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The correlated-basis-functions method of Feenberg and the coupled-cluster formalism of Coester and Kiimmel are
joined to form a new ground-state many-body method combining the advantages of both older methods and avoiding
their disadvantages. From the point of view of the correlated-basis-functions method, coupled-cluster theory is used
to sum the perturbation series partially to arbitrary order. From the point of view of the coupled-cluster method,
correlated basis functions are used to take out the repulsive core of the two-body interaction in order to allow more
efficient truncation schemes. It is found that powerful renormalizations are possible. Explicit equations are given for
the two-body subsystems embodying generalized Bethe-Goldstone and random-phase equations summing, in the
correlated basis, ladder and ring diagrams to arbitrary order.

I. INTRODUCTION

We describe in this paper the development of a
combination of two quite different many-body tech-
niques, the variational method''? and the coupled-
cluster [or exp(S)] theory®™ for the calculation of
ground-state properties of interacting Fermi
systems. Our goal is a quantitative description of
extended systems like nuclear matter, neutron
matter, or liquid He, and in future work also fin-
ite systems like nuclei or droplets, interacting
via realistic forces. For this purpose we gener-
alize the coupled-cluster [or exp(S)] theory in such
a way that it is able to deal with correlated, non-
orthogonal wave functions. Thus, we will provide
a link between two quite different many-body tech-
niques: the variational method and perturbation
theoretical approaches.

The variational method!'? approximates the
ground-state wave function in the form

FRES AL TS . (1.1)

where &; is the wave function of the noninteracting
system (a Slater determinant of plane-wave orbit-
als for the infinitely extended systems mainly
under consideration here), and F is a correlation
operator, which describes the dynamical correla-
tions in the system.

The most widely studied example of the correla-
~ tion operator F is the Jastrow choice

F= II r@.), (1.2)

1=<iCj<A

in which f(7) is a real function, depending only on
the distance |F, —F,| of two interacting particles
i and j. The major advantage of the simple choice
(1.2) is that methods of classical statistical me-
chanics are relatively easily extended to the cal-
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culation of the energy expectation value
E=yg |H |4)/ W5 [43) - (1.3)

Though the ansatz (1.2) has met with great success
for the description of simple model systems,*” its
deficiencies are obvious from the very beginning:
The lack of any state dependence in the Jastrow
correlation function rules out its use for systems
with strong noncentral components of the inter-
action. An evident way of overcoming this prob-
lem is the generalization of the Jastrowansatz (1.2)
to two- (three-...) body correlation operators

F=s[IrG,5. (1.4)
<4

Here, f(i,j) is a two-body operator acting on the
states of the ithand the jth particle, and S is intro-
duced to symmetrize the products of f(,j) opera-
tors, since the f(¢,j) do not, in general, commute.
It is just this noncommuting feature of the correla-
tion operators which causes the enormous compli-
cations coming with the generalization (1.4). Nev-
ertheless, considerable success has been reported
for various choices of state-dependent correlation
operators (1.4).°

An alternate way of including state-dependent
correlations in a systematic way is the method of
correlated basis functions (CBF).! This method
uses the correlation operator F to generate a set
of normalized, but nonorthogonal, correlated
wave functions

Ixz)=I2EF|®5), Izz=(2;|F'F|eg), (1.5)
from a complete orthonormal set of Slater deter-
minants |$z). The label f#i=(m,...m,) specifies
(for homogeneous matter) the plane-wave orbitals
entering |®z), i.e.,
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|82 =AD" |m,...m ,),, (1.6)

where the subscript a means “antisymmetrized.”
In fact, the CBF method is not restricted to the
state-independent Jastrow choice (1.2): Through-
out this paper no further assumption on the cor-
relation operator F will be made than that it obeys
the cluster-decomposition property

Fl, .o ,N)= F,Gyy - oy i )Py plipuyy - - yiy)  (1.7)

if the subset ¢,, ..., 4, of particles is removed far
from the rest.

Numerical applications of the CBF method have
been reported by Clark, Ristig, and collabora-
tors,®!! who calculated second-order perturbation-
correction for the energy expectation value on the
basis (1.5). One logical extension of the CBF
method is the systematic extension of the pertur-
bation series on the |¢3) basis and the re-summa-
tion of certain classes of diagrams in order to
establish a Brueckner-Bethe'? (or a related) the-
ory in the CBF framework. This project, which
is the subject of the present work, is attractive
for a number of reasons.

(i) We can use the state-independent Jastrow
choice (1.2) for the correlation operator, for
which high precision techniques are available for
the calculation of the energy expectation value?
(1.3) and of off-diagonal matrix elements X [X;)
and (X |H[Xz).*® In particular for the latter quan-
tities, simple cluster-expansion techniques appear
to be suspect even below the saturation density of
nuclear matter.!*

(ii) The theory provides a strong internal con-
sistency test: The final result should within rea-
sonable limits be independent of the Jastrow-cor-
relation operator F. (In fact, if we were able to
sum the full perturbation series, the results would
be independent of F.) Thus the F dependence will
be a measure for how accurately we have calcula-
ted the true ground state.

(iii) Brueckner-Bethe-Goldstone (BBG) theory is
known to deal already fairly accurately with state-
dependent interactions,'?'1%18 (at least in the nu-
clear-matter problem at not-too-high densities).
Thus, the derivation of a “correlated” BBG theory
appears to be a promising way of including state
dependence in a variational theory. The Jastrow
operator F will be used primarily for an approx-
imate treatment of the strong repulsion of two
particles at short distances, thereby unburdening
the BBG theory from this task.

In the actual formulation of our project, we use
the exp(S) formulation of many-body theory due to
Coester and Kimmel,* ® from which the Bethe-
Goldstone equation emerges as a special case.!™!®
The advantages of the exp(S) formulation over al-

ternative approaches have been discussed else-
where,*!® and we will find below that this formula-
tion is also the most powerful one for our pur-
poses.

The coupled-cluster method itself, without any
reference to variational methods, has previously
been applied quite successfully to interacting
many-Fermion systems. It does incorporate state
dependence and is able to deal with arbitrarily
complex interactions without any formal problems.
However, it is found that in most cases the solu-
tion of three-body Bethe-Faddeev equations cannot
be circumvented!®'!®2° in this formalism if one
wants to obtain quantitatively accurate results.
Sometimes it is even necessary to consider four-
body equations. Since one is forced to solve cou-
pled, nonlinear equations in three or even more
vector variables as opposed to the mere evaluation
of integrals in variational methods, numerical ex-
ecution is quite involved for the coupled-cluster
scheme. The unsatisfying convergence of the
theory is thought to be due in large part to the
core-exclusion problem. If n particles come close
to each other, overlap of any pair of strongly re-
pulsive cores must be avoided which immediately
leads to an n-body equation.

The present approach may therefore be con-
sidered from quite a different point of view. We
perform a coupled-cluster calculation but help the
convergence by using the correlation operator F
to take care of the core exclusion. In other words,
we are interested in a two-body version of the
coupled-cluster theory where those effects previ-
ously treated via a three-body Bethe-Faddeev sum-
mation are now dealt with by the correlated basis
functions.

Throughout this paper we restrict ourselves to
the case of an infinite system, which allows us the
most transparent formulation. There is, of course,
no g priori reason which forbids the extension of
our theory to finite systems,®'?° thus forming a
generalization of the CBF theory recently em-
ployed by Mead and Clark.!*'%

The paper is organized as follows. In the next
section, we describe briefly the present theoreti-
cal status of CBF theory and introduce the quanti-
ties needed for the further analysis. Section III
presents the basic ideas of our approach together
with the discussion of some alternatives. Sections
IV and V lead us through the various stages of the
cluster expansion of our coupled-cluster equations
and the expression of the ground-state energy.
These sections are rather technical in nature and
may be skipped by the casual reader. We conclude
in Sec. VI by discussing a possible sequence of
approximation in the application of our theory as
well as possibilities of further extensions.
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II. A SHORT REVIEW OF CBF THEORY

In this section we wish to introduce briefly the
classic ingredients of the CBF perturbation-cor-
rection formulas and also our correlated coupled-
cluster theory. Inthe correlated (in general non-
orthogonal) basis (1.5) we have to calculate® the

following:
(i) diagonal-matrix elements of the Hamiltonian
Hgz=(a H [xa) (2.1)

and differences thereof;
(ii) off-diagonal-matrix elements of the unit op-
erator

Nz = 1) Jaa=Maa(l - 85); (2.2)

(iii) off-diagonal-matrix elements of the Ham-
iltonian

Hzz=z |H!Xg>§ (2.3)

these occur in fact only in the combination

HL.H’...QLD

H;':'::'I:(HEE_HB‘ONE;)(]‘ - 6,‘;,;) . (2.4)

In order to avoid large-scale cancellations be-
tween the two constituents of Hy;, it is also con-
venient to introduce?®

Was=Hgz -2 (Hzg+ Hy)Ng; (2.5)

and to represent H; as
Hiz = [Waz+ 5(Hgz+ Hyz - 2Hg)Nz:1(1 - 85y) .
(2.6)

The latter representation has the advantage that
both terms are of the correct order in the particle
number. Moreover, Wsi, N;:» and (H;-+Hj;
- 2Hz;) are conveniently represented as matrix
elements of a (nonlocal) effective interaction, a
normalization function, and differences of single-
particle energies.

With the ingredients defined above, the first
terms in the CBF perturbation expansion read!!

= Hpn-Hy T (Hgs - He)(H; - H)
H.’... L. f.Hﬁ.
+
- Hy;) g’(ffa; - Hg)*(H;; - Hgs)
Sl 5 Ml Y. @
mn (Hag — Hgg)(Hzz - Hyg) & (Hgz -Hg)H;, -Hy) /) "7 :

As a next step in the application of the CBF
perturbation-correction formula (2.7) we have to
restrict the set of states |$z) over which the sums
of (2.7) are to run. An obvious and useful classi-
fication is to count the number d of orbitals in
which the states |®z), |®;) differ from each other
(one of these states may be identified with the
ground state ]<I>3)). For convenience, we shall
suppose that the orbitals in which m and 1i differ
have been shuffled to the beginning of the sequence,
i.e., m;#n, (,j=d), m,=n, (>d). The simplest
case for the infinitely extended systems under
consideration here is d=2 (or d=0).

For our further considerations it turns out to be
convenient to introduce d-body operators 9‘’[m];
WM ] which act on the d orbitals in which i and
il differ, i.e.,

JE;___ (ml. . m, Im(d)[fﬁ] lnl .o ‘nd>a

NS VIR -y

Waz=(my...m | WO[m]|n, e« ony), (2.8)

S A— ) )

for two states |®;) and |®;) which differ in the
first d orbitals. If the states i and # differ only

r
by few orbitals from the ground state |<I>:,) we have

Wi ]= w(a)[6]+ o4,
N[ ]=N[0]+0A™).

For a state-independent Jastrow F, the operators
W@ and N9 have been constructed in Ref. 13 for
d=2. The extension of these considerations to
higher d values is thereafter quite obvious and
does not require a repetition of the tedious calcu-
lations presented in Ref. 13, the properties of
these operators may be verified in low orders by
straight-forward cluster expansion techniques.
For d=2 and d=3, W and N are proper d-body
operators in the sense that they vanish if one of
the particles is removed far from the others.
This property (which reflects just the cluster
property of the correlation operator F) is no long-
er maintained for d> 4.2’ We have, for example

N1, 2,3, 4) = [H(12)T2(34) +T2(13)N2(24)
+J(14)T(23) )+ (1, 2, 3, 4),
(2.10)

(2.9)

where M{* stands for the “connected” part of the
N operator. The corresponding decompositions
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of W® and the W and N operators for d>4 are ob-
vious. Decompositions of this structure are re-
peatedly found in cluster expansion theories.?

It is just these unlinked terms in the off-diagon-
al-matrix elements that generate some of the ob-
stacles to the further development of the CBF the-
ory. If we include, e.g., d=4 combinations in the
second-order CBF correction, we obtain unlinked
contributions with an unphysical dependence on the
particle number A. These contributions are can-
celed by d=2 contributions to the fourth-order
correction [the last two contributions explicitly
given in (2.7)] and further sixth-order terms of
similar structure. A systematic further develop-
ment of the CBF -perturbation series must include
higher-order terms in the perturbation series and
simultaneously include contributions with larger
d in the lower-order terms.

III. CORRELATED COUPLED-CLUSTER THEORY

There are basically three ways to arrive at a
Bethe-Goldstone equation or a related theory in
an uncorrelated basis. The first, most straight-
forward and historically original way is to an-
alyze the Rayleigh-Schrodinger perturbation ex-
pansion and perform re-summations of infinite
classes of selected diagrams.?* The CBF analog
to this would be a further analysis of the expansion
(2.7) with the same aim—a project of prohibitive
complexity owing to the appearance of the unlinked
structures (2.10).

Alternatively, the ground-state wave function
can be written in the exp(S)form3-

|4 =e* |23, (3.1)

where

s=), s™ (3.2)

n»2

is a sum of » particle-hole (p-h) operators.
The S may be determined either by a varia-
tional procedure®®2¢

8 (®:|eS"HeS\®;)
S (@165 eSidy O @-3)

or by writing the Schrodinger equation in the form

e"SHeS |®3)=E |®3), (3.4)
and observing that for all n p-h states |®z)
(@5 |e SHeS [8)=0 (@ +0) (3.5)

[exp(S) Method].

The method of Eqgs. (3.5) has been shown to be
formally equivalent to Eqs. (3.3), but more ad-
vantageous in practical applications since in each

step only a finite number of diagrams is generated.
For a thorough discussion of this point see Kim-
mel and Lihrman,3:26:27

Both approaches, the variational method (3.3) or
the coupled-cluster method (3.5) are readily ex-
tended to correlated wave functions. Instead of
(3.1), write the exact ground-state wave function
in the form

[9=Fel2y), (3.6)

where F is, as in (1.1), a correlation operator
which provides an approximate description of the
short-ranged dynamical correlations in the system.
Employing such a correlation operator, we can un-
burden S from providing a gross description of the
short ranged two- , three- , and four-body cor-
relations and leave for it only the task of deserib-
ing in more detail those strongly state-dependent
effects which are hard to model with a correlation
operator F.

Again, we can determine S either by the varia-
tional prescription

0 (®;les'F'HFeS|&3) _
aS™* (®;leS'F'FeSld;)

or through the Schrodinger equation
HFeS|®;)=EFe® |3}, (3.8)

0 (3.7

where F is always determined beforehand. Multi-
plication of (3.8) with e"SF ' and projection on com-
plete sets of np-nh states |®3) leads us, after the
elimination of the ground-state energy through

_(®;|e"SF'HFeS |9;)
“ {®;1e”5F FeS 12y

E (3.9)

and proper normalization, to a set of correlated
coupled-cluster equations

(®=| e SF 'HF S\®;
®;le"F Fe’ |®;

_@;le"SFTHFeS|18 (5| *F'Fe’19;)
(@, eSF'Fe’ |®,)2 .

(3.10)

It is again straightforward to verify the identity of
(3.10) with the variational problem (3.7). The lat-
ter leads however to linear superposition of Eqgs.
(3.10), coupled through coefficients which contain
S* alone. For this reason we choose to start with
Egs. (3.9) and (3.10), a decision which will be
justified by the comparatively simple form of the
final equations which we will derive below.

We conclude this section by comparing our way
of including state-dependent correlations in a
variational theory with the pure variational ap-
proach, which tries to find better and better cor-
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relation operators F. There are three problems
with the latter method.

(i) Wwith the inclusion of more complicated inter-
actions, also more complicated correlation oper-
ators have to be invented. In our theory, we need
only to know how a certain operator (5,:3,; S,,,

i S etc.) appearing in the Hamiltonian acts ona
given F For the pure Jastrow F, the action of
5,5, ‘r ‘r and Slz’on F is almost trivial,'® and
the mclusxon of L*S or L? components in the 1n-
teraction does not cause undue complications.?®

(ii) One of the main difficulties in the pure vari-
ational approach is the fact that different f oper-
ators do not commute. This problem has been
overcome within the purely variational approach
by Owen’s restricted product wave functions?®3°
and by Smith’s commuting, noncentral correlation
operators.3' This difficulty does also not appear
in our theory: the S do commute.

(iii) The next step in the development of the vari-
ational method is the summation of “chain dia-
grams” and “parallel connections”.? While the
summation of chain diagrams is currently under
control for two-body operators no more complica-
ted than the tensor operator,®3? success for par-
allel connections has been reported only for spe-
cial choices of £.2°"%! Such problems do not occur
in our theory: no parallel connections appear,
and chain diagrams, which can be summed trivi-
ally by a suitable renormalization of S2, do not
appear either in the final version of our equations.

IV. THE GROUND-STATE ENERGY

Some considerations are in order before we pro-
ceed to establish cluster expansions for our
ground-state energy expression (3.9) and our
coupled-cluster equation (3.10). Clearly, our the-
ory has the aim of providing a many-body method
which achieves accuracy comparable to present
techniques, but with simpler tools. Thus, in this
stage of the theory we do not aim at the derivation
of an analog of the Bethe-Faddeev equations on
the correlated basis, since in such degree of elab-
oration the coupled-cluster theory is already
capable of giving a fairly realistic description of
nuclear many-body systems!®’*® without an addi-
tional correlation operator F. To be definite, we
restrict ourselves to

1
=g@= 2 : t gt
§=5 Q1) o 5, So105 100,30, B0, %0, 0, - (4.1)

(Quite generally, we will label particle states by
py, P, and hole states by v,,v,....) The ansatz (4.1)
would not be sufficient in the usual exp(S) theory

if strongly repulsive cores were present in the
two-body interaction.’*!” In the present case, how-

ever, the exp(S) has to deal only with the “effective
interactions” W and f, which will be very smooth.
Therefore, Eq. (4.1), which has been shown to
lead to extremely accurate results in various mod-
el studies®¥'** as well as in the electron fluid prob-
lem,% is quite promising here.

A second approximation is made consistent with
(4.1): We shall include only those many-body ma-
trix elements of the Hamiltonian and the unit op-
erator, which may be written in terms of the ef-
fective two-body operator w1, 2) and N?(1, 2)
and products thereof. Two types of higher-order
contributions occur beyond these.

(i) Off-diagonal matrix elements of linked three-,
four- body operators W@ (1. ++d), N4 (1 «+d) @d>2).
Inclusion of these sets of many-body contributions
will not cause any qualitative change in the cluster
expansions to be developed below.

(ii) Differences of N‘¥[m] or w'#[i ] for different
reference sets of plane-wave orbitals m e.g.,

N[ ] - N[fi]= 0(A™), (4.2)

which enter our expansion through the cancellation
of unlinked diagrams. These may be written as
matrix elements of r-body operators, which are
off-diagonal in d(<7) states and diagonal in (» —d)
states. The omission of this type of contribution
(to the energy or the coupled-cluster equations)
corresponds also to our concept of including only
effective two-body operators. It allows us, more-
over, to omit the explicit specification of the ref-
erence state by the argument [m]. More detailed
studies which have to involve the specification of
the correlation operator F will lead to a feedback
of our theory to the starting point (viz., the clus-
ter-expansion and re-summation techniques for
correlated matrix elements) through a renormali-
zation of the so-called “exchange line”.?

Some manipulations on the ground-state energy
(3.9) are needed before we go on to derive an ex-
pansion in terms of powers of S. We define for
any integer power %

Sky=(d; |S*|®;) (4.3)

and, for ease of writing the following manipula-
tions, a set of operators S* through their matrix
elements

(sk) ma (I /Iii)wsmn ’ (4-4)

and rewrite (3.9) in the form (note that (&3 |eS

=(&;|)

_Dal( 8| FHF 1 3. )(e9)zs
SR L@ FFI 820 (ed)zs

Yl (eS)=
i )
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in which the prime on the summation symbols
mean that the summations are to be carried out
over all A particle Slater determinants |®3)
different from the ground-state determinant |&;).
We discover in (4.5) again the effective perturba-
tion Hj: [see Eq. (2.4)] entering thé CBF pertur-
bation correction formula (2.7). We will demon-
strate, however, that the expression (4.4) is well
behaved in the large A limit, since the discon-
nected portions (2.10), etc., will be canceled by
corresponding denominator diagrams.

An expansion in powers of S is now readily de-
rived using the power-series expansion method

E =Hyg +Z'Héa§;§
m

1 o
= CECE
m

=H35+(6E)1+(6E)2+. .e 4.6)

[(5E), denotes the contribution to the energy con-

taining » S factors].
]

With the ansatz (4.1) for S all matrix elements
H3= and J3z explicitly appearing in (4.6) are taken
between the ground state and a two-particle-two-
hole state, except the term 2 2H% =(5%)z3, which
contains 4p-4h matrix elements.

According to our decompositions (2.6) and the
definitions (2.10), we write in the 4p-4h case, lab-
eling the particle states with p, -+« p, and the hole
states with v « -+ vy,

H(‘)ﬁ‘:(vl’ . -V4|'W(4)(1v0-4)|p1. . .p4>a
+3(Hag — Hivy » + - vg [ (L -2 4) [ p =+ < ps), -
(4.1

The difference H,,, — H,, is expanded in leading
order in differences of single-particle energies

Hga —H;,a:g;[((p,) -e(v)]+0@A™M). (4.8)

Following our strategy of retaining only (products
of) two-body operators we are left with theunlinked

contributions [see (2.10)] to w'* and 9. These

may, after some reordering and combination with
the second contribution to (6E),, be written in the
form

(6E),=1 E <V1V2|'U(2)|p1p2>all? 2 (V3V4|9l(2)|p3p4>c

P1P"1 V2 PPV

x[(5%)

- a
-S S .
PP Py V) T P1P2 V2l PP “’3“4)a]

4.9)

[Note that we also neglect here differences of the type (4.2).] In (4.8) we have defined for any np-rh state

|<I)E> =aJ.1. ..aTav"-..avlléz))

Pn

(O R G P (4.10)
and the effective interaction
Vs, ro =BV |y0) =W, gy +5(€, £ €2 €, £ €)N o5 s, (4.11)

where a, B, v, 6 can be particle or hole states, the + sign applying for the particle states and the - sign

for the hole states.

We are now ready to introduce a renormalized counterpart of the S operator, which includes all powers
of S and all nonorthogonality corrections entering our expansion (4.5) through 9‘®(12) or through ratios of

normalization integrals Izz/I5:

(pp' |S 'VV’)a = sDP'(VI’)a

S P2 §2 8,0 o S
=Spa'(w')a+ 8 N"l“z(’l"z)u[ (s )np'plp.‘, wvgy), = Oeety (")) plpz(vlvz)a] +eec .

P1P2P P2

Firially, this allows us to write the energy in the
form

E =H66+% Z Vuv'(pp')ason'(vu‘)a * (4'13)

o'V
Carrying our expansion (4.5) to higher orders
in S would lead to higher-order contributions to the
8 operator and includes vast classes of nonortho-
gonality corrections. (Note that 8 is identical with

(4.12)

[
S in the limit F—1.)

In order to appreciate the generality of (4.13) it
is worth studying the expansion (4.12) in some de-
tail. For this purpose it is convenient to use the
Goldstone-type graphical notation of conventional
exp(S) theory,® with the additional specification
that we represent 31® by a dashed, horizontal
line. Some further analysis is required for the
combination of normalization integrals and S oper-
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FIG. 1. Some typical diagrams contributing to the ex-
pansion of S in terms of S@), Note that the bare §®
(first diagram) is always multiplied with a factor
(ppsvv’ VI M2

ators in the curly bracket in Eq. (4.12): The ratio

FIG. 2. Example of an S%) contribution to 8.

The fact that the factorization holds only up to the
order A™! in the particle number has the conse-
quence

Q2
(S )glo N (Vl' .'v4)a

of two normalization integrals factorizes in lead-
ing order in the particle number into a product

of functions depending only on one of the particle
states, i.e., we have for the normalization integral
of any np-rh state |&z)

I""/Ioo ‘I(Pl

=A,8 (4.15)

£1P o "1"2 p3p4, Vavy

X1+0@4)],

where A, is the antisymmetrization operator acting
on the hole labels v;,. This incomplete cancellation
causes another (diagonal) nonorthogonality correc-

P it V)l tion in (4.12). Rewriting (4.12) in terms of S-ma-

I-Iz( i) o). (4.14) an eleme‘nts and reFammg only the term.s of lead-
z(v ;) ing order in the particle number, we arrive at

_ L ~ - ~ ~
Spo'(w‘)a "Spp'(vv‘)a + T Z: Nvlvz(alnz)J:Av(spa'w’sﬂlnz, v1v2) - Spp'(vv')asplpz(vlvz)a]
PPV, V.
1727172 .

N A I(pp’ p, p,; vV'V, v 1/2
1 1729 1727700
+3 Z Nvlvz(plpz)asnn'(w’)asalnz(vlvz)a[( Pews . I I

(4.16)
P1PIVIV2 I(pp’; v’ ) (p,py5 vyv,)

We are now ready to construct the diagrammatical expansion of 8 in terms of S® and M‘®. Some typical
diagrams are shown in Fig. 1, from which the general construction principle of § becomes quite obvious:
8 is represented by the sum of all diagrams which can be constructed from S and 9‘® in such a way that
the external lines enter only S‘; only internal lines may enter %‘®’. Furthermore, no two 91‘® operators
may be connected directly by aparticle or aholeline. Thediagonal correctionterms [the last explicitly given
contribution to the expansion (4.16)] may be represented in a similar way by introducing a new graphical
element; further specifications are, however, not necessary at this point.

The definition of 8 is now readily extended to the inclusion of S’ and 1’ for d>2: We define 8 to be
the sum of all diagrams formed according to the rules given above which contribute to the energy through
the effective two-body interaction w'®. An example of an ¥ term contributing to 8 is shown in Fig. 2.
The introduction of the operator 8 is, at this point, of course, of only aesthetic appeal as long as we are
bound to derive an algorithm for calculating 8 from a given S'®. We will find, however, that the same
quantity can be introduced to re-sum our correlated coupled-cluster Eqs. (3.10) and eliminate the “bare”
S entirely from our theory.

V. COUPLED-CLUSTER EQUATIONS

We proceed now to an expansion of the coupled-cluster equations (3.10) in powers of S. Since we aim only
at the determination of S it is sufficient to choose |<I>,—n> to be (any) 2p-2h state. This simplifies, in
turn, our considerations due to

(e75)z5 =655 — Szs - (5.1)
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Rewriting Eq. (3.10) in terms of the correlated-state quantities Hzy, Nz; and making use of the expression
(3.9) and (4.5) for the energy we obtain
20 (g - HgNg) %)y L (Hgg - HgNip)e9)z D Nege¥)sg
142 TeP)ay ) (1L Tzgle)?
which is just the (properly normalized) Schrédinger equation for the wave function (3.6), projected onto the

correlated 2p-2h wave functions |Xg) defined in (1.5). The first three terms in the expansion of (5.2) in
powers of S are

0 =H§5+Z; (Hgz - Hgo Nz — HasJon — J55H1)53

’ (5.2)

1 a
+§(Z": (s - HoNgs ~ Hialos — I Hon) %) —§[2(H33-H53N;;V&'+ZH&NE;'- &aJaiJa;JS‘aSya)wv- .

(.3)
Next, we separate out all those terms, where diagonal-matrix elements Hz; - Hg; and N3 =1 occur:
0=Hg;+ (Hzz~ ) Sas+ 0 (Hbz— B35 JaaHéa')S;a—za:[Ha;‘fJaa(Haa— H35))55% 535
d
L e B s — Tos B3G5 - X (2L L : 5.:3 5.4
Yo & (Hiz - Hig sz - JasHe) 555~ 2y QHE g3+ 2Hig I g0 — Higy 55 350555530+ <+ (5.4)
n,n

It is worth noting here that the second-order CBF correction for the energy is obtained by retaining only
the first two terms of the expansion (5.4). The further analysis of our expansion (5.4) goes along very
much the same lines as the one for the expansion of the ground-state energy (4.5). It is, however, quite
tedious and purely technical so that we pass over the details and demonstrate the procedure only for the
simplest examples, the terms which are linear in S, For the higher terms, we will give only the general
calculational recipe below.

By construction, the states |®; >and |®;) are 2p-2h states. To be definite, we write

|o3) = dldla,a,la3)

| @)= a:,“:;aviaul |®5).

(5.5)

Matrix elements of effective two-body operators of the type specified in Sec. IV. arise when |<I>;,) and

I‘I’i> differ by two or four orbitals. States differing by two orbitals may be generated by coincidence of

(i) the particle orbitals in |®3) with the particle orbitals in |®;), (ii) the hole orbitals in |&z) with the hole
orbitals in |®;), or (iii) a particle-hole pair in |®z) with a particle-hole pair in |&;). Inthe d=4 contri-
bution we take all terms which can be written as matrix elements of unlinked products of two-body opera-
tors. Spelling out explicitly the distinct two-body operators, we arrive at

. s . )
g_; (Was—Ngs Ws) S5 = 2 g;i Voo tos0, = €0+ € Nop 0150 18, 3 ey,

L .. v
tz 2“ Son ‘”1"'1’..["";"'1 o, (€ +60) Nuw (w),]
"1

+ ,Zv {gplo (ulv)a[Ntm1 @9, + (€ —€,) val @ma] + eXCh(pP')(VV')}
1

1

1 2

+< ar) ’Z‘;v‘ [Noor 0,09, Noywy o), + Vg 091, Nowr o0,
117171

+4(Voy, 6,0, Nows 0431, = Vou, 6,09 Nows 6101, = Vo, 0,0, Nowg 03,

+ Vow, G003, Nowg 031,155 104 0,090, 5 (5.6)
—
where exch (pp’)(vv’) represents a sum of similar graphical elements introduced above by the effec-
terms with p interchanged with p’, and/or v with v’. tive two-body interaction V®’ (depicted as a wavy
Aninspection and classification of the distinct con- line) and the CBF—single-particle (or hole) ener-
tributions is again most efficiently performed using gies depicted as a dot on a particle or hole line.

a graphical language. We have to supplement the Some typical diagrams are shown in Fig. 3. The
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SR
0

L

FIG. 3. Some typical diagrams contributing to the
correlated coupled-cluster equations for S.

first three diagrams are well known from the
conventional exp(S) theory with the bare interac-
tion replaced by the tamed effective interaction
UV?) . They generate [upon solving the exp(S) equa-
tions] particle ladders, hole ladders, and ring.
diagrams. The next three diagrams show non-
orthogonality corrections which are generated
from the first diagram by replacing the effective
interaction by an 3N line, and substituting a single-
particle (or hole) energy on one of the outgoing
(or incoming) particle (hole) lines directly
attached to S®. Finally we show some diagram
arising from the d = 4 portions of Eq. (5.6) which
represent ladder and ring diagrams containing an
interaction line and a normalization correction.

We discover already the diagrammatical con-
struction scheme according to which further dia-
grams contributing to our expansion (5.4) are
generated.

The expansion (5 .4) of the coupled-cluster equa-
tions is represented graphically by the sum of all
diagrams which have the following:

(i) Two hole lines entering and two particle
lines exiting at the top of each diagram,

(ii) an arbitrary number of S elements,

(iii) an arbitrary number of 9®’ elements,

(iv) one effective interaction operator or one
single-particle (or hole) energy, and obey the
rules [(v) and (vi)],

(v) the 8 elements have only incoming hole lines
and outgoing particle lines,

(vi) no N line and no V@ or e element may be
connected directly to another M element.

The further explicit construction of higher-order
contributions to Eq. (5.4) serve essentially to
confirm the rules (i) to (vi). [We have in fact
worked out all of the terms of the expansion (5.4)
which are quadratic in S.] It suffices to sketch
the general way the calculation goes. First, we
classify the distinct off-diagonal quantities Hgg,
Jz: according to the number of plane-wave orbi-
tals in which the states |®3) and |23 (one of
which will casually be identified with the ground
state |®3) differ. Products of more than one
off-diagonal quantity are sorted in such a way that
all terms with the same sum of d values are kept
together. Due to our choice (6.1) for S, the maxi-
mum d value for an nth-order contribution in S
will be dp,, =21 +2. Next, we retain only those
portions of the d-body operators, which factorize
into products of two body (U2’ or :®’) operators.
Upon cancellation. of all unlinked diagrams we
arrive at our final linked expression for a certain
nth-order contribution to our equations (5.4). It
is not necessary to present all diagrams which we
have obtained explicitly; progress is as usual ac-
celerated by studying the structure of the expan-
sion and certain subclasses of diagrams.

First, we study all diagrams of second order
(in S) which contain one N element and have a
common factor €, +¢,, —€, —¢€,.. It turns out that
(removing the stated common factor) these are
identical with the corresponding diagrams appear-

G/

FIG. 4. Diagrams contributing to the correlated
coupled-cluster equations which are re-summed through
the introduction of the renormalized operator 8.
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ing in the second-order term of our “dressed”
2p-2h operator § [Eq. (4.16)]. Identical subseries
arise also from diagrams forming extensions of
the “particle-ladder”, “hole-ladder”, etc., dia-
grams shown in Fig. 3 (see Fig. 4). Infact, in
all other cases we have studied, we found the
building up of the series (4.16). [This statement
may, of course, also be obtained directly from
our construction rules (i) to (vi); as already
mentioned, further explicit elaboration of the
series (5.4) has served merely to confirm these
rules.] Consequently, we may re-sum all 2p-h
subdiagrams formed from § and % objects accord-
ing to the rules of Sec. IV., into the renormalized
2p-2h operator 8. Here, we mean by a 2p-h sub-
diagram a structure, which can be separated
from any graph occurring in the expansion (5.4) by
cutting two particle and two hole lines. Since
(according to our graphical rules), this re-sum=
mation can be performed in any place where a
bare § element appears, we can re-sum vast
classes of nonorthogonality corrections by simply
replacing everywhere § by § and omitting the dia-
grams summed in the latter object. By this re-
summation procedure we can eliminate S entirely
from our equations in favor of S, and achieve a
considerable simplification of the equations. The
rules according to which graphical contributions
to our (new) coupled-cluster equations in terms of
V@ 9 ® ¢ . and §are constructed are identical
with the rules (i)-(vi) given above, with the addi-
tional provision (vii) no 2p-h subdiagrams occur in
which all external lines enter an 8 operator, with
the trivial exception of the single $ operator.

The fact that we are able to eliminate these vast
classes of nonorthogonality corrections at no extra
expense by a simple redefinition S~8 seems sur-
prising at the first glance. This circumstance
may be understood in terms of a transformation of
our original nonorthogonal basis (1.5) into another
one, which avoids the appearance of the above-
mentioned diagrams from the beginning. It is also
partly attributable to our choice of working not
only with the energy expression (4.4), but also
with the Schrédinger equation in the form (5.2).
The reader is reminded of the situation in the
simple Jastrow variational theory for the energy
expectation value: As long as one computes only
the energy expectation value Hy, one has to
specify the Jastrow correlation function and solve
for the distribution functions. Upon deriving
Euler-Lagrange equations for f(r), one is able
to eliminate f(r) entirely from the theory in favor
of distribution functions, which are, in terms of
f(r), highly re-summed quantities.3®37

Next, we study facforizable diagrams containing
the effective interaction V#’, noting that all fac-

FIG. 5. Factorizable particle- (hole-) line diagrams
contributing to the renormalization of the single-particle
(hole) energies.

torizable diagrams containing the normalization
function 1 have already been included in §. The
former diagrams can appear on external lines
(Fig. 5) and contribute there to a renormalization
of the single particle (and hole) energies through

1 z :
e =6tz Sooravy Ve ©p*), 1
ow .
(6.7
1
e=¢,-% ), Vv 0on Soor v, -
vpo

Moreover, factorizable particle- and hole-line
insertions can also appear on internal lines.
(See the first diagram of Fig. 6). Such an inser-
tion may be combined with the energy numerator
part of an associated diagram and a corresponding
interaction line (see, for example, the second
diagram of Fig. 6) to generate (partially) renorm-
alized energy numerators. [Recall that CBF
single-particle energies also enter our effective
interaction V; see Eq. (4.9).] This renormaliza-
tion is, however, not as complete as for the sing-
le-particle spectrum in (5.7) according to rule
(vi) factorizable insertions can be applied only on
incoming particle lines and oufgoing hole lines.

We have thereby arrived at the final form of our
equations, defining a self-consistent effective in-
teraction Vg5 , by adding to V,4 4 all factoriza-
ble energy numerator corrections.

For further reference, we display explicitly the
final form of our equations, including all terms

FIG. 6. Renormalization of the energy numerator of
the effective interaction. The first diagram contributes
to the renormalization of the second one, which does al- -
ready contain the energy numerator parts due to the
bare CBF-single-particle energies [see Eq. (4.11)].
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linear in 8:

0=Vopam), +(e,+e,—e, —e )8,,.(,,,,,

+3 Z [ p0*(p10}), =

-(e,+ exl)Noa'(nlol) ]S"l"l(”")a
PPl

+3 Z sop'wlu)[ b, +(e, +ey)N, Vl(w’)]
n1

+ v oo o0+ € =N, o 1y 185 ny, +exch(p, p) (v, v7)}

py
+4 Z (Ve 8 Nyt v +Noprtoiatr. S Ve o ]
14 P0'(0191)4°0101 (V) g I (W) o T 00" (010Y) O 10 () T vy )
Dlpvl
+ 2 [V:vl(plv) N""’i("i"')as°1"'1(”1"'1) +exch(p, p’), (v, )] +O(8?). (5.8)
P1P1V1Y1 ¢ ¢

Clearly, our theory contains first of all terms of the conventional exp(S) equations for $‘®, but with the
bare interaction replaced by V*°, and the bare kinetic energies replaced by the CBF single-particle ener-
gies €,. (In contradistinction to the conventional theory, no diagonal-matrix elements of V*¢ appear, since
the diagonal portions of the interaction are already absorbed in €,.) Beyond these conventional terms we
have an infinite series of nonorthogonality corrections involving the explicit occurence of N‘®, whose
treatment calls for a suitable truncation scheme. We shall discuss this point in the next section.

VI. DISCUSSION AND COMPARISON WITH OTHER THEORIES

By construction, our theory still admits manifold possibilities for further re-summation of nonorthogon-
ality corrections. These further elaborations would, however, be somehow in contradiction to the original
aim of our work. Owing to the application of a Jastrow correlation operator we expect that the tamed ef-
fective interaction V‘® will turn out to be weak enough that rather simple approximations to our equations
are sufficient for an accurate description of the many-body system. We have already mentioned the sim-
plest approximation, retaining only the first two terms of the expansion (5.8):

gCBF Voot g (6.1)

e (W),
e, +ey—e,—-e,

which generates through Eq. (4.11) the second-order CBF correction. Next, the CBF analog of the Bethe-
Goldstone (BG) equation is obtained by retaining only particle-ladder diagrams, i.e., truncating the ex-

pansion (5.8) after the third term:

BG =
snn'(vxl)a =
1Pl

An especially promising feature of our theory
is that we also are able to include ring diagrams
without having to be concerned with the inclusion
of $'®, while in the conventional exp(S) theory S®
must be invoked to cancel the short-ranged repul-
sive part of the bare two-body interaction. One
may expect that these ring diagrams play an im-
portant role in the calculation of transport coef-
ficients. This is also the point at which the infin-
ite series of chain diagrams re-enter our theory;
whereas, when considering only the energy ex-
pectation value, ring diagrams have to be summed
explicitly for any correlation operator, these dia-
grams enter our theory through iteration of the
equations.

In short, we may characterize the relation be-

v 2
- e, +e,—e,~e, Voo, + (Voo AR

—(e,+e )an'(plpl).,]splp'(wl) ) 6.2)

I

tween our theory and the conventional exp(S) theory
as follows: By the introduction of an explicit cor-
relation operator F we can replace the strong,
bare two-particle interaction by a weak, effective
interaction U‘®, This will first of all result in a
better convergence of the augumented truncation
schemes for the equations determining 8. More-
over, we are no longer bound to truncation schemes
which take care of the core repulsion of the bare
interaction step by step. The summation of the
above-mentioned ring diagrams is just one ex-
ample; the use of self-consistent particle energies
provides another one.3® Quite generally, we can
generate, through suitable truncation and iteration
of our equations, the CBF analogs of all special
classes of Goldstone diagrams which may be of
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interest in traditional many-body theory. There-
fore, our theory may also be understood as the
construction of an explicit mapping of the bare
particle description into a “quasiparticle” descrip-
tion of a many-body system. In this quasiparticle
picture, we are in principle able to generalize all
the well-known descriptions of a system of weakly
interacting particles, without burdening (as in a
purely variational approach) the correlation oper-
ator F with the incorporation of complicated state-
dependent effects.

How does our theory compare to other, purely
variational methods which do incorporate state-
dependent components into the wave function via
the correlation operator F? These methods suffer
predominantly from the noncommuting features of
two general two-body f(i,7) employed in (1.4). Our
choice of the correlation operator (note that we
could simply redefine Fe’ - F) obviates this prob-
lem from the outset, since all S operators com-
mute. Further simplification is reached by choos-
ing an appropriate form for the ground-state ener-
gy: Using expression (3.9) rather than the repre-
sentation as an expectation value (3.7), we elimin-
ate all “operator-chain” diagrams from the energy
expression, since these can enter only via chains
of S* and S elements. The final resummation of
S into its “renormalized” counterpart $ eliminates
ultimately all chain diagrams of S and : operators
with the exception of their generators. _

The method proposed here is somewhat related
to Owen’s independent-pair ansatz for the correla-
tion operator F,?

F=Ilre. )2 a+v,)
<4 <4

=nfc(ru)(l+U+%U2+---) (6.3)
<G

where the sum runs over all pairs having no parti-
cle in common. Owen’s basic idea is closely re-
lated to ours: Use the complete Jastrow product
form for the purely radial correlations, and treat
more complicated correlations by means of the in-
dependent-pair form, which is far more tractable
than (1.4). The complete correlation operator of
the present work may be written, if we use the
two-body Jastrow choice for F,

Fes @ <[ £,0r,) 1 482 +25@%4.00) 6.4)
i

clearly establishing the correspondence to Owen’s
scheme. The conceptual difference is that in our
approach we arrive at an independent-pair type of
wave function through the definition of the two-body
correlation operator S®, whereas in Owen’s theo-
ry this wave function is generated through the de-
finition of the many-body correlation operator F.
Using the energy expression (3.9) and in particular
the correlated Schriddinger equation (3.10) instead
of a variational determination of S simplifies our
present approach so much that use of the complete-
ly general form for S® used above becomes fea-
sible, whereas only restricted forms have been
treated in the variational method.
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