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A system with a chemical reaction behaves like a system with a smaller number of components which, in turn,

results in growth of the critical indices.

I. INTRODUCTION

A great deal of progress has been made recently
towards the understanding of critical phenomena.

The universality theory describes the factors that

determine a critical behavior and classifies dif-
ferent phase transitions, while the renormaliza-
tion-group theory allows one to calculate critical
indices for different cases.

The situation, however, becomes more compli-
cated when one compares theoretical predictions
with experiment. The theory predicts different
critical indices depending on the thermodynamic

path by which the critical point is approached.
Theoretical calculations assume the constancy
of some intensive variables, say, the pressure P
or the chemical potential p, , while in practice it
is impossible, for example, to ensure the con-
stancy of p (one has to vary the concentration
during the course of the experiment). Similarly,
P remains practically unchanged near the liquid-

liquid (consolution) critical points because the ex-
periment is carried out in the presence of satur-
ated vapor. On the other hand, it is quite difficult
to ensure constancy of P near the liquid-gas crit-
ical point where a Quid is highly compressible.

Moreover, there are different factors in real
experiments perturbing the "ideal" behavior con-
sidered in a theory. All these factors influence

differently the critical behavior. Impurities in

Quids, for example, do not change the critical
behavior of a Quid, and affect only the values of
the critical indices, while in solids impurities are
"frozen" and, in principle, they destroy a phase
transition. A uniform magnetic field eliminates
the ferromagnetic phase transition but does not

destroy the phase transitions in antiferromagnet-
ics, etc.

In order to compare theoretical calculations for
an ideal system and experimental data obtained on

the "real" objects, Fisher established' the theory

of renormalization of critical indices in the case
when an ideal system is perturbed homogeneously

by some influence which, in turn, is subject to
"constraints. " A typical example is impurities
x added to a pure single-component Quid and con-

strained by the requirement of constancy of the

total number of impurities. The free energy
F (T, h, p, ) depends now not only on the temperature
T and the second intensive parameter h conjugated
to an order parameter (pressure in the case of
fluids, magnetic field for ferromagnetics, etc.}
but also on an additional parameter p. conjugated
to the new extensive variable x (p is the chemical
potential for the case of impurities). In accord-
ance with Ref. 1 for fixed p, , the critical indices
remain the same as in the ideal case. However,
the critical parameters now depend on the variable
p, , and in order to obtain experimentally observable
quantities one has to pass, say, from T(p) to T(r).
As a result of this, the critical indices above and

below a phase-transition point obtain the additional
factor +(I —a) ' where the minus sign refers to
the specific heat at constant volume, the plus sign
relates to all other critical indices, and o' is the
critical index of the specific heat at constant vol-
ume of the ideal system. [The logarithmic depen-
dence and points of singularity of the function
T = T(p} have been considered separately. ']

One has to introduce some assumptions as one

passes from ideal to real critical indices. It would

therefore be interesting to measure the ideal in-
dices directly and also together with the real ones,
as this would enable us to refine the theory of crit-
ical phenomena.

It is the aim of this article te indicate a whole

class of systems where the thermodynamic path
with a variable concentration (constant chemical
potentials) is the only possible way of measure-
ment. Therefore, such measurements will give the
ideal critical indices. This class of objects is a
Quid mixture with chemical reaction(s).
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H. MIXTURE WITH ONE CHEMICAL REACTION

For the thermodynamic description of a system
with a chemical reaction one has to use, in addition
to T and P, say, an extra chemical variable $, .

which determines the progress of the chemical
reaction. For the reaction Zv, M; =0, where M,
are the chemical symbols of the reagents and v,
are the stoichometric coefficients, the changes of
the number N, of the particles of the ith component
during chemical reaction are given by dN, = v,P$.
Therefore the system is characterized by a Gibbs
free energy G whose differential form is

dG = -SdT + V dP+ Q pqdN(

=-SdT+ VdP-Ad), A = —Q vqpq

where p, , is the chemical potential of the ith com-
ponent and A is the affinity of the reaction. '

The affinity A. is the measure of the departure
of a system from the equilibrium as a result of
a chemical reaction. In equilibrium

A(P, T, ~) =0.(
8G!
8$)~ ~

(2)

As one can see from Eq. (1) the reacting system
becomes unstable when the first derivative of the
affinity A with respect to the extent of reaction $
vanishes. Accordingly, the critical point is de-
termined by the following relations:

/'8A i/8 A)!
I 8& v, r ~i8&')v, r

(3)

r 8P) r x=o

») s,&=o

=T- T-
Tc

Cp~ ~0

C vA=o T (4)

If the chemical reaction is frozen the system
considered is a binary mixture with a liquid-gas
critical line. The renormalization of critical in-
dices of such systems has been considered in

As an example, let us consider a binary Quid
mixture && with the isomerization reaction &
Equation(2) determines $ as a function of the ther-
modynamic parameters f = $ (P, T), i.e., the number
of degrees of freedom in a binary mixture with a
chemical reaction is the same as in a pure one-
component Quid. Therefore such a system, ac-
cording to Eqs. (2) and (3), has an isolated critical
point. Thus, the critical indices of this system
are the same as of pure Quid, namely,

Refs. 3 and 4. According to these references

&-a/ (&-a)/8V't
I ~f 8P)

av& (6)
&a/(x-

V~ f g~)
The correspondence between Eqs. (4} and (5) be-
comes obvious from the well-known thermodynam-
ic relation'

I'8( ~

CP, A=O CP g ! A I
hIe )z,s

(6)

where h is the heat of reaction at constant T and
P. In fact, the asymptotic behavior of the left-
hand side (lhs) of Eq. (6) on approaching a critical
point is determined by the second term on the
right-hand side (rhs) of this equation which ac-
cording to Eq. (3) has a singularity at a critical
point, rather than by the first one which has a
weaker singularity there.

Thus, the occurrence of a chemical reaction in
a system under consideration magnifies the critical
indices of the experimentally observable specific
heats (or inverse velocities of sound) compared
to a system with frozen chemical reactions, and
they are changed from o.'/(1- &) and -&/(1 —a) to
-& and -r, respectively. The specific heat at
constant volume, for example, has a weak sin-
gularity at a critical point when a chemical reac-
tion proceeds instead of a finite, although cusped,
behavior in the absence of a chemical reaction.

Unfortunately, we do not know any measurements
of critical indices in systems with a chemical reac-
tion. The possibility exists, for example, of using
the chrome-aluminum catalyst for the mixture
of butene isomers, especially cis-trans mixture.
Equilibrium in this system is achieved very rapid-
ly, and the liquid-gas critical point is located at
430 K and 40 atm. ' Hence one can expect to find
different critical indices from, say, the specific-
heat measurements with and without a chemical
reaction.

An analogous result may be expected for the
mixture of iso- and n-butanols. The solid lines in
Fig. 1 show the experimentally observed' liquid-
gas critical line and the coexistence curves for
this mixture. The isomerization reaction takes
place in the presence of a catalyst. The dotted
line in Fig. 1 indicates the curve of the phase
equilibrium P(T) for this system calculated in
Ref. 7. Measurements of the asymptotic behavior
of the thermodynamic quantities on approaching the
critical point A along the line AB (with a chemical
reaction) and on approaching one of the critical
points on the line 00' along the path x = const (with-
out a chemical reaction} must give different criti-
cal indices.
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FIG. 1. The P-T phase diagram for the isobutanol-n-
butanol system Ief. 6). 00' is the line of the liquid-gas
critical point. The dotted line AB shows the coexistence
curve, calculated in (Ref. 7), for this system, in the
presence of an isomerization reaction.

III. CHEMICAL REACTION IN SOLUTION

(8)

where pp and N, are the chemical potential and

number of particles of solvent, respectively.
As before, let us restrict our consideration to

a mixture of isomers dissolved in some solvent.
Examples of such systems are the aqueous solu-
tion of the mixture of iso- and n-butanol near the
liquid-gas critical points of one of the isomers
and water, or the so-called-Menschutkin reaction
of ethyl iodide and triethylamine near a lower
liquid-liquid critical point of a water-triethylamine
system.

Some characteristic properties of chemical kine-
matics near the critical point for the latter reac-
tion have been found in Ref. 8. Let us note that in
this reaction, as well as in some others, one can
"switch on" the chemical reaction not only by cat-
alysts but also by changes of pressure, because
the chemical reaction constant strongly depends
on the pressure (see, for example, Ref. &).

Without a catalyst, the chemical reaction is fro-

In solutions, a common experimental situation
is that while the solutes undergo various chemical
transformations, the solvent does not participate
in them. We are interested in the inQuence of a
chemical reaction on the critical phenomena in a
solvent-solute system compared with the case of
frozen chemical reaction.

Stability conditions for such a system are con-
sidered in tQe Appendix. By analogy with the pre-
vious section, we find that, in equilibrium,

A (P, T, No) = 0,
and the critical points are the solutions of the
equations

—const.

C &a / (1-e)
P'g'Np V'g'Np

Unlike the liquid-liquid critical point, there are
two renormalizations for the neighborhood of
liquid-gas critical point: the first one when one
passes from the binary to the ternary mixture,
and the second renormalization takes place when

passing from p.p =const to the experimentally ob-
servable situation of N, = const. Accordingly, in
the region of renormalization of the ternary mix-
ture we have

(10)

PyfyP p

Ve f ~ &p

and for Np=const

CP, fyNp

C Vyf ~ Np

&-a / (1-a)

+e/ (1-e)

+a/ (j.-e)

-const.

zen, i.e., in addition to N, =const we have )=const,
while if a chemical reaction takes place, N, =const
(the solvent does not take part in a chemical reac-
tion) and, according to (I), A =0. In other words,
there exists a full plane of P-T-N, phase equilib-
rium with coexistence curves of the types A.B
(Fig. 1) depending on the initial solvent's concen-
tration. Analogously, a considered system with
chemical reactions has a line of critical points
rather than an isolated critical point as in Fig. 1.

Let us consider first the frozen chemical reac-
tion. According to the hypothesis of renormaliza-
tion of critical indices' ("isomorphism of critical
phenomena" in the language of Ref. 4), the sin-
gularities of the thermodynamic quantities in a
ternary mixture gt constant chemical potential

pp of the third component are similar to those of
a binary mixture. Although the liquid-liquid and

liquid-gas critical points are determined from the
same thermodynamic relations (8), one has to dis-
tinguish the behavior of thermodynamic quantities
near these points.

The liquid-liquid critical points hardly depend
on the pressure. In this case, according to Ref.
4, the region of renormalization of critical in-
dices is, in fact, absent, and the thermodynamic
quantities vary as

~, „0- (p,,), c», „,-»(p, )

8P ~~„BP
However, measurements are taken at Np =const

rather than at pp= const. According to renormal-
ization procedure, in the vicinity of the liquid-
liquid critical point one obtains
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On comparing Eqs. (10) and (12), one concludes
that without chemical reaction the cusplike behav-
ior exists for both specific heats near the liquid-
liquid critical points and only for the specific heat
at constant pressure near the liquid-gas critical
point.

Let us turn now to the case where a chemical
reaction takes place. The singularities near the
critical points can be found from the well-known
thermodynamic relations, analogous to (6):

e]li ~(eA '
=C Z —iQ, SO~A=0 PIN&pt 8A)l I 8Zv

P& T& Np X P&Npv f
{13)

l(e~ Ii 8A ~2
C =C

'&8A ) 8T ]V, T, Np V, Np, f

For both types of critical points, the singulari-
ties of thermodynamic quantities in a system with
chemical reaction (4 =0) are determined by the
second term on the right-hand side of Eq. {13).
The factor (8A/8T) in the latter term remains
finite at the critical point, while the second factor
has the asymptotic behavior

-r(l 0)», l
—

l r(u. )-~ {14)
t'8 t.

&aA P, „
and after the renormalization

&a] l (st i&-Cg/(~-fE& T+/ (1-a)

. Therefore for a system with chemical reaction
one obtains from (13) and (15):

C
(svi T-a/ (I -a)P,Np, A P keg) T, NpsA=p

C
~V~ ~e/(~-ei

F,Np, A=P
/S, Nps AeP

(i6)

Hence, by comparing (10) with (16) and (12) with
(16) one can conclude that existence of a chemical
reaction leads to a magnification of singularities
of the specific heat at constant pressure for both
types of critical points [from cusplike behavior
a/(1 —a) to the weak singularity -a/(1- a)]. On
the other hand, the specific heat at constant volume
changes its asymptotic behavior (from constant to
cusp) only near the liquid-gas critical points. One
can, in principle, detect such a magnification ex-
perimentally. Experiments might be slightly
easier near the liquid-liquid critical points, be-

cause these points are usually located near atmos-
pheric pressure and room temperature.

IV. OTHER CHEMICAL REACTIONS

In all the examples considered above, it is pos-
sible to freeze the chemical reaction by using the
dependence on a catalyst or on the pressure of the
constant of chemical reaction, and to compare,
therefore, the critical indices with and without
chemical reaction. There are, however, a vast
number of systems in which a chemical reaction
always takes place, and one expects them to show
magnified critical indices. Let us cite a few exam-
ples.

In the aqueous solution of acetic acid the dimer-
ization reaction {CH,COOH), ~ 2CH, COOH takes
place in both the liquid and the vapor phases. ""
Therefore one should find the magnified critical
indices (13) near the liquid-gas critical points of
these substances.

Solutions of alkaline or alkaline-earth metals
in salts (halogenides, iodides, etc.) or in liquid
ammonia (metal-ammonia solutions) have been
very thoroughly investigated. Liquid-liquid strati-
fication occurs in both systems, and there is a
metal-dielectric transition near the liquid-liquid
critical point. The metal-dielectric transition is
connected, in our opinion, "with the ionization
reaction. Therefore one can apply Eqs. (12) to
the metal- ammonia solution.

There are experimental data, obtained by Bow-
en, '4 concerning the adiabatic velocity of sound
{8P/8V)~sf' in Li-NH, which show no singularity
approaching the critical point. This fact is in
agreement with our Eq. (12). However, there is
no singularity also in the absence of a chemical
reaction [compare Eq. (10) and experimental data"
for nitroethane-iso-octane mixture without chem-
ical reaction]. Experimental data of specific heat
at constant-pressure measurements for metal-
ammonia solutions are given in Ref. 16. They
show a very strange critical index O.V which con-
tradicts both our estimates (12) and (16), 0.15
and -o.15, for a system with and without chemical
reaction, respectively.

In conclusion, we have described a whole class
of systems where a chemical reaction magnifies
the singularities of the thermodynamic quantities
near the critical points. The same consideration
is applicable to other processes with an additional
parameter $, and not only to phase transitions,
for instance, to systems with internal degrees of
freedom or for the glass-formation processes. It
would be interesting to perform an experimental
verification of this phenomenon for the above-men-
tioned or some other systems.
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APPENDIX: ON THE STABILITY OF CHEMICAL EQUILIBRIUM IN SOLUTIONS

The Gibbs free energy G of the studied system has the following form~:
r

dG =-SdT + VdP+ pqdN, =-SdT+VdP+ p~0+Q p(dN)-Ad), A = —Q vqp( (AI)

where v, are stoichiometric coefficients of the
chemical reaction, N, and p, 0 are number of par-
ticles and chemical potential of solvent, N, are
numbers of particles of solutes at zero time, and
p. , (i =1,2, ... , r) are the chemical potentials of
the r components of solute partaking in a chemical
reaction. The extent of reaction $ determining
the numbers of particles taking part in a reaction,
N, =Ni+v, $, is introduced in the last equality in
(Al).

For simplicity let us assume that at zero time
the solute was composed of only one component,
N, e 0, N& = 0 (j =2, 3, . . . , r). Introducing the chem-
ical potential p = p, /m, —p, /m„where m, and m,
are masses of particles, and the concentration'
» =m,Nf,', one can rewrite Eq. (Al) as

I

to

or 8)

~eh] „' &eg]

The first term in the rhs of Eq. (A4) is positive
while in Eq. (AS) it is negative. Let (BA/Bt')~ r,
or (Bp/8»)J, r, tend to zero. Then, as is clear
from Eqs. (A4) and (As) the lhs of these equations
will vanish before either of the derivatives
(Ba/8~), „„(8p,/8»), „vanishes. Therefore,
finally, the stability conditions for a system de-
scribed by Eq. (A2) are

dG =-8dT+ VdP+ p. dh -Ad). (A2)

Using the simple thermodynamic relations

8 p, Bp (BA/8»),' „
8» ~, „a, 8» ~, , (BA/8]}~ „

c

ent

(BA (BA/8»)'

~,„'(8~/8»). .., '

(A4)

(AS)

one can show that the stability conditions reduce

The only difference between (A2) and (Al) is that,
in the former, diffusion instability occurs in
two-component systems, while in the latter occurs
in many-component systems. However, diffusion
can be described as some chemical reaction with
"extent of reaction" $«ff, where $«,f determines
the passage of components from one volume ele-
ment to the other. On the other hand, the chemical
equilibrium is stable with respect to diffusion. '"
Therefore the stability conditions for the system
under consideration could be formulated as a sta-
bility of a ternary system with respect to diffusion
or, equivalently, as a stability of a system with
two simultaneous reactions. It means that for sta-
bilityof asystem, exceptfor conditions (Bp/8»g&, &0
and (L4/8$)~ r, &0, the second-order determinant
of coefficients of Eq. (A2) must be positive, i.e.,

or

c
&0.ep,l

h~ P8 TEA=0

One can show in analogous manner that the crit-
ical point of a system under consideration is de-
termined by

or

8$ „&8$

(8 p, & (8'p't

P, T, A o ~ 2'8A o

8}

The relations (AV) and (A8) must be considered,
for example, in the stability analysis of solution
of weak electrolytes, metal-ammonium solution,
molten salts, etc. , where the "ionization reaction"
occurs. "

Recall that for a pure substance the mechanical
stability is determined by (BP/BV)r&0. The con-
dition for the diffusiona1 instability in binary mix-
tures has a form (8 p/8»}~ r&0 which, however,
can be rewritten as (BP/BV)r „&0. Such an "iso-
morphism" principle is quite general. In our case
the stability condition for a system with additional
degrees of freedom has the same form as for the
original system with some additional constraints,
namely, the diffusion instability with A =0, or the
chemical instability with p. = const.
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