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A fnodel is investigated for doubly excited states, in which two electrons move on the surface of a spherical shell

with restricted angular momentum to account for a hydrogenlike shell structure. Hybridized two-electron wave
functions are constructed for the short-range part of the intrashell interaction potential using a modified version of
hybridization theory originally developed by Pauling for molecules. The highest energy level obtained by this
approach is identified as being invariant under SO(4) rotations on the restricted-shell basis, and is thus seen to be
compatible with the SO(4) structure and rotation-vibration levels in a recent "supermultiplet" theory of doubly
excited states. The highest energy level in each shell has 'S symmetry, and is interpreted as a "perfect pairing" level
which maximizes the electron density at values of the interelectronic angle 8» ——0; and hence is an exact eigenstate
of a 8-function interaction between the two electrons. Formulas are described for the explicit 8» dependence of
related S states for SO(4), and these give rise to approximate decoupling of the radial Schrodinger equation for two
electrons in the same shell.

I. INTRODUCTION

- Recent work' 3 identified an interesting "super-
multiplet" energy level structure for doubly ex-
cited atoms with two electrons in the same shell.
The supermultiplets were interpreted using two
highly different, yet evidently compatible views
of the atom. In the first approach" supermulti-
plets are embedded within the framework of the
group SQ(4), which is the exact symmetry group
of the problem in the high-Z limit. In the second
approach"' the intrashell levels were interpre-
ted as being like cut-off spectra for a model of
the atom as a quasirigid linear rotor-vibrator.
The linear "geometry" of this structure is as-
sociated with a minimum in the electron repulsion
operator l jr» when the interelectronic angle has
the value 8» =180'. The vibrational part of the
energy is then associated with small-angle bending
motions of the electrons which decrease the value
of 8» from its equilibrium value. The compatibility
of these two views of the spectrum was seen in a
simple model of the atom with electrons on the
surface of a spherical shell, and the electron-
electron interaction near 8» =180' described by
dipole coupling of SO(4} Lie algebra generators
for the electrons. At certain values of the coupling
strength the model energy could be described ex-
actlyg using Casimir invariants for a subgroup
chain SO(4) &SO(3) for the two-electron group.
Wave functions for states in irreducible represen-
tations of the coupled SO(4} have a configuration-
mixed structure, which accounts for electron cor-
relation and hence a relatively high degree of
localization of electrons near the linear geometry.
Those states were similar to ones identified
earlier' for configuration mixing in hydrogenic
orbital bases, whose properties with regard to

8» have been ilium inated in great detail. '
Although the SO(4) spherical-shell model could

account for qualitative features of the intrashell
spectrum, it did not address the question of what
role the short-range part of the potential energy
near 8» =0 plays in the approximate SO(4) sym-
metry of the two-electron atom. This region is
obviously very important because of the Coulomb
singularity. In the present paper we will investi-
gate the spherical-shell model and show that
there is an approximate SQ(4) symmetry associa-
ted with states that are highly localized near 8» =0.
Generators for the group turn out to be the same
ones described earlier' for the SO(4) group which
described electron correlation near 8» =180'. We
thus offer further evidence for the compatibility
of the SO(4) approach and the rotor-vibrator inter-
pretation, as well as new insight to the electron
correlation in these states. The approximate SO(4)
symmetry we describe for the short-range inter-
action between two electrons in the same shell
accounts for the fact noted in earlier SO(4)
studies"' with 1/r», that generally the totally
symmetric representation of the group describes
the highest energy level in each shell. This is the
state whose wave function remains invariant under
the SQ(4) group rotations, and it lies highest in
energy because the short-range part of the poten-
tial is highly repulsive. This situation contrasts
with the analogous situation in nuclear-shell mo-
dels, where it is more appropriate to consider
pairing of nucleons due to a short-range attrac-
tion. The pairing interaction is central to group
theoretical seniority classifications of states in
shell models, stemming from Racah's description
of atomic multiplets. ' Generalized Racah tensors
have been constructed for SO(4} (Ref. 9}, but that
approach was found to give an inadequate descrip-
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tion of the Coulomb repulsion in atoms. In the
present paper we describe "pairing" of two elec-
trons from a different point of view, which gives
a more physical interpretation of the electron
correlation and configuration mixing in terms of
orbital "hybridization" for the electron pair. 2'0
'In particular, we demonstrate in Sec. II the exten-
sion of ideas originally introduced by Pauling"
to describe orbital hybridization in molecules, to
include now similar geometrical effects for the
electron-pair correlation. The connection of this
approach to SO(4} is established for the spherical-
shell model in Sec. 111. Correlated SO(4} channels
and coupled radial equations are described in

Sec. IV, and See. V contains a summary of our
results.

II. HYBRIDIZED PAIR WAVE FUNCTIONS

%e consider the angular correlation of two
electrons interacting within the same shell, neg-
lecting radial parts of the wave function entirely.
Each shell is labeled by a principal quantum num-

ber Ã, and the orbital-angular-momentum quan-
tum numbers for the electrons are restricted to
the hydrogenlike values 0 c I„I, &N —1. Only

spatial wave functions will be described, since
spin for two electrons is linked by the Pauli
principle to the spatial exchange symmetry P»
=+1 (S=O) or P„=-1 (S= 1). We use the usual
labels L and M to describe rotational symmetry
of the atom, and thus explicitly consider only the
case of an isolated electxon pair. In a many-elec-
tron (i.e., more than two) system the spherical
pair symmetry would be broken by the noncentral
field of the other electrons. In the limit of very
high pf, the two-electron model includes a large
number of angular-momentum states for each
electron, and hence would begin to approach the
classical limit of charged particles on a spherical
shell.

In order to treat the problem of electron correla-
tion and configuration mixing in the intrashell
model, we now develop a simple hybridization
method for configuration mixing which is qualita-
tively consistent with results from extensive
computed double excitation spectra. " Pauling's
ox iginal ideas about hybridization were an attempt
to explain simple bond angles in moleeules, " in-
cluding only angular parts of the wave function.
Zimmerman and Hysselberghe have described
some aspects of hybridization including radial
effects. " The key idea in Pauling's approach is
maximization of the bond strength; this is achieved
by taking suitable linear combinations of atomic
orbitals Y', $8, @) so as to maximize the value of
a normalized wave function along the s axis. The

sP' hybridization orbital, for example, is des-
cribed by the linear combination s+ v 3P, for the

N =2 shell. The two-electron intrashell states
are described by analogous mixing of configura-
tions:

NIL» X»'LN&

in which a„, is a linear mixing coefficient and

X», » represents the Clebseh-Gordan-coupled
conf iguration

(I'iii
y I tw jLM}

m, m'

X Fi~(8l& $'1)Flia{82& Q2}.

Di, , = [(2I + l)(21' + 1)]"'I (4)

Owing to symmetry properties of the 3-j symbol,
the pair-strength function 9» vanishes unless the
total parity satisfies II(-1) =+1 and the exchange
is P» =+1. In addition to the pair strength, it will
be convenient to define also a related pair density
function which is independent of direction:

16m'
Pr, ={2L 1) ~ISc, I

This represents the mean-square pair strength
over the sux"face of the spherical shell.

Following Pauling's procedure fox maximizing
the molecular bond strength, "we maximize the
pair-strength function subject to constant nor-
malization on the sphex e. This leads immediately
to the result that a„.~D~». , and taking into account
the normalization of states to unity we find

(6a)

Normally the configuration-mixing coefficients
are found by numerical procedures involving dia-
gonalization of the energy matrix in the configura-
tion basis. Here we consider the possibility of ob-
taining reasonable estimates of mixings for some
of the highest energy levels in each shell, using
a hybridization approach that can be solved in

closed form. The quantity we consider analogous
to Pauling's bond strength in molecules will be
called the electron "pair strength;" it is the value
of the function 4»„when the two electrons occupy
the same position in space, with 8, =8, = 8 and 4i,
=

Q2 = P. From standard angular-momentum coup-
ling theory we find the pair-strength function is
given generally by the formula

( 1)I
Sr.s=

4
y'rs(8 it) 2 +iiD«4p 1s1

with the coefficient defined in terms of a 3-j angu-
lar-momentum symbol as
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lt' ~ (6b)

Notice the method only provides one set of mixing
coefficients for each value of L„and this is pre-
sumably related to the state with highest repulsion
energy. In addition, although we speak directly
to the problem of a hydrogenlike shell with the
restriction 0 & l +g —1 for each shell, the same
hybridization procedure may be used for other
restrictions on I and I' in Eq. (1). Comparisons
between the coefficients for maximum pair strength
and ones from numerical calculations with the re-
pulsion operator I/r~ will be given in Sec. III.

Our procedure for estimating configuration-
mixing coefficients of high-energy states has thus
far emphasized a hybridization picture of the' elec-
tron correlation in these states. In Pauling's
molecular theory, other equivalent orbitals are
found by orthogonalization procedures. » Similarly,
we would like to devise a procedure for extending
the classification of two-electron states to include
levels not described by the condition of maximum
pair strength. This question will be considered in
Sec. III in connection with approximate invariance.

We conclude this section by noting an important
link between the hybridization approach and the
usual pairing concept from atomic- and nuclear-
shell theories. " Specifically, the states we
have constructed for maximum pair strength are
found to be eigenstates of a short-range interaction
potential Vq=25(1 —case~) in the finite configura-
tion basis for each shell N. This leads to a set of
equations involving a pairing repulsion energy e~:

L/~~i ~ P/yyi ccggt —CL cc~~r ~

J sS'
(7)

(2L +I)p, =(p.)2 =N'.
=0

The coefficients we described in Eq. (6) are solu-
tions of Eq. (7) with e~ =pz. All other states,
which are orthogonal to the maximum pair-strength
ones, have zero repulsion energy. In the two-
electron atomic-shell model this degeneracy would

be broken by the full Coulomb repulsion operator
including all interelectronic angles 0 &8» & 180',
in addition to the short-range part. Values of the
electron pair-strength density p~ for several
low-lying shells are given in Table I. These
values were computed specifically for a hydrogen-
like shell, with the angular-momentum restriction
0 & l, l'&N —1, and are seen to satisfy the ordering
pa~pi p2 + p2N 2 The 'S' density is found
generally to be given by the formula pa=N, and
has the highest repulsion energy. The 'P level
has p, =& —1). We can also derive the following
sum rule for pair-strength densities in each shell:

TABLE I. Pair density function [cf. Eq. (6b)] pz, for
intrashell states with maximum electron pair strength
at ei2= o'.

N po Pi P2 P3 P6

4 16 12

35
i240
23i P3i 8

III. APPROXIMATE SO(4) SYMMETRY

In this section we will demonstrate an approxi-
mate SO(4) symmetry for the short-range part of
the intrashell repulsion as described by the condi-
tion of maximum pair strength. In view of the
equivalence of the pair-strength hybridization ap-
proach and a 5-function pairing model, our work

We note that these results describe only the states
with maximum pair strength. Energy levels for
doubly excited intrashell states of helium were
illustrated in Fig. 7 of Ref. 2 for each shell N ~ 5.
It is very clear there that the ordering of states
for the highest energy for each L has an overall
L dependence much like that of p~ described above.
The correspondence between values of L for maxi-
mum pair strength and the supermultiplet quantum
numbers d and 7 is found to be described by the
formula L=2d —7.

' with the values T =0 and 1 for
even and odd L„respectively. The even values of
L, are found to correspond with the highest energy
level in the largest rotorlike series [2d, 0]' in each
d supermultiplet of Ref. 2, while the odd values
of L correspond with the second largest rotor
series [2d —I, 1]' in that classification of states.
This illustrates the basic difference between the
present approach and the rotor-vibrator inter-
pretation of doubly excited states. ' ' The rotor-
vibrator model focuses on low-lying levels related
to the long-range part of the electron repulsion
near 8» =180', while the maximum pair-strength
approach focuses on high-lying intrashell levels
related to the behavior of the repulsion near 8»
=O'. Our analysis of levels in helium shows that
the condition of maximum pair strength at 8» 0'
does indeed give a reasonable qualitative descrip-
tion of this part of the spectrum. We have investi-
gated the possibility that low-lying states might
also have a similar description with a maximum
pair-strength function defined at 8» 180 instead
of O'. However, this approach is found not to give
a useful set of configuration mixings for electron
correlation.
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A. Unitary invariance of the ~$~ state

We begin our analysis of approximate invariance
of the states with maximum pair strength by con-
sidering the totally symmetric 'S' state. This
state has the strongest pairing of electrons near

8» =0, and therefore has the highest repulsion
energy within a shell. Neglecting an overall nor-
malization factor, we see from Eqs. (1) and (6)
the wave function

q'oo = Q Yi*m(8l & 41)YJ nt(82 & $2) &
(9)

in which we have used the standard Condon-Shortley
convention for angular wave functions. The two-

electron wave function 4~ is real, and is sym-
metric with respect to parity inversion and ex-
change of electrons 1 and 2. Using the notation F
for a column matrix which contains the complete
intrashell one-electron orbital basis, we note Eq.
(9) may be written more compactly as

t t (10)

This form of the wave function emphasizes the

is implicitly related to a generalized Racah senior-.
ity classification of terms. Although generalized
SO(4} seniority-type methods have been considered
for mixed atomic configurations in the past"" "
they failed to uncover the approximate SO(4) sym-
metry which was eventually found' for two-elec-
tron atoms by other means. The main difficulty
lies in the assignment of relative phases for
coupled two-electron generators, as described in

Ref. 2. In the hydrogen atom the SO(4) degeneracy
group is generated locally by the angular-momen-
tum operator l =r xp and the Pauli-Lenz operator
b=N[p(r ~ p) —r(P' —I/r)] for each shell. When

constructing representations of the group for two

electrons, one is faced with the choice of two

SO(4) groups generated by L =I, +'., and X =b, +b„
or L and B =b, -b, . The assignment of the group
with B as the "physical" one for electron correla-
tion has in the past been made by investigation of

matrix elements of generators and comparisons
with actual configuration mixings for the operator
I/r». Additional justification for this choice was

seen in the earlier angular correlation model'

based on leading-order contributions to the elec-
tron repulsion near 8» =180'. Our present work is
important because it identifies a simple criterion
for assigning relative phases of generators in a
generalized seniority classification based on intra-
shell 5-function pairing. Specifically, we find

that the Lie algebra generators must be antisym-
metric under simultaneous application of the opera-
tions for particle exchange, time-reversal, and

(Hermitian) conjugation,

Xo(I}*Xo(2}.
1

(12)

A similar equation for sP~ hybridization orbitals
in the N =2 shell was found in previous work'
using a different approach. Here we see that (12}
describes an invariant for the unitary group in

four dimensions. This is generalized to the uni-

tary group in N' dimensions for the case of an

arbitrary hydrogenlike shell. On the other hand,

if we restrict the sum in Eq. (9) to include only a
single value of l, we have the usual totally sym-
metric state for Racah-type seniority pairing. "

In the paragraph above we demonstrated one

type of invariance for the '$' state with maximum

pair strength. We now describe a second type of
invariance that is related to coupling of two elec-
trons. We assume a unitary representation of a
group G defined on the one-electron orbital basis.
In the case of the hydrogenlike intrashell basis
we will want to consider the group SO(4), but for
the moment let us keep G arbitrary. We wish to
construct a two-electron product representation
of the group, denoted G», which satisfies the in-
variance condition

G»+oo =+oo . (13)

That is, we will assume the highest pair-strength
state is totally symmetric with respect to all
group operations. Obvious elements of G» would,

in general, include the total parity II, two-particle
exchange P», and time-reversal e. The time-
reversal operator is antiunitary, "and corresponds
in the case of spatial wave functions to complex

conjugation. In general, for two-particle states
the operator satisfies 88 =1, even when particle
spin is taken into account. " The key point we wish

to make is that the simple Kronecker product
representation G,G, does not, in general, satisfy
the condition in Eq. (13), and is therefore not

always the appropriate representation for carrying
out a seniority analysis. This is a very subtle

point that was evidently missed in the initial at-

construction of the '5' pairing state as a unitary
invariant, for if we change each one-electron or-
bital basis by the unitary transformation Y= UY,
then

(11)

due to the unitary condition P' U'=1. For example,
the & =2 shell basis may be described with a set
offourequivalentsp hybridizedorbitalsxg g2 X3 X4

for each electron. The angle between these ortho-
gonal orbitals is 109.47', representing a tetrahe-
dral geometry associated with sP' hybridization.
From Eq. (11) we see the 'S' state with maximum

pair strength may be written as
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tempts to introduce a generalized seniority ap-
proach to atomic shells for two electrons. ' In or-
der to clarify this point, we now note that the correct
way of coupling representations is

G~ = Gi8 G28 ~ (14}

except for an arbitrary overall phase which is
unimportant. That G» defined in Eq. (14} indeed
satisfies Eq. (13) may be seen directly using the
definition of %~ in Eq. (10).

It is clear from Eq. (14) that the product repre-
sentation is also unitary G~~G~ =1. In addition,
the representation G» may be seen to be symmet-
ric under simultaneous application of the three
operations: (i) Hermitian conjugation, (ii) particle
exchange, and (iii) time reversal. The product
of these three operations is thus related to a type
of CPT invariance for two-particle intrashell
coupling, in which the "P" stands for the exchange
operation P~ instead of parity. For the special
case of a Lie group defined by G =exp (ig) in which

g represents an Hermitian Lie algebra generator,
we find the following infinitesimal version of Eq.
(14):

g~ =g& —8 ga8. (15)

This satisfies g» =g~ because g, and g, are Her-
mitian for unitary representations. In contrast to
the group elements, which were symmetric under
the CPT-like operation, the Lie algebra generator
is seen to be antisymmetric under the same opera-
tion:

( 12)g(»12} g» & (16)

due to the factor f =~1 in the Lie group exponen-
tiation.

B. Application to intrashell SO(4)

As we noted above in Sec. IIIA, the invariance
criterion in Eq. (14) or the equivalent form in
Eq. (16) have not been explicitly taken into con-
sideration in previous work for intrashell two-
electron atomic coupling. We therefore now con-
sider their import for an SO(4} group defined on
the one-electron intrashell angular basis. Without
going into details of matrix elements of generators,
we note that it is sufficient to consider a repre-
sentation identical to the one generated by the
angular momentum 1 and the Pauli-Lenz operator
b for the hydrogen atom as described above in
the introduction to this section. These SO(4) Lie
algebra generators are seen to satisfy the proper-
ties 1 =1, 818=-1, and b =b, 8 b8=b. Applica-
tion of the invariance condition in Eq. (15) to the
case g=l leads to the usual operator L=1,+1, for
the total angular momentum of two particles. In
the case of g=b, however, we note this procedure

leads to the coupled two-particle SO(4} generator
B bi b2 due to the fact that b is symmetr ic with
respect to time reversal. We thus see that our
assumption of invariance for the 'S' state with
maximum pair strength is entirely consistent with
previous work which identified B as the physical
SO(4} generator for two-electron correlation. This
is y very pleasing result, as it thereby establishes
a link between SO(4) groups for long-range (8»
=180') and short-range (8» =0') angular correla-
tion effects."

TABLE II. Comparison of intrashell configuration
mixings determined by the method of maximum pair
strength (MPS), SO(4) theory, and numerical diagoniza-
tion of 1/ri2 in a hydrogenic basis (HYD) for level N=3.
States forr =3 and 4 are described with single config-
urations (3p3d) ~E and (3d3d) Q .

's' 3s3g 3p3p 3d3d

MPS
HYD
so(4)

0.333
0.331
0.333

-0.577
-0.586
-0.577

0.745
0.739
0.745

iso 3g3p

MPS
HYD
SO(4)

0.577
0.634
0.667

-0.817
-0.774
-0.745

3g3d 3p3p 3d3d

MPS
HYD
So(4)

0.657
0.571
0.408

0.509
0.563
0.500

-0.556
-0.597
-0.763

C. Configuration mixings

In Sec. IIIA we described conditions on group
generators such that the 'S' state is left invariant
under operations of the group for two electrons;
in Sec. III B we investigated these using an SO(4}
classification of hydrogenlike shells. We now show
that the SO(4) group describes configuration-mix-
ing wave functions which are very similar to the
ones in Sec. II that were obtained from the condition
of maximum pair strength. In this way we demon-
strate that the SO(4) group generated by L and B
describes an approximate symmetry for the short-
range part of the intrashell interaction.

Tables II and III contain configuration-mixing co-
efficients for the highest intrashell state for each
value of I. in the shells N =3 and 4, respectively.
There are three sets of coefficients for each state,
including ones from Eq. (6) for the method of maxi-
mum pair strength (MPS), SO(4) mixings, and ones
computed from diagonalization of I/r» in a basis
of coupled hydrogenic wave functions. The coef-
ficients shown here include renormalization to ac-
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TABLE III. Configuration mixings for intrashell states
in the level N =4 (cf. Table II for N = 3). Single-config-
uration states are (4d4f) ~ and (4f4f ) I'.

Se 484s 4p4p 4d4d 4f4f

MPS 0.250 -0.433
HYD 0.265 -0.462
SO(4) 0.250 -0.433

0.559 -0.661
0.582 -0.615
0.559 -0.661

4.4p 4p4d 4d4f

MPS 0.408 -0.577
HYD 0.480 -0.636
SO(4) 0.500 -0.632

0.707
0.605
0.592

iDe 484d 4p4p 4d4d 4p4f 4f4f

MPS 0.445
HYD 0.493
SO(4) 0.346

0.345 -0.376 -0.597 0.430
0.420 -0.433 -0.491 0.390
0.340 -0.458 -0.317 0.673

ip0 4s4f 4p4d 4d4f

MPS 0.526
HYD 0.454
SO(4) 0.387

0.596 -0.607
0.700 -0.551
0.700 -0.600

4p4f 4d4d 4f4f

MPS, 0.705
HYD 0.642
SO(4) 0.447

0.516 -0.487
0.617 -0.456
0.500 -0.742

count for the exchange symmetry of each configura-
tion. Hydrogenic SO(4} mixings including radial
functions were described in earlier work as an
approximate basis for diagonalizing I/r» (Refs.
5 and 8). This agreement is evident in the tables.
We also see there a very close agreement with the
MPS coefficients; the different methods give the
same relative signs but slightly different magni-
tudes for coefficients. Both the SO(4) method and
the MPS method give the same mixing coefficients
for the 'S' state. It is interesting to note that in
some cases the MPS mixings give a better descrip-
tion of I/r» mixings than do the SO(4) mixings.
One advantage of the MPS approach is that it pro-
vides a nice interpretation of the electron correla-
tion underlying these mixings, in terms of a strong-
ly coupled pair that is associated with the short-
range 5-function potential.

IV. 8 j2 DEPENDENCE OF SO(4) WAVE FUNCTIONS

In Sec. III we analyzed intrashell states with
maximum pair strength and found they were des-
cribed approximately by the group SO(4) defined
on the intrashell angular basis. The SO(4) method
is a very useful one because it also provides esti-
mates of configuration mixings for other (i.e. , non-

MPS) states as well. These other levels are the
ones that are degenerate with zero repulsion
energy in the 5-function model. Earlier work has
established that SO(4} mixings give a good des-
cription of electron correlation due to I/r» in
low-lying intrashell levels. Our concern in the
present section is with the explicit 8» dependence
of the SO(4} states approximated by the intrashell
angular model. Kellman and Herrick3 described
a rotor-vibrator model of intrashell doubly excited
states which gives a simple qualitative interpre-
tation of the correlation. That model showed that
the number of nodes in the 8» part of the wave
function was a constant N-d -1 within each d
supermultiplet of levels; the full range of super-
multiplets is described by the sequence d =0, 1,
'. . . ,g- 1 for each shell. One can therefore
assess the overall 8» correlation qualitatively,
by considering only the lowest level. in each super-
multiplet. These so-called "intrinsic states" for
intrashell supermultiplets were identified' as the
set of '8' levels for each shell. Levels with L&0
involve rotational excitations of the electrons;
these distort the intrinsic distribution of 8» but do
not introduce new nodes to the wave function. In
the present work we will describe the 8» depen-
dence of the set of intrinsic '8' states for the an-
gular intrashell SO(4) model. These results pro-
vide a vexy useful qualitative description of the
types of angular correlation that will be important
at very high N near the double detachment limit
for doubly excited states.

A. Wave functions

The set of 'S' wave functions for each shell are
described by functions tjt}„a which depend on 8»
through the coordinate x=-cos8». The quantum
number d =0, 1, . . . , Ã —1 labels the sequence of d
supermultiplets for the shell; the functions are
real and satisfy the intrashell orthonormality

J+1

k~a4Na «= &aa' (17)

Two functions in different shells are not ortho-
gonal, because the intershell orthogonality would
be contained in the radial part of the total wave
function. Here we are considering only the set
of angular SO(4} states for L =0. In describing our
results it will be convenient to use a function HNa
that is related to P„a by the formula

PNd ( 2} +Nd '

From earlier descriptions (cf. Ref. 2) of angular
SO(4) configuration mixings we find the iS' spatial
wave functions have the form

H„~ = (-I)» g (2l + 1)W(aaaa;dl)P, (x)(-1)',
(19)



1352 DA VID R. HERRICK

H„=pit„(*,')
in which the coefficient hd„ is found to be

(20)

where P,(x) is a Legendre function and W(aaaa; dl)
is a Racah coefficient with a=-,'(N-1). Equation
(19) does not describe a particularly convenient
form of the function H~d for interpreting the cor-
relation near x=-1 for 8» =180 . Our investiga-
tion of this function shows it may be reexpressed
in terms of a number of different orthogonal poly-
nomials whose well-known properties may be ex-
ploited. We find these alternate forms by ex-
panding the right-hand side (RHS) of (19) in a power
series

cribes a rotation of one of Pauling's equivalent
atomic orbitals through an angle 8» (Ref. 11). The
ideal molecular bond angles in Pauling s hybridiza-
tion theory are determined from nodes of the func-
tion, this giving the orthogonality of equivalent
orbitals. It is very interesting that the same ideal
bond angles for molecules arise here as the angles
for nodes in the state of highest pair strength.
Table IV gives the location of these nodes for
several lower shells. At high & we may estimate
these using an asymptotic expansion of the Jacobi
function" representation of states in Eq. (22}
when»&d:

cos[N8„—(d +-', )s]
(sin-'8 )'"(cos-'8 }'"[v(N-d —1)]'"

kqq =(-1) "g (-1)'(2l+1)W(aaaa;dl)
(l -k)! + P(N-3/2) (27)

/'N+k /2k+11

k+1 &k d

(21a)

(21b)

where (")=n!/m!(s —m)! is the binomial coefficient.
The form of the coefficient hd, permits us to
recognize the S states for the angular SO(4} as
being related to a Jacobi polynomial:

d

Nd N-4-X (22}

which has several alternate representations in-
volving

(N+d /N 1 —d)—
H„, =(-1)'gl

@+1 ~ g —1
(23)

a Gauss hypergeometric function,

-1/2
N-l. g2H~ -u -gym, u+ &am (»} ~ (25)

among other forms. '
One sees from these formulas that wave func-

tions with d & 0 vanish when 8~ =0'; each function
has N —1-d nodes in the range 0'& 8»& 180'. The
state with maximum pair strength is the one with
d =0, and from Eq. (19) this may be written in the
form

x F(d + 1 —N, d + 1 +N; 2d +2; —,(1 —x)), (24)

and a Wigner d function,

This formula predicts nodes at 8» =v( j+d+-,')/N,
with j=1,2, . . . , N-d —1. At the other extreme,
states with high values of d in each shell have a
relatively high degree of localization near 8»
=180'. Equation (24) is very useful for describing
states in this region, since it is a function of the
variable —,'(1-x)= (cos8} with 8 =-,'(w —8„). The
highest degree of localization is seen whend =N —1:

zx-x =( P)'" '
~ (28)

TABLE IV. Angles of nodes in the 9' intrashell wave
function for the state with maximum pair strength d=0.

0„(deg)

The angular distributions of the SO(4) states are
qualitatively similar to those for rotor-vibrator
states described in Ref. 3. Here we note that the
vibrational part of those functions may be expressed
in terms of a confluent hypergeometric function
as

g„;, =P exp(- ,'kP')F(d+1 N-, T+1,-kP'), (29)

with 0—=r'", where r is a characteristic shell radi-
us, and the quantum number T =0, 1, . . . , d labels
rotations about an internal axis. The intrinsic 'S'
states have T =0. The angular distribution des-
cribed by Eq. (29) when d =N —1 is similar to the
SO(4) distribution in Eq. (28) if we choose r ~N';
in this case both functions are localized at ey2
=180' with a characteristic width that scales as

Very little is known currently about angular
distributions and threshold behavior for the ejec-
tion of two electrons from atoms, either experi-
mentally or theoretically. The approximate rela-

H» =N ' (2l+1)P,(cos8»),
sP

(26)

which we identify as the same formula which des-

109.47
73.15
54.88
43.91

133.62
100.43
80.38

145.37
116.51 152 ~ 35



tionship of the principal quantum number ~ to
binding energies in doubly excited atoms has been
described by Bead 'Q%ang and Berry "and Her-
rick et aL~ It will be very interesting to see
whether suitable analytic continuation of either
the 80(4) angular wave function or the vibrator
wave function to energies above threshold provide
a realistic model of the electron correlation in
that regime.

8. Radial equations for SO(4) channels

Close-coupling equations involving a single
radial coordinate are a familiar part of the theo-
retical treatment of single-ionization processes.
In the present section we consider an analogous
set of coupled radial equations for two electrons
in the intrashell 80(4) angular basis. The poten-
tial advantage of this approach lies in the fact
that the 80(4) angular channels describe a high
degree of angular correlation for the electrons,
and may therefore lead to a more compact wave
function and approximate decoupling of the radial
equations when r, = r, fox intrashell states. %e
investigate this possibility for channels with I.=0
only.

%e construct an intrashell wave function 4N for
each level N in terms of the coordinates x1
and e~ for 8 states as follows:

F„,(r„r,) =(-1)" '-'(2l+1)
N-&

x g (-1) (d + —,')'/ W(aaaa, dl)G„~(r„r,),
4 =Q

(34a)

and the inverse transformation

G (+ + ) ( I)// 1-d(d-+ &)1/2

1
x (-I)'W(aaaa;doF„, (r„r,).

=Q

(34b)

If the angular 80(4) we consider described an
exact symmetry of two-electron atoms, then the
off-diagonal matrix elements V«would vanish
identically. Clearly this is not possible at all
values of the radial coordinates x, and r,. Her-
rick et aL' identified an exact symmetry at r, =r,
=Bing a.u. for matrix elements of dipole-coupled
SO(4) generators. Our present work attempts to
identify the regions of approximate 80(4) decoupling
of the intrashell radial equations more precisely.

%e first consider contributions to V«. from the
electron repulsion term. In general, the inter-
particle potential V(r„r„cos8») has a Legendre
expansion

(35)

G//u(&i &2)4g
Q

(30}

1 1
V @=-2g —+—5

1

+1 13
+ PNs p + 2+ 4a'd&.

1 1 +2 12
(32}

An equivalent representation of the intrashell func-
tion +N with a conventional Legendre expansion is

1

@N F//'/(+1 +2)+I (+)

Using Eqs. (16) and (19) we see that the two sets
of radial functions are related by

in which G„~(r„r,) is a two-electron radial func-
tion for the 80(4) angular channel g„~. The radial
function is symmetric or antisymmetric under ex-
change of t, and r, for singlet or triplet states,
respectively. Substitution of +N into the Schro-
dinger equation leads to a set of coupled two-elec-
tron radial equations,

(
9 8

2+ 2+ 2E- V«GNg — V«NNq~,
I

in which the term V« is a radial coupling matrix
element between SO(4} channels defined by

in the intrashell basis; the cutoff 0 ~+—1 with
+=-2R —1 originates in the hydrogenlike restric-
tion 0 ~ l ~+-1 for the intrashell orbitals. The
function f, is given by the usual formula f, =r&/r","
for the Coulomb potential. The angular 5-function
interaction we associated with states of maximum

pair strength in Sec. II is characterized by the
formula f~ =2k+ 1. The 80(4}angular expansion
analogous to Eq. (35) is defined here by

-1
V(r„r„e„)= v, ff-„„ (36a}

with the radial part related to f, by the formula

v~ = (-l)~(2k+ 1)g(-I)/W(aaaa; kj )f/, (36b)

in which a =-2g —1}. In the case of the 5-function
interaction noted above, (36b) gives vq P5/, 0 and

hence the intrashell part of the potential is des-
cribed by the single 80(4) function H„0; this may-
be seen in Eq. (26) by replacing ~ with P. The
intrashell Coulomb interaction includes long-range
terms with k& 0 in addition to a short-range part,
and no single term dominates the expansion (36).
For example, when r, =r, =r we find all the 80(4)
terms contribute with the same weight v~ =I/r.

Matrix elements of I/r» between 80(4) channels
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can be evaluated using an approach similar to the

usual tensor analysis of the Legendre expansion.
We start with a formula for expanding the product
of two SO(4} functions: (0g. A It ~a) = k[N' -1-d(d +1)] (43a)

The nonzero matrix elements may be evaluated
from the following simplified expressions:

HNi HNg —~C)g Ha (3'1)
(d + 1)[N' —(d + 1)']

(PNd I I 144+1) [4(M + 1 )(M + 3 }]1/2 ~ (43b)

Owing to the orthogonality of functions on the RHS

of (38), we can express the coefficient C",
~ as an

integral over three SO(4) polynomials:

+1

C(j (k+2) H„~H„,H„)d&.
1

(38)

Corresponding matrix elements of the intrashell
Coulomb expansion (36}are then

(P„& Il/r~ Ig„&) =[(2i+1)(2j+1)]'~'

x C]yves 2&+ 1 (39)

In general C',
~

vanishes unless i +j & k &N —1, due

to the fact that each function H« in (24) contains

only terms (1 —x}' with d ~ s cN —1. Equations
(19)-(25) and (38) lead to several different expres-
sions for the coefficient C",~. From the standpoint
of computational efficiency we find the most con-
venient of these expressions, whose explict deriva-
tion we omit, is the formula

(N+i ) (N —1 —i }
c;, =w&' ~ '('„-';„') g (-u"

I

Pea

~N+~ ~ (N -1-jl
xI

f &+a )(N+k-11 '
xl—

(N —k-lj( P+q )
(40)

Thus far we have considered only the contribution
of the electron repulsion term to the coupling
matrix V«,. The centrifugal contributions may be
evaluated in an entirely straightforward fashion
using the Legendre expansion (19), together with

the identity

l(l+1) =2a(a+1)

+(-1)" ' '2a(a+1)(2a+1)W(aaaa;1l). (41)

+A —,++ + B,t' r, , (44)

in which t=r, /r, . The coefficients A and B, are
different for each matrix element; A represents
the centrifugal term in (43) and B, is given by the

formula

B~ =(-1)"' 2[(2d +1)(2d'+1}]''

x g (—1)'" (2l+1)(2l'+1)

('l 1
' k}'

x W(aaaa;dl)W(aaaa;d f )I„, )I . (45)

Tables V-VII contain numerical values of coef-
ficients for levels N =2-4. Also shown there are
values of a coefficient cr defined by

(T —+ Bp (46)

which is related to the matrix of the repulsion

TABLE V. Coefficients for intrashell-potential- cou-
pling matrix elements Vdd. in SO(4) angular channels
[cf. Eq. (44)j for the shell N=2.

Note that the diagonal term (43a) indicates smaller
centrifugal repulsion, and hence lower energies,
for SO(4) channels with larger values of d. These
are the same channels which have the most favor-
able two-electron angular correlation.

C. Radial decoupling

We indicated in Sec. III C that a zeroth basis of
correlated angular SO(4) channels could lead to
approximate radial decoupling in the regime r,
= r, . We now investigate the extent of decoupling

by considering the form of the matrix elements Vdd.

in greater detail. From Eq. (32} we find each
matrix element for level N has a finite expansion

1 1
V = -'2Z —+-dd' y y dd'

1 2

x [W(dd'aa; la)]

which may be seen to vanish unless hd =0, +1.

(42)

This leads to the following matrix element for each
electron i =1,2:

(PNd11 i 14Nd ) 2a(a + 1)5«
—2a(a+1)(2a+1)[(2d +1)(2d'+1)]' ~

A
Bp
B,
B2

Voo

1.5
2
1
0.6
0.9

0.5
2

-1
0.2
0.3

Vog

-0.866
0
0.577

-0.346
0.058
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TABLE VI. Coefficients for intrashell-potential-cou-
pling matrix elements V~. in SO(4) angular channels
[cf. Eq. (44)] for the shell N=3.

80

Voo

A 4 3 1
Bp 2 2 2
Bg 1.333 0 -1.333
B2 1.029 -0.229 0.571
B3 0.571 -0.429 -0.143
Bi 0.317 0.238 0.016

1.313 0.395 0.278

Voi

-2.309
0
0.577
0.148
0

-0.275
0.113

V)2

-1.291
0
0.516

-0.664
0.332

-0.061
0.031

Vo2

0
0

-0.149
0.319

-0.256
0.071

-0.004

60—

i') (o.u.)
40—

20—

operator 1/r» in the SO(4} basis when r, =r,
We interpret the diagonal and off-diagonal matrix
elements separately here below:

1. Diagonal terms

The shapes of these curves are qualitatively
similar to potential energy surfaces for a mo-
lecular-type reaction X+YX- XY+X, except that
here we have electrons (X) and a nucleus (Y').

When r, =r, =- ~ the potential for each channel is
simply

V~~ = 2A/r' —4(Z —o)/t', (47)

which contains a short-range centrifugal term plus
a long-range Coulomb term. Note that o appears
here as a screening constant. The smallest values
of 0 are seen in Tables V-VII for the channel
d =~ —1 which has the most favorable angular cor-
relation, and these are close to the classical
screening constant 0 =0.25 for electrons on a
spherical shell when 8» =180' (Ref. 20). The
screening constant increases for channels with
decreasing d, and reaches its highest value in
the channel d =0 which has maximum pair strength
and hence the most unfavorable electron correla-
tion. At high Z the potentials described in Eq.
(47) have a long-range attraction, indicating states
below the threshold for double ejection of electrons
at zero energy. At low Z, however, some of the
channels with large screening constants satisfy

0
0

I I I I I I I

20 40 60
I~ (a.u.)

80

FIG. 1. Line of nodes in the radial coupling matrix
element Vg between SO(4) channels in the shell N = 2.
Radial coordinates zi and y2 are given in atomic units
(1 a.u. = 0.529 J).

o) Z, and hence would have a purely repulsive po-
tential when r, =r, . The location of the minimum
in the attractive channels is found from (47) and
(43) to be described by

r, =[Nt —1-d(d +1}]/2(Z—c),

V„=-4(Z—o)'/[N' —1-d(d +1}] .
(48}

The constants on (48) actually describe the location
of a saddle point in the full potential-energy curve
when values r, Wr, are taken into account; the in-
stability associated with the maximum in the poten-
tial at this point is linked to the process of auto-
ionization in doubly excited atoms, as illustrated
by He**-He'+e in the limit r, -~ or r, - ~. By
analogy with molecular potential-energy surfaces,
we note the saddle point in the attractive SO(4}
channels describes a type of activated complex for
the process e, +He'- He'+e, .

2. Off-diagonal terms

Owing to the selection rule 4g =0, +1 for centrigu-
gal matrix elements in (42), off-diagonal coupling

TABLE VII. Coefficients for intrashell-potential-coupling matrix elements V~i in SO(4)
angular channels [cf. Eq. (44) j for the shell N =4.

Vpp V33 Vog V&2 V23 Vo2 V&3 Vos

A 7.5 6.5
Bp 2 2
B, 1~ 5 05
BR 1.262 0.071
B3 0.905 -0.429
Bi 0.671 -0.247
B5 0.379 -0.136
B6 0.204 0.220

1.730 0.495

4.5
2

-0.5
-0.262
-0.143

0.420
-0.227

0.041
0.332

1.5
2

-1.5
0.833

-0.333
0.091

-0.015
0.001
0.269

-4.330
0
0.520
0.322
0.231

-0.065
-0.131
-0.212

0.166

-3.098
0
0.645

-0.277
-0.184
-0.140

0.293
-0.095

0.061

-1.775
0
0.423

-0.704
0.563

-0.256
0.064

-0.007
0.021

0
0

-0.224
0.245
0.043

-0.019
-0.169

0.091
-0.008

0
0

-0.109
0.327

-0.436
0.304

-0.109
0.016

-0.002

0
0
0.038

-0.139
0.227

-0.195
0.086

-0.015
0.0004
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80

60—

1((O.U. )
40—

20—

0
0

I I I

20
I I I I

40 60
r~ (o.u. )

80

FIG. 2. Lines of nodes for off-diagonal radial coupling
matrix elements p«s between SO(4) channels in the shell
N=3 (cf. Fig. 1).

r, =-A(1+1/f') tk (49)

which in the limit of very large r& gives r &

80

60—

r~(o. u.)
40—

20—

0
0

I I I

20
I I I I

40 60
r, (O.U.)

80

FIG. 3. Lines of nodes for off-diagonal radial coupling
matrix elements P'+, e between SO(4) channels in the shell
N=4 (cf. Fig. 1).

terms V«. which have ~d-d ~& 1 originate entirely
in the Coulomb repulsion 1/r». The largest of
these couplings are found when r, =r, at which
point they have the value 4o/r, . It is evident from
values of o in Tables V-VII that the SO(4) chan-
nels approximately diagonalize the Coulomb re-
pulsion when r, =r, . Radial coupling matrix ele-
ments V«with ~d -d'

~

= 1 involve contributions
from a positive Coulomb repulsion term and a
negative [cf. Eq. (43b)] centrifugal term. Due to a
cancellation of these terms, it is possible for the
matrix elements to vanish at certain values of r,
and r, . Figures 1-3 show the location of the lines
of nodes V«. =0 for levels N=2-4. These curves
are found from (44} to be described by the equation

=(-A/B, }'"(r&}". Although there is no single
point in the figures where all of the coupling terms
vanish, there evidently occurs a relatively high
degree of approximate decoupling in a very broad
region described by r, =r, = 2N' for these levels.
It is important to note that the off-diagonal terms
V«, and hence the region of approximate decoup-
ling, are independent of the nuclear charge Z of
the atom. Since the characteristic shell radius of
atoms scales as r ~N~/Z at high Z, we conclude
that the approximate decoupling of angular SO(4}
channels is strongest in low-Z systems such as
H . This interpretation is consistent with the Z
dependence of supermultiplets' and the vibrator
model of strongly correlated states at low S (Ref.
3).

V. SUMMARY OF RESULTS

In this work we have described several new re-
sults related to the angular correlation of two
electrons in doubly excited atoms. In Sec. II we
showed how a simple hybridization method for
electron-pair surface harmonics accounts for
configuration mixing and energy-level orderings
of the highest intrashell states in each level Ã.
We interpreted these as pairing states originating
in the short-range part of the repulsion within
each shell. In Sec. III we investigated an approxi-
mate SO(4) symmetry for the angular pairing
states in a hydrogenlike shell; the method seems
to account for the curious result found in earlier
studies that the totally symmetric SO(4) represen-
tation for each shell is the highest energy level.
A key result of our investigation of the short-
range correlation was the identification of a CPT-
like invariance of intrashell group generators of
the approximate symmetry. With this we estab-
lished a link between the angular SO(4) group for
the present short-range correlation model, and a
similar group identified in Ref. 2 for long-range
correlation effects. We then describe properties
of the SO(4} angular channels and the dependence
of the states on the interelectronic angle 8».
Although the angular SO(4) channels are not exact
eigenfunctions of the Schrodinger equation for
doubly excited states, they were found to give an
approximate diagonalization of the Coulomb re-
pulsion when r, = r, for levels N=2-4. The
angular SO(4} states may therefore prove to be
a useful model for correlation in highly excited
states and threshold behavior for ejection of two
electrons. Analytic continuation of the SO(4}
states to real wave functions could be obtained
using Eq. (24) with N- iN and appropriate renor-
malization. Similar results could be found using
SO(4} states for L& 0 as well.
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