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Assume a solved quantum-mechanical problem for the one-dimensional Schrodinger equation, which has a
discrete spectrum. An algorithm is presented to calculate exactly the change in the original potential and

eigenfunctions brought about by arbitrary changes in the positions of the original eigenvalues and/or the

normalizations of the corresponding eigenfunctions. As a first example, we consider the modification of the

harmonic oscillator and thereby obtain potentials for anharmonic oscillators with exact eigenvalues and

eigenfunctions. Next, we introduce potentials in the one-dimensional box with rigid walls which alter the usual

spectrum in a predetermined way. We also sketch the process of obtaining a change in the Coulomb potential which

deletes the lowest eigenvalue for the zero-angular-momentum equation.

I. INTRODUCTION

It is well known that the number of one-dimen-
sional Schr6dinger equations having exact point
eigenvalues is quite small. Indeed, if no continu-
ous spectrum is present, the only three examples
with infinite discrete spectra usually discussed in
the literature are the particle in a box, the har-
monic oscillator, and the symmetric P5schl-
Teller potential. ' (Other potentials are also dis-
cussed in Ref. 1.)

The intent of the present work is to enlarge this
number through the systematic use of the Gelfand-
Levitan equation. ' ' This approach allows us to
generate exactly solvable potentials from the po-
tentials mentioned above by adding or subtracting
a finite number of eigenvalues and/or by changing
the normalizations of a finite number of eigenfunc-
tions. The Gelfand-Levitan equation which appears
here makes use of comparison potentials and com-
parison measures. These concepts have been dis-
cussed in full generality by Moses. 4 However, for
the purposes of the present paper, we shall give
an independent derivation of the algorithm.

After presenting the algorithm in Sec. II, we il-
lustrate the method in subsequent sections. In
Sec. III, we exhibit a potential whose spectrum
coincides with that of the harmonic oscillator ex-
cept that the lowest eigenvalue has been removed.
We thus have obtained an anharmonic oscillator
with known eigenvalues and exact corresponding
eigenfunctions, both in cl.osed form.

As a further illustration, we present in Sec. IV
the modified potential for a particle in a box, when

again the lowest eigenvalue has been omitted. The
same procedure is then applied in Sec. V to get the

potential for the Coulomb problem in the zero-
angular-momentum state.

From these examples it is clear how to generate
other potentials with prescribed spectra. To the
best of our knowledge, this class of potentials rep-
resents the first novel, nontrivial addition to the
list of potentials which support known spectra with
an infinite number of point eigenvalues. In the con-
cluding Sec. VI, we discuss the results obtained
and indicate what generalizations are possible. In
the Appendix the algorithm is derived and a proof
of the completeness relation for the new eigenfunc-
tions is provided.

II. THE ALGORITHM

Let us consider a one-dimensional Hamiltonian

Ho,

d'8 = — + V (x) -~ &x«
dx

with a discrete and (generally) a continuous spec-
trum. Let the eigenfunctions corresponding to the
discrete spectrum be denoted by%'„(x}. These
eigenfunctions satisfy the equation

&0+.= E.+.y

where the E„'s are the point eigenvalues and the
4 „'s have the normalizations C„,

In addition, there may be a continuous spectrum,
with eigenvalues E and corresponding eigenfbnc-
tions%'(x(E, ct}, where a denotes a degeneracy
variable (e.g., for the direction of momentum).
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In Eqs. (3) and (4) we have assumed 4'„(x) to be
real. In Eq. (4) W(E l n, n') is a positive weighting
function. For further details concerning this func-
tion see Kay and Moses, ' and Moses. 4

Now we show that it is possible to add a potential
V'(x) to H„so that the new Hamiltonian H,

H =Ho+ V' (5)

has the same continuous spectrum as H„and its
discrete spectrum coincides with that of H„ex-
cept for a finite number of eigenvalues and/ or a
finite number of normalizations. Explicitly, let
g„(x) be the eigenfunctions for the point eigenvalues
of H, now denoted by E„, and having normaliza-
tions Cn. The continuous spectrum eigenfunctions
of H will be denoted by y(x lE, o) which, by the as-
sumption that the continuous spectra of H and II,
coincide, have associated with them the same con-
tinuous measure function W(E l a, o.'}. Thus, for
the Hamiltonian H, the completeness relation is

&n & Xn &

n Cn

x Z fX(x(Za)X'(*'IZ, , a')W(Z Ia, a')dZ
f}fv n

=6(x -x') . (6)

By our assumption, all but a finite number of E„'s,
and similarly the number of C„'s not identical to
the C„'s is finite. In particular, there may be no
continuous spectrum at all, as in the case of the
three potentials mentioned in the Introduction.

To exhibit the algorithm, we start by introducing
the formal eigenfunction C„ofH, , which corre-
sponds to the eigenvalue E„,

H, +„=E„4„. (7)

It should be noted that those E„'s which do not co-
incide with any of the E„'s, may be completely ar-
bitrary real numbers. Therefore Eq. (7} is an or-
dinary differential equation with two linearly in-
dependent solutions. We select that solution of Eq.
(7) which satisfies the boundary condition

We shaQ require the eigenfunctions to satisfy the
completeness relation:

~ ~„(x)~„(x')
C„

J a(xlda)a, '(x'IZ, a )W('Z la, a')dZ
f}fz R

= 6(x -x'). (4)

We remark that 4„(x) will coincide with @„(x)if
X„ is equal to E„, and%'„ is constrained to satisfy
the same boundary conditions as 4 „.

Now let us construct the function

~ 4'.(x)4.(y) ~ ~.(x)~.(y)
n C„n n

Our previous assumptions imply that A(x, y) con-
tains only a finite number of terms.

The Gelfand-Levitan kernel K(x,y) is defined as
the (unique) solution of the integral equation

Z(x, z)=-n(x, z) —f Z(x, z)n(z, z)dz. ()O)

Note that, for fixed x, K(x, y) is the solution of a
Fredholm integral equation. In terms of 0 „, 4,
Q, and K, the algorithm for the determination of
V', g„, and g is

V'(x) =3 K(x, x),d

X„(x)=a„(x)+f Z(x, z)a„(X)dz,
oo

x(xl&, a) =@(xlE,(r)+ K(x, y}4'(y IE, (r)dy.
oo

(13}

X

Uf (x) ~f(x) + K(x, y)f(y) dy .
oe)

(14)

Then Eqs. (13) and (13) can be written as

X (x)=U4„(x), y(xlz, a)=U+(xlz, a).

It is clear that the roles of H and Ho can be in-
terchanged. When this is done, a new Gelfand-
Levitan kernel K(x, y) is obtained and correspond-
ing to it an operator U. It is not difficult to show
that

UU =I, (16)

The Gelfand-Levitan equation is easily solved for
K because the kernel K(x, y) is separable, as seen
from its definition in Eq. (9). The derivation of this
algorithm is presented in the Appendix, where a
proof of the completeness relation satisfied by the
g„'s is also given.

Having found K, it is useful to introduce the op-
erator U acting on functions belonging to the Hil-
bert space f,z( ~, ~), and defined as

lim zl „(x)=Q. (8)

where I is the identity operator. Equation (16)
makes it evident that the interchange of H and H,
allows us to obtain U ', the inverse of U.
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Ilr. EXACT ANHARMONIC OSCILLATORS

1 d'
H, = ——,+x'i.

2 dx' (17)

The well-known eigenfunctions 4'„(x) and eigen-
values E„are

4' (x) = (~ „)„,e* /'H (x),

E„=n+ &, C„=1.

(18)

(19)

We have followed Messiah' in our choice of units
and definition of the Hermite polynomials H„(x)

To obtain an exact perturbed system, we change
a finite number of the eigenvalues and//or the nor-
malizations of the eigenfunctions. The simplest
cases occur when we delete or add one eigenvalue,
or alternatively, the spectrum is left unchanged
but the normalization of a single eigenfunction is
altered.

In detail, let us consider the dynamical system
obtained when the spectrum of the perturbed sys-
tem is identical with that of the harmonic oscil-
lator, except for the absence of the lowest eigen-
value Eo 2 The eigenfunctions of the perturbed
system are assumed to have the same normaliza-
tions as the @„'s in Eq. (18).

According to our assumptions, we have in the
present case

4 „(x)-=4'„(x), n = 1, 2, 3, .. . .
Moreover, it is clear from Eq. (9) that

Q(x, y) = -@,(x)@,(y) .

(20)

(21)

The Gelfand-Levitan kernel is readily shown to be

We shall now give examples of anharmonic oscil-
lators with exact eigenvalues and eigenfunctions.
To the best of our knowledge these are the first
examples of such oscillators, with infinite dis-
crete spectra.

We begin by choosing for the unperturbed system
the usual harmonic oscillator whose Hamiltonian

Ho is taken to be

d'
V'(x} = -2

d , ln[erfc(x}]

4 e" X

tw erfc(w} tw e fc(w} ) '

The eigenfunctions of H =Ho+ V', are

(24)

This set of eigenfunctions is complete and C„=1
for n =1, 2, 3, . . . . Therefore the X„'s satisfy the
relation

X„xX„y =& x-y .
n= 1

(26)

In deriving our results we have made use of Eq.
(20).

The addition of V'(x) to H, means that H is the
Hamiltonian of an anharmonic oscillator, whose
spectrum is the discrete set (E„=n+ &,

n = 1, 2, 3, . . . ) with corresponding eigenfunctions
given explicitly by Eq. (25}.

The foregoing has treated the case of deletion of
one eigenvalue. An example of the addition of one
eigenvalue is provided by the interchange of H and

Ho. In this case, the algorithm demands that we
solve the ordinary differential equation

A ~ A

&Xo = &oXo y
(27)

where e, =E, = —, and (y, e) are the counterparts of
(O', X') in the original formulation.

It turns our that a y, satisfying Eq. (27) and the
boundary condition of Eq. (18) can be found and is
given by

Xo =U+o (28)

The apparent contradiction that X, is an eigenfunc-
tion of H and yet does not appear in the complete-
ness relation of Eq. (26), is resolved simply by
noting that X, is only a formal eigenfunction, since
it is not quadratically integrable [a.nd thus it is
outside the space L,(-~, ~)].

The explicit form of y, (x} is

X (x)=+.(x) —
f +„( ),

n=1, 2, 3, . . . . (26)

-(x2+ }}2}/2eKxy =
v w erfc(x} (22)

w' 'erfc(x) '"(x)= (29)

where erfc(x) is defined by'

erfc(x)=1 —~ e ' dt= ~ e ' dt.
7T o ~m

The potential V'(x) that is to be added to V, = —,'x'
is, by virtue of Eqs. (11)and (22),

The Gelfand-Levitan kernel for this case is
-i]2 (p+p)

("y}--
~w e~c(y)

Explicit computation then shows that

UU =UU =I,

where I is the identity operator.

(3o)

(31)
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A second example which is also easily treated is
the case where the normalization of one eigenfunc-
tion is modified while the spectra of H, and H are
assumed identical. The unperturbed system is the
harmonic oscillator as before, and we take

continuous function of e. Close analogs to this
problem are discussed in Ref. 8.

IV. PARTICLE IN A BOX

C„=C„=1, n =1,2, 3, ~ . ~ ~

For brevity we write

CO=C.

(32)

(33)

In this section we apply our method to the Ham-
iltonian H, associated with a particle in a box.
The limits - and + of the previous example are
replaced by -(v/2) and +(v/2), respectively. Thus,
following Messiah, ' we have

Our formalism then yields for this case

n(x, y) = -D4', (x)@,(y ),
where

D =1 —1/C.

The kernelK(x, y} is easily seen to be

e -1/ 2 (x 2 + y~ )
K x, y)=

Ww k +erf c(x)

with A. defined by

2(1 -D) 2
D C —1

(34)

(35)

(36)

(3'I)

d'
1H =—0 d 2 -2r &X& pm.

The eigenfunctions 4'„(x) are given by

&2/v sin(nx), n even
&2/v cos(nx), n odd.

The normalizations C„are
C„=1, all n,

and the%'„(x) have been chosen to satisfy the
boundary conditions

q (+-,'v}=0.

(38)

(39)

(40)

(41)
It is of interest to note that in the limit A. 0 (i.e.,
C ~), we recover from Eq. (36) the kernel in Eq.
(22). This is as expected, since C-~ implies that
the lowest eigenvalue does not belong to the spec-
trum of the new Hamiltonian H. For Xa 0, Eq. (36)
yields in the usual way explicit expressions for both
V'(x) and y„(x). This example shows that it is pos-
sible for two Hamiltonians to have identical spec-
tra, and yet the two may not be unitarily equiv-
alent. This is an analog of a well-known result in
inverse scattering theory. '

Another class of potentials which support the
same spectrum as that of the harmonic oscillator
is obtained by deleting the lowest m eigenvalues
to obtain in the manner described above a Hamiltonian
H' ' with eigenfunctions y„(x) (n = m, m+ 1, . . . ). Let
us define a new Hamiltonian

H(-& =H( & - m

and eigenfunctions y„(x) =y, „(x). Then H' ' has
the same spectrum as the harmonic oscillator H, .
Its eigenfunctions y„(x}with n =0, 1, 2, . . . a.re as-
sociated with the eigenvalues E„=n+ 2. In the
present case H' ' is unitarily equivalent to the
harmonic-oscillator Hamiltonian H, . The unitary
operator giving the transformation can be con-
structed from the kernel K(x, y). We refrain from
details. In the present case the ambiguity of the
potential differs from that discussed above.

Another question of interest which we may deal
with in later papers is the effect of scaling the
potential V'(x), i.e., replacing V'(x} by eV'(x}. It
appears that the spectrum of H, + & V'(x} is a dis-

Finally, the eigenvalues of H, are

E =n'
ff n=1, 2, 3, .. . . (42)

The simplest way of obtaining a new dynamical
system is to delete the lowest eigenvalue E, =1
and require C„=1 for n&1. In this case

0 (x, y }= -(2/v) cosx cosy .
The kernel obtained from Eqs. (10}and (43) is

K(x, y) = -4 cosx cosy/(2x —v —sin2x}

and the resulting V'(x) is

V'(x} = 8(2x —m)/(2x —v —sin2x)'.

The new eigenfunctions have the form

(43)

(44)

(45)

y„(x) = 4'„(x) +(-1)"

n+1( ) + g 1( ) 2 3 (46)

V. MODIFICATION OF THE COULOMB POTENTIAL

The algorithm for one-dimensional problems
developed above, holds also for the radial equation
corresponding to an arbitrary angular momentum.

Equation (46) shows immediately that y„(x}satis-
fies the boundary conditions (41). Furthermore,
the algorithm implies that these y„(x)'s satisfy the
completeness relation. Again, other generaliza-
tions are possible for the present case as well, but
we refrain from pursuing this here.
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We can therefore introduce a new Hamiltonian for
each angular momentum.

In particular, let us consider the zero-angular-
momentum case and take the H, to correspond to
the Coulomb potential with Z = 1 and a, (the Bohr
radius} = 1.

If we delete the ground state of the hydrogen
atom, we obtain the potential

V'(r) = 16r(r + 1)/(2r'+ 2r + 1)'. (47)

VI. GENERALIZATIONS

It is of interest to write down the solutions of
the Gelfand-Levitan equation for the two cases of
deletion and addition of a single, arbitrary point
eigenvalue, with all normalizations taken equal to
one.

In case we delete the eigenvalue E„, we obtain

We note that as r ~, V'(r}-4/r' Th. us V'(r)
represents a screening potential such that the
spectrum of the zero-angular-momentum equation
coincides with that of the unperturbed hydrogen
atom, except for the ground state. For higher
angular momenta, the spectra of the new Ham-
iltonian may not correspond to the original hydro-
gen spectrum.

is an actual eigenfunction.
The results above can be extended to any number

of additions or deletions of point eigenvalues. Since
Q(x, y) is taken from the outset to be separable,
K(x, y} will also be separable. Aside from the
quadratures involved, the only difficulty in this
approach is algebraic, since we have to solve a
system of linear equations. This approach is close
to that for obtaining the reflectionless potentials
of Ref. 9. An alternative approach is to proceed
one step at a time and then the difficulty is in per-
forming appropriate quadratures which may be-
come progressively more complicated.

The exact anharmonic oscillator, found in Sec.
III, can lend itself easily to a perturbation analysis.
This follows from a comparison of V'(x} of Eq. (24)
with x'. A modest numerical effort showed that
V'(x) represents a very slight perturbation to x'.
Since we know the exact eigenvalues and eigenfunc-
tions of the perturbed problem, we can check the
effectiveness of various perturbation theories on

using this anharmonic-oscillator model.
In conclusion, we feel that the ability to generate

novel, exactly solvable models with the aid of the
present algorithm, is quite significant and has
many possible ramifications. Some of these will
be explored in future work.

(48)Q,(x, y) = -4d(x) 4'd(y),

)(,(4, 1)= +,(4)+,(2) (1 f dl(z)d—*), (42)
00

67' x
V' =-2, lz 1 — V (z)d ) .dx' (50}

If the point eigenvalue E, is added to the spectrum,
the results are
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fl.(x, y) =4'.(x)@.(y), (51) APPENDIX: DERIVATION OF THE FUNDAMENTAL
ALGORITHM

)4 (xx) =-e.(x)V.(2) ,(2 4f d*.(z)dz), (22)
w oo

d' x
V', (x) =-2, lz 1 ~ 41',(z)dz) .dx' (53}

As a consequence of the above equations, it is
possible to exhibit, without further quadrature,
the forms of l(d(x) and y, (x).

Use of Eqs. (42), (49), and (52) yields

For the sake of simplicity, let us assume in
what follows that H, (and hence H) has a purely
discrete spectrum. The generalization to the case
of a spectrum possessing also a continuous part is
immediate.

For reasons that will become apparent in the
sequel, we define

(54)
H" = — +V (u).

dQ
(Al)

x.( )=v.(*) (1 fVV*.( )4*)+
00

(55)

As mentioned previously, yd(x) is only a formal
eigenfunction of 8, since it is not quadratically
integrable (the denominator vanishes when x +~).

On the other hand, note that

To derive the algorithm, we want to show that
the function (H," —E„)1„(x}is equal to a function of
x multiplying y„(x) itself. This so far unknown

function will then be equal-to -V'(x), and thus will
lead to the new Hamiltonian JI we wish to deter-
mine. Applying the operator Ho —E„on y„(x),
where the latter is as defined in Eq. (12), ve ob-
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tain limK(x, y) =0, (AS)

(p,' E„)~„(x)=(p," —E„)4„(x)

+(P, E"„)Jl K(x, y)4„(y)dy.
which follows easily from the same property of
Q(x, y).

Use of Eq. (AV} enables us to write
(A2}

The first term on the right-hand side (rhs} of
Eq. (A2) is zero by Eq. (V). Also,

K s, y IIO"4 y dy

d4 „aK'(x,y)
dx ay

4'„(x)

d'
K(x, y) 4'„(y)dy

X x
+ [HOKK(x, y)]%„(y)dy. (A9}

K(x, x) C„(x)+K(x,x)
( d - d4„
(dx ds

+ K(x, y) 4 „(x)
y=x

The substitution of all these results in Eq. (A2}
yields+,' y 4'„(y)dy . (AS}

Now we make use of the identity
+ 0-Ho Kxyy +n y dy

(A10)
dK(x, x) aK(x, y)

dx Bx

and of Eq. (A3) to write

aK(x, y)
By

(A4) To evaluate the last term on the rhs of Eq. (A10)
we use the Gelfand-Levitan Eq. (10). Thus, apply-
ing Ho and H," on Eq. (1}we obtain

Ho Kx, y 4„y dy
~o

=-RJK K(z, z))Zz.(z)(dx

( )
d@„aK(x,y)'"
d 4„(x)

H,"K(x,y}= H,"Q(x-, y)+ „' Q(x, y)
dK x, x

, aQ(x, y) aK(x, y)
B& By

H,'K(x, z}Q(z, y) dz,
«eo

y=x
Q(x, y)

(All)
x

[H;K(x, y)]4 „(y}dy. (A5}

In addition, we use Eq. (7}once more to obtain

( )
d@„aK(xzy)
dh By

4 „(x)

a'K(x, y) -
( )

In Eq. {AV) the effect of the lower limit in the in-
tegrated terms has been eliminated with the aid of
the boundary condition (6) and of

(AV)

E„K'x,y 4„y dy= K x, y H04„y dy.
«a «a

(A6)

The form of the term on the rhs of Eq. (A6} can be
changed if we use the definition of H,' and integrate
repeatedly by parts. Thus,

fx d'0 „K'(x, y) ," dydy'

K;K(zZ)=-K'ZZ(z, , Z) JK(z, z)K-;0(z, y)dz.

(A12)

In Eq. {A12) we have used in both terms on the rhs,
the identity

H,"Q(u, v) =H,'Q(u, v), (A13)

[H K(x, z}]Q(z,y)dz. (A14)

Equations (All), (A14), and the identity (A4) yield
then

which follows from the symmetry of Q, as can be
easily verified.

Integration by parts in Eq. (A12) yields

H,"K(x,y) =-H, Q(x, y)

( )
aQ(x, y} aK(x, y) Q(„)

BX By
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(H," -H,"}K(»,y) =2 „' Q(x, y)
we have identically

F(x, y) =K(x, y). (A19)

0-Hog x, z Qz, y dz.
QQ

Substitution of this identity in Eq. (AIV} yields the
equation

(A15) (H() H,')-K(x, y) = V'(x)K(x, y). (A20)

)
dK(x, x)

dx (A16)

Let us define now the functions V'(x) and F(x, y): We go back now to Eq. (A10), substitute from Eq.
(A20), and use Eq. (12) in the resulting expres-
sions. The final result is

-V'(x) F(x, y) =(H," -H;)K(x, y) . (A17) (H.* —&.) X.(x) =-V'(x) X„(»). (A21)

Substituting these definitions in Eq. (A15) we ob-
tain

x

F(x, y)=-Q(x, y) — F(x, z)Q(z, y)dz. (A18)
()o

In deriving Eq. (A18}, we have assumed that V'(x)
is not identically zero. The truth of this statement
follows from the observation that V'(x) =—0 would
yield a homogeneous integral equation for
(H,* -H,")K(x,y) in Eq. (A15). But this equation
has the same kernel Q(x, y) as the inhomogeneous
Gelfand-Levitan Eq. (10}, which we know to have
the unique solutionK(x, y}. Thus we obtain a con-
tradiction and hence V'(x) cannot be identically
zero.

Returning to Eq. (A18) and using again the unique-
ness of K as a solutionof Eq. (10) [alias Eq. (A18)],

This shows immediately that x„(x) is an eigenfunc-
tion of the Hamiltonian

II =IIO+ V'. (A22)

&n& Xn3
n n

(A23}

To derive the completeness relation we substitute
for x„ from Eq. (12) into the sum:

As promised in the text, the algorithm does indeed
yield both the potential V'(x} and the eigenfunctions
x.(x).

It remains to show now that the y„'s are the only
eigenfunctions of H. This is equivalent to requir-
ing the y„'s to satisfy the completeness relation
(for the case of a purely discrete spectrum as-
sumed here):

~ x.(~)x.()) g +.(&)@.()'), '
~ K„, I + (*)~ ()j)«((, „"I'~'*'~"

4„z
n

We shan now assume that the eigenfunctions g, (x) of H, satisfy the completeness ~elation

4', u 4, v

CR

(A24)

(A25)

(A26)

x. x)x. y
x

=5(x -y) + Q(x, y)+ dzK(x, z) Q(z, y) + q(x-y)K(x, y) + dlK(y, g) Q(g, x)
n C n OO oo

'n() «))((v*)'j «j &m,(*, )&(~, ) ( )(j()«(j*,«+(~, *)(((),()()(~-(),
~ oo oo oo

(A2V)
where

Then using Eq. (9}defining Q, and Eq. (A25), we can write

g(q(u}(1 q(v}
Q( ) 5( )

(A26}, the sum on the lhs has an infinite number of terms since it includes also those for which the
4„'s coincide with the 4'„'s.

Substitution of Eq. (A26} into Eq. (A24} yields

() 1, u)0
0, u(0 (A28)
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is the Heaviside step function. The last integral in Eq. (A27) is easily seen to equal

Z(z -y) ddK(zd), K(y, d) z Z(y -z)f dzK(rz)K, (y, z).
~ OO

Now, using the symmetry of 0, i.e.,
Q (u, v) = Q(v, u)

me can ferrite

(A29)

(A30)Q (u, v) = g (u —v) Q(u, v) + q(v —u) Q(v, u) .
We substitute Eq. (A30) in Eq. (A2V) wherever Q appears and replace the last integral by its expression

in Eq. (A29). In the resulting equation we use the Gelfand-Levitan equation repeatedly to eliminate Q and

obtain, without difficulty

=5(» -y) —q(» -y)If'(», y) —))i(y -»)K(y, ») + q(» -y)K(», y) + u(y -»)K(y, »)
C„

—z(z —y) ddK(y, ()K(zd)-z, (y-z)f dzK(zz)K(y, z),
oo ~ 00

3f X

+n(»-y) &CZ(y, g)K(», g)+ q(y -») dz &(», z)A(y, z)
w eo W

=5(»-y). (A31)
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