (1))+gg n(n&&u, (1)ug(2) lg» lu, (1)uz(2) —uz(1 )u,.(2)) . (13)

The virial coefficient is calculated in each Xn
calculation to check whether the calculated ener-
gies satisfy the virial theorem. When the theorem
is not satisfied, the scaled energy is. calculated,
according to Lowdin's method"

energies. Consequently, the one-electron eigen-
values using the HF Hamiltonian and the Xo. wave
functions may be good approximate ionization po-
tentials

(16)
E„=g T+gV,

where

7l = —V/2T,

(14)

(15)

'The equality holds by Koopmans' theorem when the
HF wave function is used.

(2) By neglecting terms containing higher powers
of p~/p in Eq. (6), Prs(o() is

V is the total potential energy, and T is the kinetic
energy of the atom considered.

Three methods of calculating the ionization ener-
gies are considered:

(1) e'er((»), the HF eigenvalue [Eq. (12)], is cal-
culated using the Xn wave function. Schwarz and
Connolly" noted that the accuracy of the Xo. eigen-
functions is comparable with the double-zeta func-
tions of Clementi" for calculating E"r(n) total

&)", rs(o() = -e)", '(a)+-,'&k lib), (17)

where

&~ ll~) =&u:(1)u (2) Ig» lu:(»™(2» (18)

is used to give Prs(a) as an approximated to P»"

(exact) [Eq. (7)].
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(3}The linear least-squares fit of Gopinathan"

(a) = -e~ s(a) + (0.281 75 + 0.004 95)(k
~~

k)

—(0.0664 + 0.0543) (19)

is used. 'The ionization potential calculated by
Eq. (19) includes part of the relaxation. " The re-
laxed ionization potential can be calculated using
Eq. (7), inwhichthe total energyof the ionE,"v'(a')
is calculated using orbitals which are the self-con-
sistent-field (SCF) solutions of anXa calculation on
the ion. The results from Eqs. (16)and(17) are the
approximate unrelaxed ionization potentials.

—EHF(~ ) EHSF (+) EexPt&

He

eHF (Q.772 98)
Qta (0 ~ 866 172)
e ta (0.841 991)

5.721 75
5 ~ 720 27
5.721 26

5.723 36
5.972 07
5.906 93

5.808

TABLE I. Calculated ground-state energies -E(a) Ry
(no Latter tail modification). E~"(oHF ) reported by
Schwarz and Connolly (Ref. 15) are 5.721 98 (He),
257.0676 (Ne), and 1053.5962 (Ar). Et;„', reported by
Mann (Ref. 7) are 5.72336 (He), 257.0942 (Ne), 1053.6350
(Ar), and 5504.1086 (Kr) .

III. RESULTS AND DISCUSSION

A modified Herman-Skillman SCF program" was
used for the Xa SCF calculations. The total ener-
gies were computed using Zare's integral pro-
gram. " All computations were performed in
double precision on an IBM 370/158. The one-
electron energy criterion of self-consistency was
set at 0.00001 By.

Computations using the o parameters of Gopi-
nathan et al. ' and Schwarz' have been performed
for the atoms He, Ne, Ar, and Kr. The total ener-
gies which correspond to SCF calculations made
without the Latter tail modification are given in
Table I. 'The corresponding one-electron energies
are given in Table II (Ref. 20). The relative dif-
ferences of the calculated one-electron energies
with respect to the true HF results (41/Z)(10} are
plotted in Figs. 1(a)-1(f). The total energies and
one-electron energies corresponding to SCF cal-
culations in which the Latter tail modification'
was used were also computed and are available
from the authors.

A. Total energies

It is seen (Table I) that E"F(a) [Eq. (13)] is al-
most independent of the set of n values used. All
the E»(a) are close to but higher than the HF
limit. ' The virial theorem holds in each set of
calculated T"F'(a) and V"F'(a), but for T"F(a)
and V"F (a), while using a» satisfies the virial
theorem, a,', does not satisfy the theorem for He

(1 part in 10~ disagreement) and a„does not satis-
fy the theorem for He (1 in 10') and Kr (1 in 10').
These results were scaled using Eq. (14) to give
the E„"~(a) in the footnote to Table I.

When the effect of different a's in the Xn orbi-
tals is ignored, Eqs. (10) and (11) predict E"Fa(a)
to be a linear function of o—the larger is o, the
lower is E"F' (a). Thus E"F'(a„) is always the
lowest E"Fs(a) energy since a„ is the largest
among the three sets of n's considered for each
atom. In He, E"Fs(a„) and E s( rs')aare lower
than the experimental value because the n„para-

Ne

eHF (0 73981)
cEt (0.744 568)

(0.723 781)

257.066 3
257.066 7
257.065 9

257.094 0
257.459 2
256.861 7

257.8

Ar

n HF (0.721 77) 1053.591 5 1053.630 4 1055.2
nt (Q.734 031) 1053.591 2 1054.657 1

(0.713 538) 1053 596 2 1052.946 5

Kr

QHF {0.705 74) 5504.Q06 4
n ta (0.729428) 5504.004 3
a,', (0.709064),5504.006 5

5504.090 0
5510.394 9
5504.974 3

e HF (Schwarz, Ref. 4); e t, and 0't', (Gopinathan
et al. , Ref. 5).

E is given by Eq. (14): E&"(ut', ) for He= 5.722 72,
E""(0,„)for He= 5.72291, and E""(et ) for Kr
= 5504.0061.

Reference 19.

meter is derived theoretically and therefore does
not compensate for the error in p' ', whereas nHF
is determined by requiring that E" 8(a) equal the
HF total energy' and does compensate (by design)
for the error in p' '. Numerically, the self-inter-
action energy (V,.) is 2.089 03 Ry, and the statisti-
cal exchange correlation energy (V„„,) is -2.34083
By. The latter is lower by -0.2518 By than when
the HF results are considered, where the ex-
change correlation energy (V,„,), with the true
Hamiltonian, is zero for He. This is because the
exchange energy V,„, where V,„=V,„,+ V, , equals
the negative of the self-interaction energy (-V,.)
because they are the same integral. Consequently,
the E" (n„) is too low because

(a) =(f,)+ (V, + V;)+ (V,„—V, )

=(f,)+ (,+,)+ V„„,,
where V, is the Coulomb energy and f, is defined
in Eq. (9). The energy V, in He is 36% of the
E" s(a„) and, while the percentage will decrease
for heavier atoms, it will still be significant.
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Therefore, with properly calculated V, removed
from the V„„, the true statistical exchange ener-
gy V„, is left in the HFS Hamiltonian, and the Xe
method has to be repararnetrized. "

When the Latter tail modification' is used, all
the total energies E„"F,(o.) for the various a values
are higher than the corresponding E"r(n} calcu-
lated without the modification; the difference is
at least =0.03 Ry for the cases reported here.
'The modification makes the Xo. orbitals have the
same mathematical asymptotic behavior as the
HF orbitals but as noted (Ref. 24) it is physically
unrealistic as it produces a nonvanishing surface
charge density on the cutoff sphere.

Similarly, E„"Fts(o.} (with the Latter modification)
lies always above the corresponding E»s(a). This
suggests that if E„"„~(a)is equal to E,",F «, the a
value will exceed nHF. For example we obtain
e's of 0.78266 for He and 0.731617 for Ne com-
pared to o'»(He) = 0.772 98, and a„r (Ne} = 0.73081.

When the Latter modification is used, a„always
gives a total energy E„"~,(o} closest to the HF
limit. ' This supports the recent results of Gopi-
nathan and Rao" who showed that the n„always
gave lower energies. However, this behavior of
the energy with n„disappears when the Latter
modification is not used.

B. Onewlectron energies

The values of I,"r(a) for o», o!„, and o,', group
together as do the values of I,"r'(u) and I,"Fo(a),
Table 11, and Figs. 1(a)-1(f). The values of I,"r(a),
I,"~s(n), and I,"~o(n) are well separated, but have
parallel trends.

The values of the I,"r(u) group are normally
closer to the true HF values I," except for the 2P
level of Kr, where the I» r'(a) are closer to IPF.
The I,"ro(n) values are usually further away from
the I," but in several cases are closer to the ex-

perimental results. Specifically, within the group
of P~~(a} values, results calculated with a„v are
closest to the true HF values for all orbitals of

He and Kr and for the 2s of Ne. 'Those calculated
with n,', are closest toI~ for the 1s of Ne and all
orbitals of Ar. The set of o„, the theoretically
derived o. values, only gives the 2P of Ne closest
to the true HF results, but IPF(a„) are always
closest to the experimental results for all orbitals
and all atoms reported here.

Among the group of I,"rs(a) values, results using

a„F give closer values to the true HF results I~

for the 1s of He, the 2s of Ne, and the 1s, 3d, and

4p of Kr. For a,'„ I~Fs(a,', ) of the 1s and 2p of Ne,
the 1s, 2P, and 3P of Ar, and the 2p of Kr are
closest to the PF values, whereas I,"Fs(a„), with

+tap are closer to I~ for the 2s and 3s of Ar, and

the 2s, 3s, 3P, and 4s of Kr. In contrast to
I,"r(a„}the I~~s(o.„}are in most cases furthest
away from the experimental results, except for
the 2s of Ne and Ar and the 3s of Kr.

For the I", ro(o.), none of the calculated results
using o„F is closest to the true HF resultI,", nor
is any calculated Pro(n») closest to the experi-
mental value. The I,"ro(o.,', ) only give the 1s of Ne

and the 3d of Kr closest to the experimental re~
suits, but none of the I,"ro(o,', ) is closest to the
true HF result I ~nrWithin the I," (a) group the
I~sFo(o.'„}are always the closest ones to the HF re-
sults I, for all orbitals and all atoms, and they
are also closest to the experimental values except
for the 1s of Ne and the 3d of Kr.

When the Latter modification is used, almost
the same conclusions are obtained. Each set of
calculated I's is well separated, the trend of each
curve within the group is the same, and normally
I» ~„(n) are closer to the true HF results lg~.
Among the Ig~~„(a) group, once again o.'„always
gives the closest result to the experimental value
Ip". However, n„does not make I,"ro„(a„)close

TABLE II. One-electron energies -& and I, (no Latter tail modification).

pgbital 0 -q Fs (~) IHF (~) fr IHFG(~) y IHF(+) f IHF IexPth

He
1s

Ne
1s

2s

2P

HF
0!tff,

I
Qt

~HF

I
&ta
O'HF

&ta
I

~~a
~HF

I0' ta

1.1655
1.2868
1.2548

60.9175
61.0142
60.8681
2.6293
2.6507
2.6185
0.9710
0.9897
0.9614

2.1832
2.3313
2.2924

66.8581
66.9581
66.8071
3.7339
3.6667
3.6297
1.9383
1.9599
1.9272

1.6725
1.8090
1.7731

64.1986
64.2972
64.1483
3.1346
3.1568
3.1234
1.4496
1.4700
1.4392

1.8432
1.8156
1.8231

65.4794
65.4315
65.5039
3.8685
3.8513
3.8773
1.7150
1.6983
1.7235

1.8359

65.5455

3.8610

1.7010

1.81

63.88

3.54

1.59
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TABLE II. (Continued. )

Orbital 0, ~ (0) c IHFS (0|)d IHFG(0. ) e I (e) iexyt"
k

Ar
1s

2s

2P
Ar

3s

Kr
1s

2s

3s

3P

3d

4s

+HF
0'ta

I
&ta
+HF
&ta

I
O' ta

+HF
&ta

Ita
+HF

I
~ta
+HF.
«a

I
O' ta

HF

+ta
I

O' ta

+HF
O'ta

I0' ta

~HF
ta

I
~ta
+HF

&ta
I+ta

+HF
~ta

I

+HF
&ta

J0' ta

+HF
&ta

I+ta
HF

0' ta
I~ta

228.2473
228.4311
228.1265
21.8717
21.7197
21.6395
16.9746
17.0242
16.9415
1.7250
1.7386
1.7159
0.7192
0.7310
0.7112

1021.0153
1021.7781
1021.1227
132.7705
132.9830
132.8004
120.2602
120.4909
120.2927
18.6336
18.7141
18.6449
14.1741
14.2529
14.1851
6.1351
6.2049
6.1449
1.5806
1.6048
1.5840
0.6313
0.6517
0.6341

239.1411
239.3276
239.0184
23.8447
23.8941
23.8116
19.4061
19.4577
19.3716
2.3658
2.3802
2.3562
1.2677
1.2809
1.2587

1043.1182
1043.8863
1043.2263
137.5811
137.7959
137.6113
125.8960
126.1300
125.9290
20.2940
20.3761
20.3055
15.8289
15.9097
15.8402

7.7930
7.8663
7.8033
2.1454
2.1709
2.1490
1.0959
1.1186
1.0990

234.3196
234.5049
234.1977
22.8298
22.8786
22.7971
18.2783
18.3290
18.2445
2.0197
2.0337
2.0103
0.9619
0.9745
0.9533

1033.4039
1034.1696
1033.5117
135.4148
135.6286
135.4449
123.3696
123.6021
123.4023
19.5028
19.5842
19.5142
15.0402
15.1201
15.0513
7.0029
7.0747
7.0130
1.8325
1.8574
1.8359
0.8267
0.8484
0.8296

237.0804
237.0185
237.1244
24.5475
24.5150
24.5693
19.0601
19.0249
19.0837
2.5367
2.5261
2.5439
1.1659
1.1567
1.1720

1040.1582
1039.9328
1040.1265
139.6751
139.5148
139.6526
125.8977
125.7283
125.8739
21.6512
21.5702
21.6398
16.6211
16.5396
16.6097

7.6114
7.5290
7.5999
2.2996
2.2776
2.2965
1.0375
1.0204
1.0352

237.2213 234.88

24.6449 23.95

19.1435 18.46

2.5550 2.12

1.1823 1.16

139.8059 136.57

126.0193 123.78

21.6987 21.10

16.6628 15.67

7.6503 7.03

2.3057 1.87

1.0482 1.01

1040.3288 1033.89

Results with the Latter tail modification are not reported here; they are available on
request.

O'HF (Schwarz, Ref. 4) o'ta and e ta (Gopinathan et al. . Ref. 5).
e " (n) is the eigenvalue from Eq. (8):

2
&S)la) = [S","'(n)+ eg", "'(n)].

Ia (u) defined in Eq. (17).
ei&HFG(0. ) defined in Eq. (19).

IkHF(0. ) defined in Eq. (16).
g Ik = —E'k the eigenvalue from Eq. (12) but with HF orbitals; values were taken from

Clementi (Ref. 16). For atoms considered, the HF total energies of Clementi differ from
those of Mann (Refs. 7 and 15) in the seventh figure, so the eigenvalues of Clementi should
be very close to those of Mann.

"From Slater (Ref. 22), subject to the relativistic correction calculated by Herman and
Skillman (Ref. 17).

to the experimental value Ik*", unlike its behavior
without the Latter modification. For example,
results of I~sr~„(u„) for the ls of He and Ne, the
2p and3s of Ar, and the3d and4s of Krare further

away from I~~*" compared to the I~spot(o. ) with oar
or at', . However, they are still closest to the HF
results I~ except for the ls of He where I~r„„(ass)
is the closest one.
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IV. CONCLUSIONS

The conclusions are as follows:
(I) If the HF total energy is calculated using

Xa wave functions, then E"r (n) is almost inde-
pendent of the e parameter. Specifically, the

deviation is only a few parts in 1000 or less for
various sets of a used in the present E"r(a) cal-
culations. Consequently, all. calculated E" (a}

values are close to, but lie above, the HF limit.
If the Latter tail modification is used, E„"rt(a) are
generally shifted up, compared to E" r(a}, by at
least 0.03 Ry for atoms calculated in this work.

(2) Although no unique conclusion can be drawn
as to which set of n values gives results closest
to the true HF results IPr, the fs F (asF }, with a„z,
usually give a closer fit to I~

.02-
~,

0 ~

25

~HF

2.5 .

2.0
~HF

————cta

F 01 Nta
~-"-- Rta

'I ~ ~ ~ ~

IHF
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N 0.
«I
O
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-1.0

-1.5

-2.0
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hlk «}

}'I„"'o(.)

~ 2
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gg -4
N

CI —.6
—.7

—.8
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Kr

AI~ (a)

}glk (a)

(c)

.20-
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~HFS ){~ 2p 0

-.05

41k (a}{

\ ~ ~ ~

35
HF
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—.04

IHF
k

-.15

-.20

4lexpt

-.08

~ -.12-

C)
3

~Iexpt

4IHFG (a)

~HF

~ta
~ o ~ ~ ~ ~ ~ ~ ~ ot ~ o gata

-
~ 25

OC
-.30

N -.35 '

D

4IHFG( )k

4

—.5
— 59

—.6 -.60.

—.7
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.61

Ar KF

FIG. 1. Atomic ionization potentials calculated vrithout the Latter tail modification for different + (&HF, o.«and &t~).
Only the calculated I~ (0.), Iz s (0.), and I~ (+) relative to the true HF result I& are plotted as &I& (o,Hq)=I& (O, Hz)

-I& F, etc. Then (104I/Z) is plotted against Z for each orbital and against the 3d, 4s, and 4p orbitals for Kr.
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te) .055- (f ) .o6 Kr

.040-
OI

.005

-.020

hf&HFt~) I=

3p

IHF
k

.o4

.02 .

.01

0
—.005

IHF
k

-.13
N —.20

Cl
O

glHFG
k

~IHFS )

QlexPt

CC

h4 —.008;
—.01

C)

-.065,
—.1 2

g
IBxpt

~ )glHFG(~)
k

-.15

-.45

Ar Kr

—.1 8

3d 4p

FlG. & ~ (Continued. )

(3) The n, , in the group of I" (n) or I" (n)
generally give results closer to the experimental
value I~"" than do other a values. It is hoped
that when the self-interaction term is explicitly
treated, then &" s(n„) will no longer be lower than
the experimental value. Consider'ation of the self-
interaction energy is under study. "

Finally, in reporting Xn calculations workers
should make clear whether the Latter correction
is or is not used, as quite different results are
obtained without this correction. It will be in-

teresting to study the change in E and & with dif-
ferent n when the Coulomb hole correction is also
included in the calculation. "
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