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SEPTEMBER I980

H. E. Wilhelm
Department ofEngineering Sciences, University ofFlorida, Guinesville, Florida 32611

S. H. Hong
Department ofNuclear Engineering, Seoul National University, Seoul, Korea

(Received 20 December 1979)

The Navier-Stokes equations for incompressible and compressible fluids are generalized by inclusion of viscous
stress relaxation, as required by kinetic theory. Two initial-boundary-value problems of the nonlinear generalized
Navier-Stokes equations are solved analytically, which describe the propagation of transverse or shear waves due to
temporal and spatial velocity pulses 0(O,t) and 0(x,O), respectively. It is shown that transverse perturbations

propagate in the form of a discontinuous wave with a finite wave speed due to viscous stress relaxation, whereas the
conventional Navier-Stokes equations result in nonphysical solutions, suggesting a diffusion process covering the
entire fluid with infinite speed.

INTRODUCTION

The nonlinear incompressible and compressible
Navier-Stokes equations represent (quasi) para-
bolic and hyperbolic partial differential equations,
respectively. The former propagate signals with

infinite speed and the latter propagate certain sig-
nals with finite speed in Quids. In an infinite,
homogeneous Quid, consider a small (linear) vel-
ocity perturbation, which is representable as the
Fourier integral

v(r, t) = v(k)e'"' '"'vd(o,

over elementary waves of wavelength X =2v/k and

frequency ~(k). If the fluid is compressible so that
it sustains both pressure (P) and density (p) per-
turbations, Bp/Bt =c'Bp/Bt, the perturbation can
propagate, e.g, in the form of longitudinal sound

waves with finite speed c, = (yp, /p, )'I ' and disper-
sion

&o'='c,'k'+z(4 p,/3p, )(okz.

In a Quid with a viscosity p, a perturbation may
also propagate in the form of a transverse or shear
wave. If one applies the curl operation to the
Navier-Stokes equation for incompressible Quids,
a dispersion law is found for the transverse per-
turbafions which does not represent a wave phen-
omenon but an aperiodic damping process with dis-
persion

z(o = —(tz/po)k'.

As is known, the acoustic dispersion law is de-
rived from a hyperbolic wave equation, whereas
the damping relation for the transverse modes
follows from the parabolic vorticity equation for
incompressible fluids. From experiments, how-
ever, it is established that transverse perturba-

tions (v & vz =zlzz x v, zz 5) propagate as (hyperbolic)
shear waves with finite speed. ' The (incompres-
sible or compressible) Navier-Stokes equations
propagate transverse perturbations in the form of
a diffusion process with infinite speed; i.e., they
do not provide a correct description of shear
waves. The discrepancy between the Navier-
Stokes equations and the experiments on shear
waves is resolved by introducing viscous stress
relaxation with a realistic (&0) relaxation time r,
in accordance with first principles of kinetic theo-
ry. &' This general ization of the Navier-Stokes
equations leads to a hyp~rbolic transport equation
for shear waves in incompressible or compressible
Quids. For this reason, the transverse or shear
waves represent "stress relaxation waves, "which

exist only for r&0.
As an illustration, two hyperbolic initial-bound-

ary-value problems for shear waves with stress
relaxation are solved. The solutions of the gen-
eralized Navier-Stokes equations with stress re-
laxation represent transverse waves which are dis-
continuous at the wave front and have a finite wave

speed, c=(tz/p, r)'Iz&~ for r&0. The first treats
the propagation of a shear wave into a semi-infin-
ite Quid space x ~ 0, produced by a temporal ve-
locity impulse at the boundary x =0 (accelerated
wall). The second is concerned with the propaga-
tion of a shear wave into an infinite Quid space
-~ &x &+, caused by a spatial velocity pulse in
the plane x =0 at time t =0. Both solutions are
valid for nonlinear shear waves.

In principle, the presented generalization of the
incompressible parabolic Navier-Stokes equations
to hyperbolic equations by means of stress relaxa-
tion is analogous to the generalization of the pre-
Maxwellian parabolic diffusion equations of the
electromagnetic fieM by Maxwell. His introduction
of the electric displacement current BcE/Bt re-
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suited in the correct hyperbolic equations for the
electromagnetic field with finite speed of propaga-
tion c = (sg) '~'

PHYSICAL PRINCIPLES

In conventional Quid mechanics, it is assumed
that inhomogeneities Vfv& in the velocity compon-
ents v& produce instantaneously viscous stresses
II,&. Mathematically, this is expressed through
the phenomenological "flux" - "force" relation

gg t ( gvg+ y ( f ~v~ gg)

where p is the viscosity and 6 is the unit tensor.
In a real continuum, however, velocity inhomo-
geneities do not switch on viscous stresses instan-
taneously but in accordance with a relaxation pro-
cess of characteristic time T. By means of the
kinetic theory of gases' and liquids, ' one can show
that the transport equation for the viscous stres-
ses has the form of a temporal (S/St) and spatial
(v V) relaxation equation

1e
et II +VkVk ff = -T Hf~

( IV!+ f I s k 0 0)'
This equation is approximate insofar as the coup-
ling of heat flows q, and stresses II,

&
and higher-

order terms in the derivatives of v, are neg-
lected." It has temporal and spatial derivatives
as required for a r, t-dependent field equation and
is Galilei covariant. If relaxation effects are dis-
regarded, it reduces to the static stress equation.

Thus, consideration of viscous stress relaxation
leads to a reformulation of the conventional Nav-
ier-Stokes theory of incompressible and compres-
sible Quids. In place of the Navier-Stokes equa-
tions, we have the hydrodynamic equations with
viscous stress relaxation:

rev
p~
—+v. Vv =-Vp —V ~ II,
Let

ep—+v ~ Vp=-pV ~ $et (2)

err, - II—+v 'VII+—=-—IVv+Vv --,V v&}. (3)et T T'
Equations (l)-(3) hold for incompressible (V v=0)
and compressible (V vo0) fluids. For nonisother-
mal processes, e.g., sound waves, the transport
equations for thermal energy and heat Qux have to
be added to Eqs. (1)-(3).»'

If p, and T can be treated as r independent, it is
mathematically more convenient to use, instead
of the tensor equation (3), the vector equation

—V ~ II+V ~ (0 VII)+r 'V ~ ii= pr '(V'V+-VV v), —
et

(4)

since Eq. (1) contains the force density V ~ II. If
temporal and spatial relaxatjon of the viscous
stresses is disregarded, Eqs. (1) and (4) combine
to the classical Navier-Stokes equation

p(av/St+v ~ &v) =-&p+ pV%'+(s p)VV ~ v.
Equations (1)-(3) represent a hyperbolic system

both in the compressible and incompressible cases.
On the other hand, the conventional incompressible
Navier-Stokes equations are parabolic. The cor-
responding field equations for incompressible
fluids are obtained by setting V ~ v=0 in Eqs. (2),
(3), and (4). The most general transient solution
of Eqs. (1)-(3) is of the form v(r, t) =v, (r, t)
+v,(r, t), where v, is an irrotational field (longi-
tudinal or sound waves) and v, is a solenoidal
field (transverse or shear waves).

By Eq. (3}velocity gradients V,vz produce stres-
ses IIf& in accordance with a relaxation process of
characteristic time T &0. Thus, a stress or vor-
ticity perturbation can no longer diffuse with in-
finite speed as in the parabolic Navier-Stokes
theory (c =~, r = 0), but propagates with a finite
speed, c = (p/pr)'~'by Eqs. (1}-(3)for dimensional
reasons. A vorticity perturbation described by the
hyperbolic Eqs. (1)-(3)propagates, therefore, in
form of a "wave" which has a "wave front", ahead
of which the Quid is unexcited because of the finite
wave speed c&~ for T&0.

INITIAI BOUNDARY-VALUE PROBLEM
FOR v(0,t) PULSE

A simple method for the generation of transverse
waves in a viscous Quid consists in setting the
plane x = 0 bounding a semi-infinite fluid (x & 0,
~y ~

- ~, ~s ~

- ~) into sudden motion v =vH(t)e„,
where H(t) is the Heaviside step function. The re-
sulting viscous interaction between the Quid and
the accelerated wall produces a curl n&& [v]
= e~(r =0, t) at the fluid surface which propagates
in form of a transverse wave through the Quid in
the x direction. In this dynamic process, the Quid
velocity is of the form v=[0, v(v, t},0] so that
V ~ v = Bv/Sy =0 and v ~ Vv =5; i.e., the fluid motion
behaves incompressibly (even if the fluid is com-
pressible} and linearly. Furthermore, v ~ VII
= vSII/8y =0 since II has only the components
II =II =II(X, t) by Eq. (3), and Vp=5by Eq. (1).

Thus, Eqs. (1)-(3) lead to the following initial-
boundary-value problem for the transverse velocity
wave v(x, t) in the y direction propagating in the x
direction, as a resultof the sudden wall motion
in the plane g =0:

ev eH
p et ex '
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err II p ee~+~
8t v' r 8x'

v(T =0, f)=SH(f), t& 0

v(z, t =0}=0, x&0

(6)

(V)

(6)

S({,s)=S( ({,e))=I e's {{,e)de,
0

S(o, s) S{=e(0l),)'I=:eS(e)-de="
0

(is)

se(T, f =0)
et (9)

Since the initial conditions (15) and (16) vanish,
Eqs. (13) and (14) yield for the transformed veloc-
ity u($, s) the ordinary boundary-value problem

() -0, t ~-0
=1, t &+0. ,—(s'+s)re=0,du

(20)

Equations (5) and (6) represent a hyperbolic
system, from which one obtains by elimination
wave equations for the stress component II,„
-=II(0(, f} and the velocity field v(z, t):

8 II 18Il,e'II
et'+~ et

=' ex' (io)

u(]=0, s) =s '. (ai)

Since u(), s} mustbe finite for t-~, the solution
of Eqs. (20) and (21) is

u($ s)=s'e""X/2
(22)

The inverse Laplace transform gives for the vel-
ocity field the complex integral

8'v 1 ~e 8~@

et2 yt 8 2$

where

u(t' r)= s 'e ""' "e' ds
2' Z y~ )do

Hence,

(23)

c = (I(/P, T}"' (12)

~u eu
ev' av e(2'

s(]= 0, V }=H(V ), r o 0

u($, v' = 0) = 0, $ & 0

(13)

(14)

(is)

is the (maximum} speed of the stress-relaxation
wave. Both II(r, t) and v(0(, t) satisfy similar (hy-
perbolic) wave equations with the same wave
speed c. In the limit v'- 0 and c-, with c r
—p/po, Eqs. (10) and (11) reduce to parabolic
equations, according to which boundary values of
II@,f) and v(z, t) would diffuse with infinite speed
into the fluid (conventional Navier-Stokes theory).
Accordingly, only for 7'&o and c &, transverse
or shear waves exist in the Quid which represent,
therefore, stress- relaxation waves.

According to Eq. (11) and Eqs. (V)-(9), the vel-
ocity field v(0(, t) = Su(t', V') of the stress-relaxation
wave under consideration is described by the
dimensionless initial-boundary-value problem

u(], v') =
sc (&, &)

where

y+ 5
4 (),.I') =- . S 'f(), S)e'TdS

277Z
y as)

alKl

f (t S) S-(s es) 0/(S2+S)1 s

(24)

(26)

(as)

According to a known inversion integral, ' the in-
verse transform of Eq. (26) is

f(5 r) = & '(f (k, s))

=~ '"I.(.'(~'- &')"'}H(-~- &),

(as)

where f„(v') is the modified Bessel function of ord-
er )d. By Eq. (25),

4 ((, v') = -& '(s 'f ((,s))
07

& '(f (5, s}}(fr
0

f $, y'dv,
0

su(&, r=0)
'er

where

(16} le)
{ , )0=)-tel( — )fe )e ' 'ld ,'( )')' 'a)da. -

)M((, 1') =v()(', t)/8, g =x/cT, 7=t/T . (1V)

Equations (13)-(16)are solved by means of the
Laplace transform technique' which gives

(29}

From this potential, the dimensionless velocity
field is obtained as

"(( e)=s(e-))(ee 'e,'( e ' '(a'-)')' *l(-,'(a' )')a')da
~i

(3o)
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(31)

in accordance with Eq. (24). By Eq. (17), the corresponding dimensional solution for the velocity field is
t/v

vie t) /)H(c=t x)(e-' '+8/mes) e "[a'-[/er) )
' 'I ('[a'-I /cr)'I"'Wa I.

x/cv
p ) ~

Equation (31) indicates that the transverse
stress relaxation wave is discontinuous at x =ct,
the position of the wave front at time t. At any
time 0&t «, only the region O~x~ct of the Quid
is excited by the wave, since v(«&ct, t) &0 and
v(«&ct, t) =0 by Eq. (31). The velocity signal
v(0, t) =vH(t) generated at the boundary « =0 at
time t is thus transported with finite speed c
= (I)/p, r)'/'& ~ in form of a discontinuous wave into
the Quid space x&0 as t&0 increases.

Application of the asymptotic formula I,(z)-e' /(2 vz'}/', lz l
» 1, and expansion of z

=

bozo.

"-(«/cr)'J'/' for large a values in Eq. (31)
yields, in the limit v. -O, cr-0:

v(«, t) =v(2/~7/ j) e zdP,

(32)
q =«/2(t/t/po}' '.

This is the familiar solution of the parabolic Nav-
ier-Stokes equations due to Stokes 'Euq. ation (32}
suggests that v{«,t) &0 throughout the entire fluid
0&x&~ for any, no matter how small time t&0.
Thus, the parabolic Stokes solution gives a com-
pletely misleading picture for a shear wave in the
form of a diffusion process which spreads with in-
finite speed.

Figure 1 shows u($,7) versus $ for V'=10', 10',
and 10', with wave fronts at )=10', 10', and 10'.
It is seen how the perturbation u(0, V') =H(7') pro-
duced at the wall )=0 moves in the form of adis-
continuous wave into the Quid space $ & 0 so that

A

an increasing but finite region 0 & $ & $ of the Quid
is set into motion with increasing ~. In the limit
V = ~, u($, 7') =1 throughout the fluid 0 & ( & ~. The
corresponding unrealistic parabolic solution with

the velocity field extending to infinity for any time
t &0 is illustrated in Ref. 7.

a'v $ Sv, a'v
8t'+v et ' ex" (33)

v(«, t=0)=v, («), l«l «
sv(«, t =o)

=u), («), l«! &~

where lu)0(«}
l

& 0 is included for reasons of gen-
erality. The solution of Eqs. (33)-(35) is accom-
plished by means of Hiemann's method, '

v{«, t) =e '/
lt '[v («-—ct)+v, («+ct}]

(34}

(s5}

'x+ct
+-,' e 4, &a)da), ,

x-ct
(ss)

where

INITIAL-BOUNDARY-VALUE PROBLEM
FOR v (x,o) PULSE

Another fundamental method for shear wave gen-
eration makes use of a velocity pulse v, =v(«, 0)e„
generated at time t =0 within a limited region
l«l ««. The decay of this velocity pulse occurs

in form of a shear wave with velocity field v
=(0, v(«, t), 0) in the y direction propagating in the
«directions. Accordingly, V ~ v=8v/By=0, v Vv
=0, and v ~ VII =vBII/Sy =(), since 1I has only the
components II =II,„=II(«,t). Again, the trans-
verse wave "behaves" incompressibly and linear-
ly and ~p=5by Eq. (1).

As in the previous problem, Eqs. (1)-(3)give
the wave Eqs. (10) and (11) for II(«, t) and v(«, t),
respectively. Hence, the shear wave produced by
the velocity pulse v, =v(«, 0)e is described by the
initial-boundary-value problem

@{«,t, n) = v, (a)!—!I, [c't'- (a -«)']'/'
l

[c't'- (a -«)']'/'
[2T / 2CT )

+—1~0(a)+—v, (~) I, [Cw'- (~ -«)*]"'
I2v ' 2c& ) (37)

(ss)

As a concrete example for the initial conditions
in Eqs. (34) and (35), an initial velocity distribu-
tion of the form of a Dirac pulse is chosen,

v, («)=v, 6{«), u), («)=0, l«l &~.
In this case, the general solution in Eqs. (36) and
(37) becomes, in dimensionless form

!

/ ze '[6(f v)+6(5+v'-)

+I («2 t.P/z}/(V z t2)&/2

utr =&
+f,((v' g')' *)],

! o, !pl & v

where
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0.5—

Due to the finite wave speed c, the fluid
is not excited in the region

~
$

~

& l ahead of the
wave fronts. The shape of the wave is Qat with
relatively steep Qanks leading to the discontinuous
fronts. Thus, the shear wave does not resemble
the Gaussian of the parabolic theory, Eq. (42),
which extends over the entire space ~z

~

&~. The
unrealistic parabolic solution is illustrated in Ref.
V.

0.0 --,
10

. . ~ . ~ I

10 10 10

FIG. 1. N(g, f') versus ] for V =10, 10, and 10 with
go, =a(V).

u($, v') =v(z, t)/{v„/2cr}, $ =z/2cr,

v =t/2r. (4o)

vg, t) =ac, x =act. (41)

In the limit v'-0, c~-0, application of the as-
ymptotic formula I„(z)-e'

/(
2zv)'~ ',

~
z

~

» 1, and
expansion of z = (a'- $')'~' for large a values in
Eq. (39}yields

u(t v') ={2vv}-' 'e (42)

This is the corresponding solution of the parabolic
Navier-Stokes equations. 7 Equation (42) would in-
dicate that the shear wave has the form of a Gaus-
sian extending from $=-~ to f=+~ for any, no
matter how small time V' &0 {corresponding to an
infinite speed of proPagation). It is obvious that
the solution (42) is physically not meaningful.

In Fig. 2, the dimensionless velocity field u($, v )
of the shear wave is shown versus $ for X=10,
10', and 10, the wave fronts being in each case at

u(g, c) )i
04-

I

f &.10o

+czar ~
02~

&oi'
'

&oo

10
0.»

10~

o &0' &o' 10 +(

F&G. 2. &($, g) versus g for V'=10, 10 and10 with
u((, 0) = 5(().

Equation (39) indicates that the shear wave

spreads in the space
~

t'
~

& ~ in form of a symme-
trical wave u(-(, V') =u(+$, v }, due to the symmetry
of the initial conditions (38). The wave is discon-
tinuous at its fronts $ =+V', which propagate with
the speed

CONCLUSIONS

A generalization of the Navier-Stokes equations
is presented considering viscous stress relaxa-
tion, which results in a physically meaningful
theory for transverse waves in viscous Quids.
The fundamental speed of the stress relaxation
waves is given by c = (p/pr)'~', where p is the
viscosity, p is the density, and 7 is the relaxation
time of the stress tensor. For any medium, ' it is
c c (—,')'~'c„where c, is the speed of the longitudin-
al waves, e.g. ,' c=1.2X10,' cmsec ' and c,
=1.5X 10' cmsec ' for water at T=20'C and
p0=1 atm.

Exact solutions are derived for stress relaxa-
tion waves propagating in the x direction due to
velocity pulses v(0, t) and v(z, 0) in the y direction,
respectively. For the geometry of these trans-
verse waves, the nonlinear generalized Navier-
Stokes equations become linear, so that the solu-
tions given hold for waves of large intensity. The
solutions are discontinuous at the wave fronts,
which is typical for hyperbolic field equations. The
corresponding solutions of the conventional Nav-
ier-Stokes equations indicate a diffusion process
with infinite wave speed and without wave front,
i.e., give a qualitatively and quantitatively insuf-
ficient picture of the propagation of transverse
waves in Quids.

In the simplified stress relaxation equation (3)
proposed, the term II ~ Vv is neglected since it is
of the order of magnitude of (p/r)

~
Vv ~', which is

nonlinear in the derivatives. It should be noted
that the term II ~ &v vanishes exactly for the wave
problems treated above, II ~ Vv=0, since v
=(0, v(z, t), 0) and II has only the components
II =II . For this reason, the solutions presented
are exact solutions of the nonlinear Navier-Stokes
equations with viscous stress relaxation.

The introduction of stress relaxation (7 &0,
c &~) as required by kinetic theory" changes the
mathematical type of. the hydrodynamic equations
for the tra~verse velocity field from parabolic
to hyperbolic, and the nature of vorticity trans-
port from an unrealistic diffusion with infinite
speed (r =0, c =~) to the physically correct wave
propagation with finite speed {r&0, c&~}. This
holds not only for the simplified stress transport
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equation (3) but for the general stress transport
equation. ~' The hyperbolic type of the resulting
partial differential equation of second order is
determined by the coefficients of the second-order
derivatives of the linear field terms alone, i.e.,
not by the terms which are linear or nonlinear in
the first-order derivatives. '

The parabolic (P) ami hyperbolic (ff) solutions
are approximately equal behind the wave front,
i.e., for a symmetrical solution

I v~(», t)
I
s

& lvsb, t)
I

for I» I &ct, but this approximate
agreement gets worse and worse as ~»~ approaches

x =ct. The main difference between the P and H
solutions occurs ahead of the wavefront, since

v~(», t)
I
~0 for ct & I» I

&", whereas in reality
vs(», t) = 0 for ct & I» I

&~, since physical perturba-
tions or real signals can propagate only with finite
speed.
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