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It is proved that the solutions to the Enskog equation for an N-component gas enjoy the nice properties

that are known in the context of the Boltzmann equation, to indicate its compatibility with

thermodynamics, provided some restrictions are imposed on the functions. g. The functions g are introduced

in the Enskog equation in order to account for correlations among particles.

I. INTRODUCTION

The state of an N-component gas is described in kinetic theory by the one-particle distribution function

f(r, v, i, t); f(r, v, i, t)d rdv denotes the number of particles of the ith component at dr about r with velocities
in dv about v at time t. We shall assume periodic-boundary conditions on the boundary BQ of the domain

g confining the systems concerned. It follows from the interpretation of f(r, v, i&t) that f(r, v, i, t) -0 for all
r e 0, v e R, i =1, . . . , N and all times. We introduce moreover s(r, i, t) = jdv f(r, v, i, t).

Boltzmann~ has proposed the following equation governing the time evolution of f(r, v, i, t): [we omit,
hereafter, t in f(r, v, i, t)]

N

= —v, f(r, v, i)+I j «if d«) 8(y)f~«(f(r, « i)f(', j'),—f(rv, ,i)f(, , j,)], (1.1)
e f=i

y = (v —v )K, K is a unit vector, 8 is the step
function [ 8$) =1 for «) 0, 8(«) =0 for x c 0] in

the term corresponding to (i,j) the velocities (v, v)

are related to (v', v'} by the two-parameter (the
parameters are «) family of transformations v,'
=v, + (2t],,&/m, )(v„—v„)«„«„v'=v —(2g,z/m, )

(v„—v„)«„«, I /p;, = 1/m, + 1/m ~, m,. is the mass of
the particle of ith component. The transforma-
tion (v. , v) —(v', v') is the transformation of the
velocities of two colliding particles, (v, v) are
the velocities before the collision, and (v', v') are
the velocities after the collision. It is assumed in

(1.1) that the particles are hard spheres interac-
ting only due to the hard-core potential, e,&

= 2(e,

+ez), where &, is the diameter of the particle of
the ith component.

Pnce a kinetic equation [for example (1.1)] is
auggested, three important types of questions
arise.

(i) Does there exist an approach, as the time
goes to ~, of solutions of the kinetic equation to a
time-independent state that could be identified with
the state considered in thermodynamics? What is
the thermodynamic equation of state implied by
the kinetic equation?

(ii) Is it possible to replace the kinetic equation
by the hydrodynamic equations if our interest is

I

focused only on the long-time behavior of solutions
to the kinetic equat;ion? What is the error that we
make by the replacement? What are the kinetic
coefficients in the hydrodynamic equations?

(iii) Is it possible to derive the kinetic equation
from a more microscopic view of the system con-
sidered, for example, from the Hamiltonian dy-
namics of the particle composing the system?
What error we make by replacing the Hamilton
dynamics by the kinetic equation?

We shall refer to (i) as the problem of the com-
patibility of the kinetic theory with thermodynam-
ics, to (ii) as the problem of the compatibility of
the kinetic theory with hydrodynamics, and to (iii}
as the problem of the compatibility of the Hamil-
tonian dynamics with the kinetic theory.

All three problems were extensively studied for
the Boltzmann equation (1.1), none of them is,
however, solved completely. The results relevant
to problem (i) are summed up in four theorems in

Sec. II. These results strongly indicate the
existence of the approach to equilibrium but do
not constitute its formal proof [for example, even
the problem of the existence of solutions to (1.1)
remains open' ]. The thermodynamic equation of
state implied by (1.1) is the thermodynamic equa-
tion of state of an ideal gas. The problem (ii) is

22 1295 1980The American Physical Society



&296 MIROSLAV GRMELA AND LEOPOLDO S. GARCIA-COLIN 22

usually approached by the Enskog-Chapman meth-

od. Again, a complete answer to the questions
(ii) is lacking. Comparison of the theoretical re-
sults obtained in the study of (i) and (ii) with the
experimental observations indicate that the dilute
gases constitute the range of validity of the goltz-
mann equation (1.1); i.e. , for dilute gases the ex-
perimental results well agree with theoretic re-
sults. There are many partial results to problem

I

(iii).~'4 A complete formal derivation is, however,
again missing. In order to increase the range of

validity of the Boltzmann equation, Enskog' has
suggested a modification of (1.1), namely,

~g
——It(f),Bf

where

N

d((j)= —v fry f dpfdifdrrr(r)r&&[i)(p-r —rdK)r(n;i j, r, p)f( v rj)f(('v, ', vj)

—5(P —r+e, jx)x(s;i,j, r, P)f (r, v, i)f (P, jjjj)] . (1.2)

Comparing (1.2) and (1.1) we see that if }t-=1 and

the terms proportional to q ~&, k ~3 are neglected
then (1.2) reduces to (1.1). The Enskog modifica-

tion takes into account the topological constraints
during binary collisions due to the finiteness of the

diameter of particles, and through the function g
the existence of correlations among particles.

In the original Enskog theory, the function X is
chosen to be the equilibrium pair distribution func-

tion for a uniform system evaluated at the density

(r +p)/2. By studying problem (ii) Barajas et al. 6

observed that with this choice of X the Enskog
equation (1.2) is not, in general, compatible with

hydrodynamics. van Beijeren and Ernst proposed
a "modified" Enskog equation in which X is the

equilibrium pair distribution function for a system
of spatially nonuniform composition. Rhsibois+~
then considered also problem (i) for the modified

Enskog equation and proved the H theorem for this
equation [Theorem III.4 in our list of results that

are relevant to problem (ii); see Sec. II]. Problem

(iii) is considered in Refs. V-ll.
Qur objective in this paper is to consider

problem (i) in the context of the Eq. (1.2) in which

the functions y are considered to be arbitrary.
More precisely, we want to prove the four results
that are introduced in Sec. II and that are known to
indicate the compatibility of the Qoltzmann kinetic
theory with thermodynamics for (1.2) with arbit-
trary X. Qur results imply that these four theo-
rems can be proved provided the functions y are
not completely arbitrary. The choice of X is re-
stricted by requiring that the functions X satisfy
a compatibility condition. This condition also
shows how X enters into the thermodynamic equa-
tion of state implied by (1.2). The modified Enskog
equation ' ' represents one example for which the
compatibility condition is satisfied. In the context
of this equation, our Theorem III.4 extends the
Rhsibois H theorem 9 to the N-component gas.
The other three theorems that allow, for example,

to identify the entropy production, constitute addi-
tion results relevant to the problem of the com-
patibility of the modified Enskog equation with

thermodynamics. Qur results in this paper extend

therefore the results obtained in Refs. 8 and 9 and

also the results in Refs. 10, 12 and 13, where
some of the theorems were proved for Eq. (1.2),
in which the terms proportional to q ~&, k ~4 are
neglected. %'e conclude that arguments favoring
one particular Enskog equation or further re-
stricting the class of Enskog equations have to
come from the study of problems (ii) and (iii) and

from the comparison of theoretical and experi-
mental results. An attempt to find the class of
the admissible functions X on the basis of the study
of problem (ii) has been made, in the context of

Eq. (1.2) in which the terms proportional to e ~j,
k ~4 are neglected in Ref. 14. In the context of the
general equation (1.2) the same attempt was made

by pina. ' The results obtained in Refs. 14 and 15
indicate that the requirement of the compatibility
of the Enskog equation (1.2) with hydrodynamics
implies no new compatibility condition. Qnly the
same compatibility condition as that obtained in

this paper arises again.

II. BOLTZMANN EQUATION

The purpose of this section is to explain why the
Boltzmann equation is compatible with thermo-
dynamics. The concept of compatibility introduced
here will retain its meaning also outside the con-
text of the ]3oltzmann equation. The pattern of the

study of the compatibility in this section will be
followed in the next section within the context of

the Enskog equation. A11 results about the solu-
tions of the Boltzmann equation appearing in this
section are well known and will be presented with-

out proofs. In fact, since (1.1) can be considered
as a special case of (1.2), the proofs in Sec. Ill
also represent proofs of the theorems in this sec-
tion.
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A. Definition of the thermodynamic equilibrium states

Boltzmann has shown that the Maxwell distribu-
tion function describing, according to Maxwell, a
thermodynamic equilibrium state in terms of the
one-particle distribution function, is the only
time-independent solution of the Boltzmann equa-
tion that is, moreover, invariant with respect to
the change of the sign of the velocity. We shall
adopt this observation as our definition of the
thermodynamic equilibrium states in kinetic
theory Th.us, if 8f/Bt=6t(f) is our kinetic equa-
tion then the set 5 of the thermodynamic equilib-
rium states is defined by

where $C denotes the set of all admissible states
considered, Jf(r, v, t)=f(r, —v, t}. Itfoll, ows
easily from this definition that $ can be equivalent-
ly obtained as

g ={feX~dV(f)=0, 6t (f)=0, Jf =f),
where

6t(f) =dV(f}+8 (f),
8 (f) = iadt(f) + J6t(~f)) ~

troduce g, ={feR~6t'(f)=0j and g, ={f~36~6t'(f)
=o, ~f=f)

The same definition. of the thermodynamic
equilibrium states is used in the context of non-
equilibrium thermodynamics (see Chap. Ip, para-
graph 3 of Ref. 16). In this context f= (o„.—. . , n„,
p„.. . , p ), &(o„.. . , o„,p„..., p„)= (o, . . . , o„,
—P„.. . , —P }, (n„.. . , a„) are the n variables,
and (P„.. . , P ) are the P variables.

B. Properties of the solutions to the Boltzmann equation

We proceed to find g by solving 4t'(f ) =0 (Theo-
rem D.l} and 8 (f) ~z, =0 (Theorem II.2). The
last two theorems then sum up the properties of
the solutions to the Boltzmann equation indicating
that the thermodynamic equilibrium states are
approached as the time goes to infinity.

Theorem II.1. Let S be defined as follows:

I

, $= dr dv rv i ln rv i —1 +Q n,j=i 0

(2.1)

where Q(n) is an arbitrary function of n(r, i ). Then

We observe that in the case of the Boltzmann
equation 4t (f) = —v, (B/8r )f and 6t'(f) is the
Boltzmann collision operator. We shall also in-

dS &0dt, ,
and the equality in (2.2) holds if and only if

(2.2}

fag, ,

g, ={fe36~6V(f) =0)={feX~lnf(r, v, i) =I nn(r, i)+ ts ,'-m, b v-2+c m,vt;

5 and c are arbitrary functions of r and independent
of v and i, ot is determined by requiring n(r, i)
= fdvf (r, v, 5}. By dS/dt ~, we denote the change in
time of S if only 8,' governs the time evolution.

The problem 5V(f) ~~, = 0 can be written as h .
=c,=const and M)/6n(r, i) =0, where

drn r, i inn r, i —1
j= o

N

ci ——,
' d r dv~+

=i o

We observe that W~z, =U and the solutions to the
problem of finding the thermodynamic equilibrium
states g [i.e. , the solutions to 5V(f) =0, 8, (f) ~~
=0, and Jf=f subject to the boundary conditions
(2.4)J are equivalent to the solutions of

+ g&t, + C2i

c, (i) =f„dr fdvf (r, v, i) and o2(i) are constants
entering the boundary conditions

lnf (r, v, i) (,„=c2(i)+st ——,'c,m,v2.

The function 'U extends to a function
N

W= S+vie, + p c2(i)c2(i),j=i
where S is defined in (2.1) with Q(n) -=0 and

(2.3)

(2.4)

(2.5)

5Hf 6f=0. (2.6)

We shall sum up the results in the following theo-
rem.

Theorem II.2. Let Q(n) =—0. Then the solutions
to the problem 6t'(f)=0, dt (f)~z —0, f=Jf
subject to the boundary conditions (2.4) are
equivalent to the solutions of (2.6).

The next problem is to prove that the thermodynam-
ic equilibrium states are indeed approached as the
time goes to infinity. In the context of this prob-
lem we mention two theorem'.
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Theorem II.3. Let Q(n) —= 0. Moreover, let
fo{f',v, i) =so(i) exp(& -—,

'
c, mv 2) be a thermodynam-

ic equilibrium state such that so(i) is independent
of r. Let A=D Wl&0 (i.e., A is equal to the second
derivative of W with respect to f evaluated at fo).
Thus, W= W& +(y, Ay)+O(((()~), f(r, v, i)=
fo(v, i)[1+y( rv, i)], and (, ) denotes the L&
inner product, i.e. , (V), [))) = J„drfdvy(r, v)[))(r, v).
Note that A is a positive definite operator. Let P
denote the linear part of [)I (the linearization around

fo}, and let P' denote the linear parts of (R'. Then
P' is formally self-adjoint and dissipative with re-
spect to the inner product (., A. ) (i,e., (y, AP'(([))
«0 for all (p in the domain of P'), and P is for-
mally skew-adjoint with respect to the same inner
product (., A. ).

Theorem II.4. Let Q(s) =-0. Then

equilibrium states and in the study of the approach
to the thermodynamic equilibrium states as the
time goes to infinity. If the kinetic equation is
given then W is determined (up to a multiplicative
and additive constant) by requiring (1) dW/dt «0,
(2) ~=[f« l@(f)=o &f =f)=[f« l~w/&f=0,
Zf =f), and (3) W(f ) = W(Jf ). The thermodynamic
equation of state implied by (I.l) is obtained as
follows. We introduce

(2.8)

where ks is the Boltzmann constant and m is the
volume of . We observe that e„,2 becomes a
function of c& and c2(i), i =1,. . . , N. Moreover, a
direct calculation implies

ding'dt «0. (2.7)

The equality in (2.7} holds if and only if fe (g, .
Theorem II.3 implies the approach to the thermo-

dynamic equilibrium state fo, provided the time
evolution is governed by the linearized operator
P and provided suitable boundary conditions allow
upgrading of the formal self-adjointness and the
formal skew-adjointness to self-adjointness and
skew-adjointness. " Theorem II.4 is the familiar
Boltzmann H theorem for the Boltzmann equation
that was proved already by Boltzmann. ' Notice
that the functional W is introduced in (2.5) as a
linear combination of (N+1), constants of motion
[dc&/dt=0, dc, (i)/dt=0, i =1, . . . , N], and the
Boltzmann H function.

C. The thermodynamic equation of state implied by the
Boltzmann equation

The functional g has appeared in the previous
paragraph in the study of the thermodynamic

The physical meaning of f implies the meaning of
(ks/&o)c, l~ (energy density), and (ks/&o)c, (i) l~
(mass density of ith component). The relation
(2.9) between c„,~ and o„c2(i),i = 1, . . . , N is the
thermodynamic equation of state implied by (1.1)
(ideal-gas thermodynamic equation of state) pro-
vided c&

——1/T; T is the temperature c2(i) = —p, /T,
p, , is the chemical potential of the ith component

o„,2 P/T, and P——is the pressure.
In the rest of this paper, we replace (1.1) by

(1.2} and we keep the definition of the thermo-
dynamic equilibrium states introduced in Sec. IIA
unchanged. We keep the construction of the ther-
modynamic equation of state introduced in Sec.
IIC [see (2.8)] unchanged, and we prove the four
theorems introduced in Sec. II B. This considera-
tion of the compatibility of a kinetic equation with
the thermodynamics has been already introduced
in Ref. 13.

IH. ENSKOG EQUATION

We shall now replace the Boltzmann equation (1.1) by the Enskog equation (1.2) and prove the four theo-
rems introduced in the previous section. We observe that

()'(f)= —,'I JdPfd Jdiy[d()) —8( y)]ed[)(P — —eggd)X-(;(, ), , P)f(, v', ()f(di), ',
)~i

—5 (p —r +e,~ )(:)X(s,i,j, n, p)f (r, v, i)f (p, v,j }]

dp dv day8 y»x n i j r p 6 —r-& &z +5 —r+&»]c)

x [f(r, v', i)f (p, v', j) f (r;v, i}f(p, v,j )], —

8 (f)=—V d f+ —'g f dPfd f d ya )((d;i)d, , Pd)()(P- —add)

x[f(r, v', i)f (p, v', j) +f (r, v, i)f (p, v, j)] .

(3.1)

(3.2)
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It follows from the properties of the transforma-
tions (v, v)-(v', v') that the solutions of 61'(f) =0
consist of functions lnf (r, v, i) = Inn(r, i ) + Ot

Q 0 f~)+ + ~gv o where ci and c are constants
and st is determined by Jdv f=n(r, i}. In the pre-
vious section oi and c could depend on r. In order
to show that there are no other solutions to ((dt'(f)
=0 we prove the following theorem.

Theorem III.I. Let S be defined as in Eq. (2.1)
and g(s, i,j, r, p) are positive for all i,j, r, p, and
symmetric with respect to the interchange of i,j
and r, p.

Then

dS/dt i, c 0 (3 3)

and the equality in (3.3) holds if and only if fe f, ,
where g, =(feX (dt'(f)=0). The set g, is identi-

cal to feX which are solutions to f(r, v', i)f(p, v',j)
=f(r, v, i)f (p, vj ) for all i j, r, p = r ~a,&Pc, ) z ~

= 1,
and v, v such that (v —(() )z &0. Thus g, is com-
posed of feX such that Inf(r, v, i) =I nn(r, i)

is determined by requiring s(r i) = jdv f (r, v, i).
Proof. We note first that +,f„drfdv q (r, i)Q'(f)

= 0 (it is also true that P,.,j„drjdv (p(r, i)6'�(f)
=0), where (p is an arbitrary function independent
of v and Rs(f) is the second term on the right-
hand side of (2.2). Thus

=Tj dr jdv(dy'(r, v, ()(('y). (d.d)dt

Two subsequent transformations p —r, v= v,
i =j, tc ——)(,', and (v, v) = (v', v'), z = —~ on the
right-hand side of (8.4) lead to

x [5(p —r-~,p) +5(p—r+q, p)] ln f(r, v, i)f(p, ~,f)

x[f (r, v', i)f (p, v', j) f(r, v, i-)f(p, vj)]. (3.5)

It should be stressed that g, associated with the
Eoltzmann equation (the set of the local equilibrium
states) and g, associated with the Enskog equations
are different. The latter is much smaller (since
Oi and c are constants, not arbitrary functions of
r as in the case of the Boltzmann equation). It can
be seen immediately from (3.5) that dS/dt l,(f) as
well as dt'(f }for

f (r, v, i) =s(r, i) exp(- —,'cpm@2 + mp c,),
where ei and c depend on r, are not in general
equal to zero. The appearance of the smaller g,
in the context of the Enskog equation is a conse-
quence of the nonlocality of collisions introduced in.

the Enskog theoxy.
Theorem III.2. Let Q(s) introduced in (2.1) be

related to y(e;i,j, r, p) by

I

Theorem III.1.
Then the solutions to the problem

fF S„where g, =[felf, If =~f),
dt (f)(g, =0,

subject to the boundary conditions

& 8/5f (r, v, i ) = 0, (3.8}

W= S +c&c& +g c&(i)c2(i),
f ~i

[lnf (r, v, i) —5Q/5n(r, i)] (» ——c2 (i) + st- ,'c,m c'.—

c&, c2(i) and i=1, . .. , N are constants, thus the
thermodynamic equilibrium states according to the
definition in Sec. Q, are equivalent to the solutions
of

x t&y(p(d —r(d)'x(s;i, j, r, p)e(p,j ) ci —
~x dr dve~ng& f r, v, t, (8.9}

and g(i,j, r, p) satisfy the conditions introduced in d~(i)=j d jdvf(r, i, i).
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Thus

d( (f)~v = —v, P, (n(r i)+ I; J dPf dnn(P(), r ——rvr)mr(n i jrP, )n(P j))I=i o

=-v 8 ln r, i + dpi' p —r -e,
&

—r,&x n;i, j, r, p n, j =0.
g~ 1 0

If (3.6) is satisfied then

5'0/5n(r, i) =0=5I (f) ~e
——0,

where

(3.11)

(3.12)
N N

drs(r, i)[1ns(r, i) —1] +Q(s)+ [o2(i)+m]c, (i).
i~1 0

We extend now the function V defined only on $, into the function W defined on 3C such that W~e, = u and

the solutions to 5W/5f=0 are equivalent to (3.7). The function W introduced in (3.9) is clearly such a
function.

Theorem 1II.3. Let (3.6) be satisfied and

X(s;i,j, r, p) are positive and symmetric with re-
spect to the interchange of i,j and r, p. Moreover,
let fo(r, v, i) =so(i) exp(- —,'o&m~v2) be an equilibrium
state [ i.e. , the solution to (3.7} or equivalently to
(3.8)], such that no(i) is independent of r and A
=D W~z (i.e., the second derivative of Wwith
respect to f evaluated at fo) is a positive definite
operator. Thus W= W&+ ((p, A((())+0((ps), where
Wp —W~g f(r, v, i) =f0(r, v, i)[1 + (i)(r, v, i)], and

(, ) denotes the L2 inner product (see Theorem
II.3). In view of the thermodynamic interpretation
of W~e, the requirement that A is positive definite
implies that fa is thermodynamically stable. We
shall denote by P the linear part of 8, (the lin-
earization around fo), and P' is the linear part of

Then P' is formally self-adjoint and dissipative
with respect to the inner product (., A.} [i.e,

(y, AP'dp) ~ 0 for all ((() in the domain of P'], and
P is formally skew-adjoint with respect to the
same inner product (.,A.).

Proof. We observe that

A((()(r, v, i) =A&(I()(r, v, i) +A, q)(r, v, i),
where

(3.13)

A&(p(r, v, i) =f(,(r, v, i)p(r, v, i),

drp(r, v, i)=g dpf did(i j, r, p, r, v)p(pvj), ,

(2(i j,r, v, v) =fo(v, i)fo(vj )5 Q/5s(r, i)5s(p, j) ~&
.

By following the proof of Theorem QJ.1 one finds
easily that AP ' is formally self-adjoint and dissi-
pative with respect to the inner product (, ).
The operator A2 does not invalidate the discussion.
We shall proceed to prove that AP is formally
skew-adj oint:

P dp(r, v, i) =P
& y(r, v, i) + P2 y(r, v, i),

P, ((pr, v, i)= —v 8,(p(r, v, i),

P2 d(()(r, v, i) = (P2$+ P22+ P2$+ P24)l(()(r, v, i),
N

P»v(r, r, i) '; dp f d f=dnrn(p —r —rvn)fr( J)r vxp(n;i jp)v(rv, i), , , ,
n

P22(p(rr v, i) = dp dv day5(p —r- I )ufo(sv, j)e,& X~(n;ipj, r, p)((()(pr v,j),
4=i a

i rrv(, r, i) =,'- f dp f dv f dnp II (p
—r —r »K)f~(vr)rv rr (n; i rrp)i (rv,i), , ,

f~ 0
N N

Prri(r, v, i)=,'- f dP Jdn Jdif d fdnfrrn(j)fr(wl), ,
a

(3.14)

x 5(p —r-e ~&Tc)e~&5)t(s;ipjp r, p)/5s(Rrh) ~& p(R)wph).
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By }f0(n;i,j, r, p) we have denoted }t(rl;i,j, r, p) . Now
0

AP = (Al+A2)(Pl +P2)=A(Pl +A) P2 +A2 Pl (3.15)
)

(note that A2P2 (P=-0). By a straightforward verification we show that A&P, , A&P2&, A&P22 are separately
formally skew-adjoint operators. &t remains to prove that A,P23+A, P24+A2P, is a formally skew-adjoint
operator. To do so we shall differentiate (3.6) with respect to n(p, j). This yields

8 62
. =Bi +B2Br Bs(r, i)6n(p, j)

where

(3.16)

2=6(I PI ~u~u( p )&0("' »»p)
S

B2a= dR5 r —R —
e&~ e&~ r —R

&

' '. ' n R &
0

lk lk (d (d ) y 0

Writing explicitly ()I), A2P2 dp), we have

(pdr p; p)= dr dp dv d P(r, v i)f (v i)fr(p j) p
r.

p
. —v, r p(p i j))

f= ~ 0 0 tlir Z tt)Id» lr p~
0

dr dp dv dv
p v $

p v,j v r, v, i y, v,j . . . 3.1V

~ ~

~ ~ ~ ~

~ ~ ~ ~

0 0 Bp, Bs r, i Bn,j
The second equality in (3.17) is obtained by integrating by parts. By using (3.16) we can write (3.17) as

())'p A2 P l dp) = (Pp Cl dp) + (g, C2dp), (3.18)

where
N

(p, C,i)= f drf dpf dvf dif, (vi)fr(ij), ,
0' 0

xs p(r, v, i)dp(P, )'pj)6(Ir —pI-au)e, &(r~ —p~)xo(i j,r, p)
N N N

{p,crp)=I I f drf dpf dRf dvf dvfr(v, i)dr(pi)
i=i =i A=i 0 0 0

x 6(IP-Rl &l)&la(p-It )I B—„I-' '
i yp

(3.19)

Straightforward verification shows that (A,P,3+ C,)
and (A&P2l + C2) are separately formally skew-
adjoint operators. We have thus proved that AP
is a formally skew-adjoint operator with respect
to the inner product (, ), thus identically that P
is a formally skew-adjoint operator with respect
to the inner product (., A.}.

The three previous theorems imply that dW/dt
~ 0 provided the time evolution is governed only
by the linearized Enskog kinetic equation Bp/Bt
=Py and the terms proportional to y~, k ~3 are
neglected. It can be proved, however that, dW/
dt~ 0 provided only (3.6} is satisfied and X(i,j, r, p)

are positive and symmetric under the interchange
of i,j and r, p. The following theorem and its proof
is a straightforward generalization of the theorem
of Rhsibois. e

Theorem III.4. Let (3.6) be satisfied, and

X(rl;i,j,r, p) are positive and symmetric under
the interchange of i,j and r, p.

Then

dW/dt~ 0.
The equality in (3.19) holds if and only if fEg, .
The function W is defined in (3.9) and (II, is intro-
duced in Theorem IQ.1.

Proof. It is clear that dc&/dt=0, dc2(i)/dt=0, and i =I, . . . , N. It remains to show that dS/dt~ 0. We
write S= SO+@, where So ——Ql &f„drfdvf(r, v, i}[lnf(r, v, i) —I]:

dS OS' ) 5Q, ', d)(f))+ —, , — .a.f), (3.30)
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( o 61(f)b

=I I; f dr f dpf dvf dif dr pi(r))pf(r, v, i)[p(p —r —r Kp)fpi(p;i j, r, p)f(r, v', i)f(p, 'i),
j i g i 0

—5(p —r +e,&K)e,& X(n; i j, r, p)f(r, v, i)f(p, v j)] .
(3.21)

The first term is rewritten by using the transformations (v, I ) (v', v') and x —x. Both terms are then
~ ~rewritten by using the transformations v- v, p- r, i-j, and z- —e. Vfe obtain

N N

P((f) ~=,'-I dr f d'P f dv f dv f drre(V)P(P —r vrpK)8rrx(P i jr P)f(r v i)f(Pv i)
i &=s ~ n o

f(r, v', i)f(p, v', j)
f(f', v, i)f(p, v,i) ' (3.22)

Following Rhsibois, we shall use the inequality x ln(y/x) (y —x for positive x and y; the equality holds if
and only if x =y. Vfe thus obtain

N N

d((f)), dr dp dv dl d~y8 y, & X n i j r p 5 —r+q& a
i~ n 0 Q

x [f(r, v', i)f(p, v',j ) —f(r, v, i)f (p, vj )]
N N

dr f p d(~pP—r~ —r jrlrp(p, —v, )r(p( f, rp)p(r r')( dvr f(pvf) (. ,
4 ni 1~i 0 0 ]

The second term on the right-hand side of (3.20) becomes

(3.23)

(—,—v, r,f)= g g J drf drf di . (-v, f(p, v j))

dp . dvv ~,v,j (3.24)

It follows from (3.6) that dS/dt ~0 and the equality holds if and only if fag, . It should be stressed that
Theorem III.4 does not imply Theorem III.1. In the case of the Boltzmann equation the Theorems II.1 and
and II.4 are just trivial reformulations of each other.

IV. A PARTICULAR FORM OF THE COMPATIBILITY
CONDITION (3.6)

The starting point of this paper is Eq. (1.2),
where )t(n;i,j,r, p) is considered as the phenom-
enological input. Vfe have found that in order for
(1.2) to possess the important properties that in-
dicates the compatibility of the dynamical theory
based on (1.2) with thermodynamics, the choice of

X must be restricted by the requirements that

X &0; X is symmetric with respect to the inter-
change of i,j and r, p, and by the compatibility
condition to be satisfied Eq. (3.6). In this section,
we shall restrict the choice of X by some addi-
tional ud ho~ assumptions and observe what the
compatibility condition (3.6) tells us in this par-
ticular case.

We shall assume that X(n;i,j,r, p) depends only
on (Rnid)f, i=1, . . . , N [and not, for example, on
6/ar n(r, i)], R,&

——r+ad&j, and l=p-r. The
constants a&f, (i =1,;,N) remain unspecified.

N

()(p) =g dr p(r, p):-', (4.2)

Similarly, we assume that Q(n) = f„dr@(n; r),
where Q(n; r) depends only on n(r, i) (i =1,. . . , N)
Moreover, we shall assume q,&

-q, where & is a
small parameter. Only the terms up to and in-
cluding &3 will be considered. Under these as-
sumptions the compatibility condition (3.6) takes
the form

N N4~, I a -. -. , ap(r, j) vp(r, i) r' p(r, p)p, r)Btp at'
N

'Q gf 3 n(r j) (4 I)
i e

where )to depends only on n(r, i), i =1,. . . , N, g+= 5X/5n(r, tt) ~, [the symbol ~, means evaluated at
n (r, i), i =1, . . . , N], and Q,",

&

——52Q/5n (r, i)5n(r, j)~,.
It is convenient now to represent the functional Q
in the form
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where "~=5 "/5n{r, k); " is anarbitrary functional
of n(r, i), i = I, .. . , ¹ Eq. (4.1) then implies that

X(s'lpJ)= 2~)J (4.8)

provided n&,
—

—,
' for all i,j =1,. . . , N, =,"~ =5:-/

5s(r, i)5s(r,j). Eq. (4.2) then implies, for example
that,

(4.4)

theorems can also be proved independently. In
fact, Theorems QI.I-III.S have been proved in

Ref. 13 and the fourth theorem has been discussed
in Refs, 10 and 18. The condition (4.3) appeared in
Ref 13. in a way analogous as (3.6) appeared in this
paper.

Finally, we point out once again that if Q(n) is
known then the thermodynamic equation of state is
known [see {2.1), (3.9), (2.8}, and (2.9)]

%e can now imagine that we repeat the discussion
of Secs. II and 111 for 6t(f) defined by neglecting in
the Enskog equations the terms proportional to
&~, 4~4. It follows from the results of Sec. III that
all four theorems must be true. The corresponding

1

AST w ~'& y' '''ksT'kBT
where k~ is the Boltzmann constant, p is the pres-
sure, p, , is the chemical potential of the ith com-
yonent, T is the tempexature, eo is the volume

N is determined by

and n~ is the solution of

kg+ It+ g kpT
5s(r, ()) =0(i =1, .. . , Ã).

We note that, for example, in the case of the one-component system, the van der Waals correction, due to
the hard-core potential, to the ideal-gas equation of state is reproduced if we choose X(s) = (1 —Bn) ~,

B=f re~. Then ='(s)=- ln(1 -Be) according to (4.3) and P/ke 7 =a+Be/(I -Be).

V. DISCUSSION

In the first part of this section, we shall discuss
the physical meaning of the compatibility condition
(3.6). The second part will be then devoted to the
discussion of the balance of entropy and to our
answers to some questions asked by Bbsibois in
See. 4 of Ref. 9.

(i) We have shown that if (1.2} is accepted as an
empirical equation governing the time evolution of
fluid with the quantities X representing the phe-
nomenological quantities (to be determined by
comparing theoretical predictions with observa-
tions), then (1.2) is compatible with thermody-
namics provided (3.6) is satisfied, X&0, and X is
symmetric with respect to the interchange of i,j
and r, p. The physical meaning of (3.6) is there-
fore determined by the clear physical meaning of
its consequences (the results contained in the four
theorems). The relations (8.6) show how the func-
tions X entering (1.2) phenomenologically appear in
the entropy functional associated with (1.2) and
consequently also in the thermodynamic equation of
state implied by (1.2).

(ii) Haveche and Green in Ref. 18 have found a

general condition restricting the choice of possible
truncations in the avon, Born, and Green hier-
archy. Their condition applied to our case says
that the curl of the right-hand side of (8.6) equals
zero. Because clearly the curl of the left-hand
side of {8.6) equal zero, the Haveche-Green condi-
tion is satisfied provided (3.6) is satisfied. The
physical arguments associated with the Baveche-
Green condition can be thus associated also with
(8.6).

(iii} Our results are independent of a particular
choice of a scheme of modifications of the Liouvtlle
equation that can be shown to lead to (1.2). Many
such schemes have been proposed. We mention the
elegant schema due to Grad (see, e.g. , Hef. 10) or
the schema proposed by 84sibois. ~ 9 An insight
into the physical meaning of (3.6) can be obtained
by putting (8.6) into the context of the chosen
schema. If we choose the Besibois schema then
(8.6) will correspond to his equation (25b) that, as
he says, &simitates for our particular nonequilibri-
um ensemble, the well-known equilibrium hier-
archy for hard spheres.

At the end of Ref. 9 Resibois raises the ques-
tion as to whether the balance of the entropy as-
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sociated with the Enskog equation can be written in
the form S= f„drs(r, t):

as(r t) 3
J's (r, t)+o(r, t), (5.1)Br

where o(r, t) & 0 is the local entropy production and

Js is the entropy flux. Qn the basis of the result
proved by Hhsibois (Theorem 111.4 in our paper is
the generalization of Rhsibois's result in the case
ofN-component fluid), it follows only that dS/dt & 0
[provided his equation (25b), or in our case (3.6),
is satisfied]. We have obtained

ds ds ds+
dt dt dt

where

dS - 5$
v5f(f: -) 6t (f)

and

dS 5$dr dv f~ 6t'(f).

The Theorem Qg. l implies

ds &pdt,
where the equality holds if and only if fr $,. The
Theorem III.3 implies dS/dt~ =0 [provided (3.6)
is satisfied] if the time evolution is governed by
the linearized Enskog equation and the terms pro-
portional to p (k~3) are neglected. We can there-

fore suggest in this case the following identifica-
tion:

dS
dry (r, t)dt

and

dr Js (r, t) =0.dS 8

Fo

Thus, 8;(f) enters oddly into the entropy produc-
tion and dt (f) only into the entropy flux. In gen-
eral, however, dS/dt

~
c 0 [provided (3.6) is

satisfied] and the equality holds if and only if
fr 8,. This statement is proved by following
exactly the proof of Theorem 111.4 where $,(f) is
replaced by 6t (f). It is therefore impossible to
identify dS/dt~ with —jodr(3/3r )Js (r, t) [since
fodr(5/Br, )Js (r, t) =0 provided appropriate
boundary conditions are assumed] in the case of
the nonlinear Enskog equation and thus the de-
composition of dS/dt suggested in (5.1) remains
unclear.
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