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Instability of large-amplitnde electromagnetic waves in plasmas
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Electromagnetic sawtooth waves, supposedly generated in pulsar environments, have been the subject of
numerous publications. These waves are of such magnitude as to drive all plasma particles with relativistic

velocities. We show analytically that such waves are subject to fast instabilities that destroy them in a time

comparable to the oscillation period. They are stabilized in the presence of a strong magnetic fie)d.

Electromagnetic waves in unmagnetized plasmas
are known to be subject to parametric instabilities
which cause backscattering or filamentation of
these waves. ' Here we investigate waves at suffi-
ciently large amplitude as to drive the particles
with relativistic velocities. "' A very simple cal-
culation shows that these waves have growth rates
of the order of the oscillation period. Such waves
are believed to exist in pulsar environments, 4 and

possibly in future laser-plasma fusion experi-
ments.

We consider the perpendicular propagation of an
electromagnetic plane wave in a magnetized plasma
with some phase velocity v,h& c. It is useful to
study such a wave in a Lorentz frame moving with

velocity c'/v, h, where spatial dependence, as well
as the wave magnetic field, has been transformed
away. For linearly polarized strong waves, a
solution exists which describes an electric field
with a sawtooth-shaped time dependence and rela-
tivistic ions and electrons with velocities re-
sembling a square wave."' The electric field
and the velocities are parallel to the magnetic
field. The characteristic frequency of the sawtooth
wave is &u„=e&u~,/2y', ~'

(&o~, and y, are defined be-
low). It was assumed that the plasma velocity is
zero in the absence of the wave in this Lorentz
frame, a condition satisfied for the large-ampli-
tude sawtooth wave. '

We consider now a Weibel-type electromagnetic
instability, ' with a k vector defining the x direction
perpendicular to the electron and ion velocities
(respectively V and V') in the direction of the am-
bient magnetic field B,=B,1„. This is driven by
current pinching arising from the mutual attrac-
tion of parallel currents.

For each particle species we write the velocity
as u = V+ v where v is a small linear perturbation.
The electric field E,=E +E,E is the wave field
and E is the perturbed electric field; y is the rela-
tivistic Lorentz factor y=(1 —V'/c'} '~'. Each
small quantity is Fourier analyzed-with exp[i(mf
+k x)]. From the equation of motion

—= q(E, + u h B)= q(E ~
——u &(k +E) + u + BJ . (1)

One finds after linearization

i~ v+y V, =+ E ——V E k+v+Bo, 2c' m

where in the linearized expression for p, the
terms y'[(V ~ v)/c' ]sV/st and vay/st are much

smaller than &uy'[(V v)/c'] V (if one assumes that

V ~ ve0}. The dot product of this equation with k
can be used in the continuity equation ~+Nk ~ v= 0

(N is the number density and n the perturbed par-
ticle density) for each species to obtain

(d~i ieN
&un;+

" (n, -n;)+ k'V' ~ E

, (E, — 'B,}= 3}0

&p ieN
(n, -n&) — k2V E

m(u'y,

", (E— 'B) =D, , 4}
My +

where M, m are the ion and electron masses, re-
spectively, co~,. and ~~, are the ionic and electronic
plasma frequencies, ~„. and (d„are the signed
ionic and electronic relativistic cyclotron frequen-
cies. Poisson's equation

ik E=(e/e, )(n; -n, )

has been used. One calculates now n, and n, from
Eqs. (3) and (4), v, and v, from Eq. (2} and com-
bines it with the linearized wave equation

, —V E = -i &u poe [N(v, -v, )-n,V + n, V ']
(6)

to obtain the dispersion relation

yAA, +aA+CA, +& =0,
where
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(1) Zero magnetic field. The dispersion relation
reduces to

&g4(02+ k~c2+A~)+ ~2Am(A2+ k~cm)

+ k'(co~2&o~, /y, y, )(V'- V )'= 0. (8)

For large values of k this becomes a biquadratic,
with purely imaginary frequencies signifying a
purely growing, absolutely unstable wave,

(d'=& A'- A'+4

For an ionic electronic plasma, the growth rate
I' of the instability is of the order

(10)

This is comparable to the main wave frequencies
given earlier. For an electronic positronic plas-
ma, it becomes

2(d~ 1I'2~ ' 1 — + ~ ~ '
y 2y'

where l is the instantaneous growth rate. To get
the mean growth rate we average over one period.
For large y, neglecting intervals of the period
where y is small, we obtain (F) = 1.41' (ui„ is
the frequency of the large-amplitude wave). This
value of the growth rate is the one to be compared
with the numerical result given by Romeiras' I'„
=1.46&v (see Fig. 20, curve C, of Ref. 7). This
good agreement between analytical and numerical
results reinforces the validity of our treatment.
For circulary polarized waves the same instability
yields the same growth rate. This case has been
recently investigated by Lee and Lerche. '

(2) Finite magnetic field. The full dispersion
relation (7) has to be considered. In the limit of
very large k, we are left with k c'D+ C = 0. Then
for the growth rate of instability,

I = 2 g ++~i —
g ++ce

4 2 ( y y )2 &/2

'Yi'Y k & ) „

In the case of an electronic positronic plasma,

I'= 2(u~/y, —&u,', .

(i2)

In both cases the stabilizing role of the magnetic
field is obvious. Of course we did expect this re-
sult from the physical behavior of the plasma.
The instability due to pinching of parallel currents
is prevented by the magnetic field. These results
may give us indications. about the effective pres-
ence or absence of the large-amplitude wave in
the pulsar magnetospheres. '
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