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A large-amplitude high-frequency modulated wave launched by an external source significantly changes the
plasma equilibrium. The adiabatic Vlasov distribution function of the electrons is found for one-dimensional initial-

and boundary-value problems. The nonlinear dispersion relation is derived to all orders in the electric-field

amplitude. A new nonlinear mode below the electron plasma frequency exists. In this state the plasma is described

by a double-humped distribution function.

I. INTRODUCTION

Let us assume that a single wave E(kx —&ut, x
—v, t, t) is launched into the plasma from an ex-
ternal source. Here kx —vt denotes the fast oscil-
lation of the wave, k is the wave vector, (d is the
frequency, v~ is the group velocity of the wave
packet, and x —v~ t and t stand for the slow space
and time modulations, respectively. The scale on
which the slow variation takes place is determined
by the source and the plasma properties. For ex-
ample, the spatial scale L is related to the focus-
ing of the wave and the spreading of the wave pack-
et. The time scale T is determined by the adiabat-
ic turn-on of the pump and the wave-plasma inter-
actions. The latter may lead to Landau damping
and parametric processes with their own respec-
tive time scales.

The plasma equilibrium changes significantly in
the presence of a large-amplitude wave. We shall
consider waves, whose energy may be comparable
to or greater than the thermal energy of the par-
ticles. One studies the dynamics of the electrons
and considers the ions to form a stationary quasi-
neutral background. In the collision1. ess regime
the plasma state is given by the Vlasov distribution
function. There are two distinctly different prob-
lems in the Vlasov theory of waves. Firstly, for
all particie velocities v such that

~
v —v, ~

«L/T,
the distribution function should be derived from an
initial-value problem. In this case the particles
move through the wave packet slowly and respond
to the time variation of the amplitude. This was
the Landau approach, ' which for L- is valid for
all phase space. Since it corresponds to a homo-
geneous problem, we shall call the standard dis-'
tribution function homogeneous. Secondly, for all
v such that v —v»L/T, the distribution function
is found from a boundary-value problem. ' The
particles move quickly in the modulated wave and
adjust to its spatial variations. In a typical laser-
pellet experiment the focusing of the beam is
L= 10 ' cm, the time modulation T = 10 ' sec and

v, = 10' cm/sec. In the coupling of lower hybrid
(LH) waves launched by a waveguide array at the
edge of a tokamak plasma L = 1 cm, T= 10 ' sec,
and v, = 10' cm/sec In .both cases v, T/L = 100
and all of phase space can be treated as a bound-
ary-value problem. Only recently'4 it was pointed
out that the ponderomotive problem belongs to this
latter category Th.e distribution function (f) in
both limits is local in the electric-field amplitude
nearly everywhere in phase space. This is a great
simplification to the nonlinear problem and wQ1
allow us to write f explicitly to all orders in E.
In general, only parts of the phase space corre-
spond to a local theory.

We construct the Vlasov distribution function
from the adiabatic invariant (I) for a system evolv-
ing in time or space. When the system changes
slowly from one steady state to another, the adi-
abatic invariant is constant to all orders in the
parameter measuring the slow variation. ' The
Hamiltonian of the system is not conserved and
the energy of the particles may vary substantially
after long periods of time. However, for long
times l is approximately constant. The essential
difference between our approach and that of Bern-
stein, Greene, and Kruskal (BGK),' is that we
evolve the system, while the BGK construction
relies on the existence of a steady state, i.e., a
conservative Hamiltonian. The BGK approach does
not show how the system has evolved to such a
state. An infinite variety of BGK states are pos-
sible, which is not the way nature operates.

If the Hamiltonian is If(f, t), the nonlinear fre
tluency is 0 -=sH/sl. The initial-value problem I
is a constant of motion in phase space when Q»T '.
This is satisfied nearly everywhere, except for a
narrow region of phase space near the separatrix
(border line in phase space between the bounded
and unbounded particle motion). Close to the sep-
aratrix one has to keep the whole time history of
the problem and the theory is essentially nonlocal.
This region corresponds to the nonadiabatic par-
ticles which will be called resonant particles. One
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should remember that the trapped particles are
adiabatic, i.e., nonresonant, for sufficiently large
amplitude of E. In the common language this
means that (eEk/tn)+'= &os-»y~, where y~ is the
Landau damping. Of course, this is only a simple
example of the general relation between the non-
linear frequency and the time scale. For the
boundary-value problem one finds a different and,
to our knowledge, a new adiabatic invariant J.
The corresponding nonlinear frequency should be
much larger than L, ' and J will be a constant near-
ly everywhere in phase space.

The nonlinear distribution function, which we
find, describes the phenomena that depend on the
local value of the electric-field amplitude and is
correct to all orders in E. This is essentially a
nonresonant distribution in a more general sense,
since it includes the trapped particles. The reso-
nant contribution to the distribution function in-
volves the time history of the electric field, i.e.,
it is a nonlocal function. For a large-amplitude
single wave the contributions come from a neglig-
ible part of phase space. Since we neglect this
part, phenomena j.ike Landau damping will not be
included in our study. We must emphasize that
our solution represents most of the physics, since
it determines the major contributions to the sourc-
es in Maxwell's equations and the resulting non-
linear modes.

One finds that the solutions for the initial- and
boundary-value problems are very different. The
boundary-value problem exhibits more strongly
the nonlinear behavior. It includes what in simple
terms is called ponderomotive density change.
The concept of a ponderomotive potential does not
have any basic physical significance. It holds true
only in the dipole approximation, where a factor-
ization is known to take place. 4 When k =0, the
initial- and boundary-value soLutions for f differ
by a multiplicative factor e p(x-P~/T, ), where Q~
is the ponderomotive potential and T, is the elec-
tron temperature. In general, the initial- and
boundary-value distribution functions correspond
to different dynamical problems. The initial value
f leads to the generation of a steady-state current
and the boundary value f shows a pondermotive
(zero-frequency) density depressionFor lar. ge-
amplitude waves both exhibit a new nonlinear mode
below the electron plasma frequency. This mode
is associated with a bifurcation of the initial dis-
tribution function (Maxwellian) and represents a
new state of the plasma.

There is strong evidence that such a mode has
been found recently in a magnetized plasma loaded
waveguide. ' The observed solitary structure called
an "electron hole" has the qualitative features of
the trapped particle mode, described in this paper

as a solution of the initial-value prob1em.
This paper is organized as follows. In Sec. II,

we develop an intuitive approach, which is along
the lines of the traditional nonresonant perturba-
tion theory. In Sec. III a canonical formulation of
the Vlasov equation is used to derive the adiabatic
invariants and to write explicitly the distribution
functions. Section IV is devoted to the nonlinear
dispersion relation and the resulting new mode. A
summary of what we believe are the important
points and suggestions for further research are
discussed in Sec. V.

II. PERTURBATIVE APPROACH TQ THE VLASOV
EqUATION

f Q f (v x t)e fn(htt -kx)

where the amplitudes f„are slowly modulated in
time and space. By substituting (2) in (1) one gets
the infinite set of equations

1
+V p

—g p8t 8m~
' '8v

kvt 1 8 8 i-in 1- „+——+v
8t 8x)

(3a)

= ~vo
' (f„,+f„+,), n~l. (3b)' 8v

The electron distribution function wi11 be given
in terms of the electric field E(kx —&ot, x —v~ t, t).
The actual dependence of E on the fast oscillation
and the modulations can be found from the M~-
we11 equations. Before we engage in this gen-
eral problem one should examine the functional
dependence off on E for a specific example.

Let us consider that the amplitude of the first
harmonic of E, excited by an external source, is
much larger than the amplitudes of all the higher
harmonics. This wi11 allow us to explore certain
limits and develop some intuition about the self-
consistent solution. One should try to eXtract
from the following example the general features,
and the discussion in Sec. III will substantiate
them.

The Vlasov equation for electrons in the frame
moving with the wave packet is

s s 8
st ex=+v =aviv, (x, t) cos(kx- &ut)

8V

where v, =-eE, /nt&u. To simplify the calculation
further let us assume that v~«v„ i.e., Eq. (1) is
nearly valid in the laboratory frame. We shall use
this approximation throughout the paper, since the
generalization to arbitrary v~ is trivial. The so-
lution of (1) can be written as
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If we assume a long scale of spatial modulation
(v,«L/T) the distribution function can be found
from the infinite chain relations (Sa) and (Sb) as
an initial-value problem. In the nonresonant do-
main 1 -kv/ru»(&uT) ', and from (Sb) one can
write

i B

(cd Bt v,

(I+). I

f =f„[v+v,(t) sin&at], (9)

i.e., it is the Maxwellian in the oscillating frame.
In the case of very slow time modulation

(v, »L/T) the Vlasov equation should be solved as
a boundary-value problem. The chain relations
are

approximation (k =0), the infinite Taylor series
for f, can be summed. Furthermore, for k =0, all
the local harmonics were found and the total dis-
tribution function simply became

B
x

8 (f.-r+f..i) ~

Note that one considers only the first derivative
with respect to the slow time evolution. Equation
(3a), then, takes the simplified form

(5)

V B p g B
P

B
1 1

. v B

k'v co Bxf„= in 1 —-1— 2 Vp

(
k

(10)

The Taylor series for f„ in the oscillation vel-
ocity v, is constructed by including the contribu-
tions of the corresponding harmonics from (4) and

(5). In general, one can writs

Bvn
f„=v,"P„(vo,v)+ 0 Q„(vo, v),

Bt
(8)

Bt 4 Bt " ~ ]
(7}

By integrating over time one finds the average dis-
tribution function to order vp:

2 kv '
(c7

(8}

This is the usual nonresonant quasilinear distrib-
ution function. A steady-state drift (v) = fvf0" e0
is generated. It has been shown4 that in the dipole

where P„,Q„are polynomials in vp. The first
term on the right-hand side (rhs) of (8) is local
in the electric field and the second term takes
into account the time modulation. The equation
for the time average amplitude f, includes only
the first derivative terms. To find f, one has to
integrate Eq. (5) f, dt' and use the appropriate
initial value for f. In this paper we use f(t=0) =f„,
where f„is the Maxwellian distribution. This
choice simplifies the expressions, but the method
is applicable for an arbitrary initial distribution.
The resulting formula for f, is local in v, (i.e., it
does not depend on ev, /et). One neglects the non-
local part of the amplitudes f„and by summing the
Fourier series (2) one can find the total local dis-
tribution function.

To illustrate some of these steps we find f, to
first order in v, from (4}, where we neglect f,
and use f,=f„. The result is substituted in (5):

B
x (f„,+f„„).

The Taylor series in vp is constructed as before,
but one integrates over space f, dx', at the
boundary point xs,f(xs) =f„.To order v', one
finds for f,

(12)

There is no singularity at v =0 since vg vf„-
By comparing with the result in (8} one can note
a basic difference. The average density from (8}
is (n"') = n, . The boundary-value distribution
function from (12) leads to what is called a pon-
deromotive density change (n"') en, . However,
no steady-state current is generated.

In the dipole approximation to all orders in v,
the total distribution function is'

f=f„[v +v( xs}i snrt] exp~-
( v,'(x}

2vt
(13)

The solutions in (9) and (13) are remarkably simi-
lar. Both correspond to a Maxwellian in the oscil-
lating frame and the ponderomotive effect can be
factorized by introducing an effective potential,
i.e., the ponderomotive potential. However, we
have to warn the reader that this simple picture
is true only in the k =0 case. In general the dyn-
amics in the two problems is very different.

Before we go further we would 1Re to discuss
an approximate scheme which gives rather well
the qualitative features of the general solution.
Since the oscillation frame plays an important
role in finding the distribution function, one should
try to generalize this concept. For k+ 0 the pa-
rameter of nonlinearity is of the form v, /(1 -kv/cu).
We suggest that in the initial-value problem f is
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approximately

f"=exp[-(w + S}'], (14}

1 1'1 2 wp
1/2

S,= ——w+
~

——w ' —2 ' sin((ot —kx}
a (a a

(16)

S is used for the bulk of tQe distribution
w& [1—(2aw, )v'] /a, and S, represents the tail
w&[1+(2aw, )'~']/a. It should be noted that f is
given by the Hamiltonian of the system [see (14}
and (16}]:

f"= exp [-(1/a a 42H)'], (1Va)

where

where h stands for homogeneous and we have omit-
ted the trivial normalization and w = v/v, . S is
given by

w, sin(et —kx}s= 1-aw —2aS

where w, =v, /v, , a=kv, /ar. The oscillation frame
is written in terms of a simple continued fraction.
We solve S from (15) to find

the existence of a nonlinear mode below the elec-
tron plasma frequency. In Sec. IV it wQ1 be shown
that the contributions from the region of trapped
particles are responsible for this mode.

Now we write f which corresponds to the bound-
ary-value problem. By using the ideas of the os-
cillating frame and factorization we find f~, where

p stands for ponderomotive

2

where the result for f" in (14) and (16) is taken
for a spatially modulated amplitude w, (x). In the
limit k 0, (18) gives the distribution of Eq. (13).
The effective potential (ponderomotive) in (18}is
both velocity and high-frequency dependent. Al-
though not entirely correct, the expression in (18)
contains many features of the exact solution. The
resulting dispersion relation predicts the exis-
tence of a nonlinear mode below the electron plas-
ma frequency. The reason for this is that here
the trapped particles do not play as significant a
role as in the initial-value problem.

III. ADIABATIC KINETIC THEORY

H = —(1/a —w)' — ' sin(rut —kx) .w, (t)
a (lvb} The Vlasov equation for the initial-value prob-

lem is

In the frame moving with the phase velocity v/k,
H still retains an explicit time dependence through
the modulation w, (t}. Therefore, H is not con-
served and the expression in (14) is not the proper
Vlasov distribution, but only an approximation to
the true solution. The fact that f is given as a
function of H in terms of a continued fraction in

w, makes it a very good approximation. This is
not apparent yet and we shall discuss it in the next
sections.

If w, (t) = const, the solution for f in (1Va) will
be formally identical to the most widely used form
for the distribution function of the untrapped par-
ticles in the BGK approach; for example, see Ref.
8. However, here f is not simply written as in the
BGK theory. It is constructed from the evolution
of a certain initial distribution. So far, this con-
struction is based on intuition and the actual de-
rivation will be presented in the next section. f
in (1Va) describes the linear theory, the dipole
approximation, and represents a number of higher-
order terms, as we have checked from the chain
relations. However, it does not give all of the
terms from the perturbation series generated by
(4) and (5). Therefore, an analytic continuation
through the resonant domain, which has acquired
a proper width, is not possible. The continued
fraction solution in (14) cannot be extended to de-
scribe the trapped particles. It fails to predict

Bt BX

aQ(t, kx —u&t) af
Bx Bv

In a frame of reference moving with the phase vel-
ocity x=x —&u/kt, t=t, 8=v —&o/k, Eq. (19) becomes

Bf Bf 8$(t, kS) 8f
Bt 8$8$8v (20)

df sf +(H f) 0
dt Bt

(22}

and the Poisson bracket is defined with the con-
vention (v, 8)=1. The Vlasov equation requires
that f be a constant of the motion. Because of the
expl. icit time dependence in P, the energy is not
conserved and f cannot depend only on H. It is
well known from classical mechanics that a com-
bination of H and the amplitude of P(P,) is con-
served to all orders in the slow time variation.
That quantity is the adiabatic invariant'

a-y t, ax "'ds, (28)

In the canonical formalism the evolution of the
system is described by the Harniltonian

H =
& v '+ Q(t, kit}, (21}

where 7 and v are the canonical coordinate and
momentum, respectively. Equation (20) can then
be written in the form
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N= 7, v dx dv=2m I dI.
vph Vg

(28)

Now let us evaluate I ~ at the separatrix and denote
the result by A. Similarly, let the value of the in-
variant for bounded motion (P) at the separatrix
be B. A can be written as a function of B: A(B).
From (23} it is ea,sy to determine the proper range
for I andI'. When v-~, I~-~, and when one

approaches the center of the domain of bounded
motion I"-0 By using the .explicit result in (24)
the invariance of the norm leads to a simple equa-
tion for the trapped distribution function (Tr stands
for trapped)

B
fTr I dI

0

+ exp ————I d I . 26

where the integral is taken over one cycle of the
motion. In the three-parameter space (S, v, (()),)

f(I) is a solution of the Vlasov equation when

0 =—BH/ef» y, where y is the rate of change of
For large-amplitude waves this is satisfied

in all of phase space, except for a negligible re-
gion near the separatrix. f(I) is discontinuous at
the separatrix. This is not surprising, since the
particle motions in the bounded and the unbounded

regions are qualitatively different and lead to dif-
ferent adiabatic invariants. For every fixed v the
distribution function f(l(v, x, t)}is discontinuous
at no more than two values of x. If we average
over x, the resulting average distribution function

(f)„ is continuous everywhere in velocity space.
On imposing the initial condition )t)(t,}= 0,f(t,}=f„
and by using I(t,) =I(t) one finds the following ex-
plicit form for the distribution function in the re-
gion of unbounded particle motion:

f =ssp ————I ()I, 4) sss —v) j . (24)a CO

a vt k

The result is written in the laboratory frame. I
is the action for the unbounded particles (os stands
for oscillations). Obviously, the trapped distribu-
tion function cannot be found from an initial condi-
tion with a vanishing electric field. To determine
it we define a norm (N) of the distribution function
as the integral of f over phase space. The domain

in phase space is periodic in 7, 0 &k@&2m, and ex-
tends over all velocities -~ &v& ~. For the initial-
value problem N is the number of particles in

phase space. The norm is a function of the evolu-
tion parameter, which in this case is time. The
Vlasov equation (22) leads to conservation of the
norm N= const. Let 8 be the canonical angle as-
sociated with the action I. Since the transforma-
tion (x, v) (I, e) is canonical, one can write

By differentiating with respect to B and by sub-
stituting 9=I" one obtains the trapped distribution
function

2
AA(l') I AA(r ))*"

dP . ~a v,

(
224 (I')

) (27)

Given the initial condition, the distribution func-
tion is determined uniquely by (24} and (27) for all
times and everywhere in phase space in terms of
the corresponding action. This is in contrast to the
BGK approach, where there is an infinite degree of
freedom in choosing either f~(H) or fr2(Jf).

To be more explicit we shall choose P in the
form of a plane wave:

(()) = —v, (t ) sin(kS) .40
(28)

The integral in (23) can be evaluated in terms of
elliptic functions. We define a parameter p:

2((vvo /k)
H + Qpv&) /k

For the oscillating particles one has'

(29)

(30)

where p'&1 and E(p) is the complete elliptic inte-
gral of the second kind. I"is the action for the
nonlinear oscillator. The bounded (trapped) par-
ticles give rise to the action for the nonlinear rotor
(p'»):

,(,)
) (sl')'& „(ll ) (34}

Formulas (24) and (34) give the total distribution
function for the initial-value problem everywhere
in phase space. The adiabatic theory is valid when

0 =v(de/K(p)»T '.
Near the separatrix"

(35)

(31)

Here K' is the complete elliptic integral of the first
kind. A can be found from (30) when p-1:

A = (4/v)(v, ~/k')"'. (32)

Similarly, from (31) when p-1 one gets for B:

B = (8/v)(v, (4)/k')' ' = 2A . (33)

The explicit form for the trapped distribution from
(27) becomes



V LADIMIR B. KRAPCHEV AND ABHAY K. RAM 22

K(p) = 2ln16/(1-p'). (36) The system, described by f, evolves in space and
the corresponding Hamiltonian is

ef ef E(», » —(&u/k} t ) ef
Bt ax Bv

(3V)

where E is the electric field for a spatially modu-
lated wave. Let t; =» —(&o/k)t be the variable of the
fast oscillations and let x denote the spatial modu-
lation. We define g(», g} such that E(», 5)
=-tu[eg(», t;)/eg]. Note that the quantity g is not
the actual potential, since the derivative is taken
with respect to the fast variable only. We change
variables t, » l, » and Eq. (3V) can be written in
the form

af
~(

~ ~, af e|t(», g) af
Bx ( 0 ]~ 8$ 8$ Sv

On making the substitution u = v' Eq. (3V') becomes

ef v~ -(~/k) ef ey(», g) ef
e» ~u a) a) au

The conditions (35}and (36}show that large-amp-
litude waves will be described by an adiabatic
theory, i.e., the response of the plasma is local
in the electric-field amplitude and is reversible.
At the same time (35) sets a limit on the present
theory. Obviously, the distribution function from
(24}and (34) doeS not lead to Landau damping.
This is in full agreement with Ref. 11, where f is
constructed from the exact particle trajectories
for a plane-wave electric field. As was shown in
Ref. 11, for times t such that est» l, y~(t)-0,
where y~(t} is the exact Landau damping. If a&s

»y~, then before the amplitude of the wave has
changed substantially, the growth rate has phase
mixed to zero. For large-amplitude waves the
trapped particles are adiabatic. Since the char-
acteristic of nonresonant particles is a reversible
interaction, the trapped particles are nonresonant.

The distribution function from (24} and (30) gives
the linear theory, the dipole approximation, and
reproduces all terms in the perturbation series
described in the preceding section. Furthermore,
a detailed calculation justifies the approximation
of the unbounded motion by an oscillating frame in
terms of a continued fraction in v, . If the region
of trapped particles is small (small amplitudes v,}
or out in the tail of the distribution function
(v, «ru/k) most of the particles are given by f »
from (24} with the action from (30) approximated
by I»= (2H)'~'/k. But this is exactly the solution
in (14) and (15). For a comparison between the
adiabatic theory and the perturbative approach to
fourth order in the electric-field amplitude see
Appendix A.

For the boundary-value problem the Vlasov
equation is

G =[((o/k) -Wu]'+2&(», (). (39)

3rd/Q«kL«kvtT. (44)

This implies we11-focused waves and large electric
fields. The general solution for the boundary-value
distribution function is f(J). If we impose at the
boundary g(»s, $) =0,f(»s) =f„, the solution for
the unbounded particles is

(45)

To find the trapped distribution function (fY') we
use again the principle of conservation of the norm.
It should be pointed out that the canonical variables

Here $ and u are the canonical coordinate and mo-
mentum. To within a factor of &, H from (21}is
similar to 6 above, except for the difference be-
tween Q and f T.he canonical variables, however,
are very different, and so is the dynamics. The
quantity, which is a constant of motion, is the
adiabatic invariant J:

((yZ= —[G -2y{», g}]"'sgn~ —-Wu~ d~.
2w jl

(40}

Here the integration is over one cycle of the fast
oscillation. Note the difference between Ifrom
{23)and Z as given above. While the integral in
(23) is taken over velocity, the action J is ex-
pressed in terms of an integral over the kinetic
energy. A straightforward integration of (40) for
the unbounded particles leads to

k J' "=(ru/k)'+G —2(uI "(,'G, y) sgn [-(ru/k) —v],
(41)

where I is the action for the free-oscillations
from (23). Similarly, the adiabatic invariant for
trapped particles is

kJ"= 2&oP{2G, g) . (42)
/

To within a trivial normalization factor the action
for the bounded motion is formally the same as for
the initial-value problem. From (42} the nonlinear
spatial frequency Q, —= eG/aZ is

(43)

Here Q is the nonlinear time frequency eG/eI
The requirement for the validity of the adiabatic
theory is Q, »L ', where L is the length of spatial
modulation of the wave packet. Also, the boundary-
value problem leads to v, »L/T. These two con-
ditions can be summed up in the following inequali-
ties:
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err(Jr) dA&(J"
I

kA&(J
I
g(Jr Jr)

dA, (J") kA, (J') l(

d Jr exp )I
(47)

Formulas (45) and (47) give the total boundary-
value distribution function everywhere in phase
space. Again discontinuity occurs at the separa-
trix, but for a fixed v it is at no more than two
points of the fast oscillation variable. The aver-
age f is smooth everywhere.

To be explicit, we choose for g a plane wave of
the form

here are (v', $) and the corresponding norm is the
current, not the number of particles. This is the
essential difference between the two cases. Since
the current is zero at x =@~, one can write

I f + f lm I-, ,I«*f+/~~~«

(46)

B, is the value of the nonlinear rotor from (42) at
the separatrix. A, and A, are the values of g
from (41) taken at the separatrix for &o/k&v and
&u/k&v, respectively. The integrals in (46) are
extended over the whole domain of the correspond-
ing adiabatic invariants. This implies that the
boundary points A, ,A, are monotonic functions of
B, . Let us assume that for a certain B„,dA, /dB,
=0. For B,&B„,A, (B,) is monotonic and has
covered a certain domain of the adiabatic invari-
ant. For B,&By Ay will repeat. the same values
it had before. To avoid the double counting we
have to subtract all the contributions that have
been taken previously. If for B,&B„there are no
new values of Ay one should replace the first inte-
gral in (46) by f"' '~' This.procedure can be ex-
tended to more complicated cases. We differenti-
ate with respect to By and substitute B, = J". The
trapped distribution function then becomes

distribution function becomes

f '(Z')= cosh(, ) —Il ), sinh(, )
1 yak Jr) 2

x exp ——,- 2a2 16v2

2k ki'
1 Scg l'

~ma 'kJ"f"(J")= -'+I
v,

1 mak J"l' k J"
x exp ——,—2a' 16v, ) 2v',

From the explicit form for the initial-value dis-
tribution function (24) and (34), one can see a cer-
tain similarity with the expressions in (45) and
(51}. The relations between the corresponding
adiabatic invariants in (41}and (42) lead to a fac-
torization of the form

f (boundary) =f(initial) q(Q'~) . (52)

Q'" can be regarded as an effective potential, but
the expression is rather involved. Only in the
dipole approximation it reduces to exp(-Q~ /T),
where Q~ is the usual ponderomotive potential. In
general, g's is velocity and high-frequency de-
pendent.

The distribution function in (45) and (41) de-
scribes linear theory, the k =0 approximation,
and gives all terms in the perturbation series. It
shows that for a sufficiently small a =kv, /&o, the
oscillation frame result in terms of a continued
fraction (18) is a very good approximation. For an
agreement between the adiabatic theory and the
perturbation theory to fourth order in the electric-
field amplitude see Appendix B.

y = (&u/k} v, (x) sin(k]) . (48)
IV. NONLINEAR MODE BELOW THE ELECTRON

PLASMA FREQUENCY

~16~ v.~ '~2
(49}

Now the integral in (40} can be calculated and J~
is given by (41), where I~ is explicitly written in

(30). Similarly, Z" is given by (42) and (31}. At
the separatrix the adiabatic invariants are

The general solution for the distribution function

f (v, Z) in terms of adiabatic invariants determines
the sources in Maxwell's equations. The latter are
solved with the appropriate initial or boundary con-
ditions to find the self-consistent E. For the elec-
trons in the one-dimensional case we have

& mk
s +2116 kBi gBi~ (50a)

00

Bt
=4ven, vf(v, E)dv, (53)

wk l'
A, = 0+2 16 I

kB', +2B, ;16+ )
(50b)

dA, /dB, =0 for B„=(1/2k)(8ru/wk)'. We substitute
(49) and (50) in (47) where B,= J' and the trapped

where n0 is the initial (unperturbed} density. Equi-
valently, one can use Poisson's equation. The
nonlinear dispersion relation is the condition for
existence of a solution for E. Let us assume that
the source and the plasma properties allow for the
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excitation of a finite number of harmonics:
E

E g E (& f ) c-(n(art - its) (54)

E„=y„(E,, . . . ,E„), s =1, .. . , N. (56)

Equations (56) are homogeneous in the sense that
E„=0 for all n =1, . . . , N is a solution. A nontrivial
solution mill exist when a certain condition is sat-
isfied and this is the nonlinear dispersion relation.
For small amplitudes it reduces to the determin-
ant of the coefficients of E, . In practice, the amp-
litude of a certain harmonic is much larger than
the others. We assume that this is the first har-
monic and the dispersion relation reduces to

-i+E, =4men, V y V Ey dV.
W

(57)

We have taken into account the self-consistent re-
sponse of the pump on itself and have neglected
the generation of higher harmonics. The disper-
sion relation is a two-dimensional surface in the
three-dimensional parameter space (&u, k, E,)

For the initial-value problem the amplitude f, is
found by averaging f exp[i((dt-kx)] over the fast
oscillytions. The expressions for f in (24} and (34)
are used and I is given by (30) and (31). Both the
unbounded and the trapped particles are taken into
account. f, is a very complicated function and to
evaluate the rhs of (57) analytically is a hopeless
task. We should add that, in general, any com-
ponent f„ is more involved than the total distribu-
tion f. The reason is that only f contains the dyn-
amical symmetry introduced by the adiabatic in-
variants. This is illustrated even in the dipole ap-
proximation in Ref. 4 when f, is compared with the
results for f in (9) and (13). The integral in (57) is
done numerically, where we approximate the el-
liptic functions uniformly with an accuracy better
than 3X10 ' (see Ref. 10).

For small Ey the only wave present is the Lang-
muir wave. As the electric-field amplitude in-
creases a nem nonlinear mode below w~, appears.
A large E, is needed to satisfy the basic condition
au~ »y~, since y~ for the lower frequencies of the
nonlinear mode is large. The dispersion curves
for different electric-field amplitudes have been
plotted in Fig. 1. Notice the appearance of two

E„(x,t) are the amplitudes modulated in space and
time. The corresponding distribution function can
be mritten as

N

f= Q f (~ ~E })e-(n(&u(-kx) (55)
n=l

where f„(v, (E,})contain the slow space and time
variation. By substituting (54}and (55) in (53) one
finds a system of N equations:

3 A. 5@=1+——+-2xsx2 (56)

where x=(&o/to~, )', b=(eE, /mrs~, v,)', X=(khan)', with

v~, being the electron plasma frequency. For a
detailed calculation see Appendix C. The lower
mode corresponds to the excitation of the trapped
particles. The dispersion relation is approximate-
ly

(ekE, &

07 = 40g:
j

(59)

A simple intuitive derivation of (59) is presented
in Appendix D, but the formula was initially dis-
covered by a numerical integration. In this case
the number of trapped particles is greater than the
number of unbounded el.ectrons. The dielectric
properties of the medium have changed in the pres-
ence of a large-amplitude E, and the plasma mill
admit such a propagating mode. This phenomenon
is related to the self-induced transparency" and
we hope that further research will shed more light
on this subject. In the limit kA~ 0 the results for
the lower branch should not be trusted, since we

l.2

I.O b= I.o

0.8

0.6

0.4

0.2

0.04 0.08
(kXo)

O.I2
I

O.I6

FIG. l. Dispersion curves for the initial-value prob-
lem at different electric-field axnplitudes b = (eE/mese&P.

branches. The range of 4 is limited and is smaller
for larger E, . This is a general feature of the non-
linear dispersion relations and is also true in the
boundary-value case. The upper branch corre-
sponds to the nonlinear Langmuir wave. The un-
trapped particles are responsible for this mode and
the distribution function in the oscillating frame
(14) and (16) is a good approximation. With f from
(14}and (16) the nonlinear dispersion relation for
the upper branch to all orders in eo/v, and to sec-
ond order in kX~ is
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have neglected the ion dynamics and the analysis is
restricted to ar»(u&& .

In the initial-value problem the modes can exist
for very large E, and there is no constraint to im-
pose an upper limit. For the trapped particle mode
there is a critical strength of the electrostatic po-
tential, below which the mode cannot be excited.
On the basis of stability considerations (see Ap-
pendix D} we determine that the threshold condi-
tion is approximately 0.4-

(60) 0.2--

-4 -2 2
V/ Vt

6 8

FIG. 2. The average distribution function on the upper
branch from Fig. 1. The nor~~&ization isfz(o = 0) = 2n',
b=1, (ca/cop/2=1. 05, and (khv)2=0. 02.

where q is the amplitude of the self-consistent
potential (E, =kg) and T is the temperature
(2 m v,

' = T). This is in qualitative agreement with
the experimental observations in Ref. V. One
should note that the theory of electron holes" is
unable to predict the critical potential.

To complete the analysis of the initial-value
problem we find the equilibrium to which the nor-
mal modes correspond. With values for (&o, k, E,)
from Fig. 1 we calculate f, , the distribution func-
tion averaged over the fast oscillations. We have
plotted on Fig. 2, f, from the upper branch. Its
form is almost Maxwellian, but it corresponds to
a higher effective temperature. The result for the
lower branch is plotted on Fig. 3. It exhibits a
double hump in the bulk of the distribution function4
and a very wide region of trapped particles. This
is a nonlinear plasma state far from the initial
equilibrium.

Our theory predicts that from an initial equilib-
rium with a Maxwellian f and an electric field E =0
the system can evolve adiabatically to only two
stable states. One of them corresponds to the
Langmuir wave and is present even for very small

-4 2
V/V)

E

4 6 8

FIG. 3. The average distribution function on the lower
branch from Fig. 1. The nor~~&izatt. on is f~(e = 0) = 27t,
b=1, (co/m&~)2=0. 16, and (kA, &) =0.02.

amplitudes of E. Its distribution function is nearly
Maxwellian. The other state is the tra', pped particle
mode and exists only at sufficiently large ampli-
tudes of E when most of the particles are trapped.
The corresponding phase velocities of this mode
are always smaller than those of the Langmuir
wave. The dispersion relation is given approxi-
mately by (59}and &u/k-Wy, where y is the amp-
litude of the self-consistent potential. The dis-
tribution function is approximately fr' from (34}.
One can see that in phase space fn forms a ring,
peaked at I;=2&@/k'. The area of this ring is v/4
of the area enclosed by the separatrix. To see
this use (33}for the boundary value of I' at the
separatrix and the dispersion relation from (59).
All of these results have been confirmed experi-
mentally in Ref. V, at least qualitatively. We are
aware that a recent theory" explains some of the
features of the electron holes. However, it suf-
fers from the general weakness of the BGK ap-
proach in which no evolution of the system is pos-
sible.

The distribution function for the boundary-value
problem is calculated from (45) and (51), where J'
is given by (41) and (42) and I from (30) and (31).
Tofindtheamplitude f, weaverage f exp[i(&ot-kx}]
over the fast oscillations and the result is sub-
stituted in Eq. (57). The spatial modulation ex-
hibits much stronger nonlinear dependence. The
dispersion curves are plotted in Fig. 4 for differ-
ent electric-field amplitudes. By increasing E,
the plasma mode acquires negative nonlinear dis-
persion, i.e., it becomes backward. At the same
time a new nonlinear mode appears at much lower
frequencies. Both modes propagate not only below
au~„but below the ponderomotively depressed den-
sity: n~=n, exp[-(vo/2v', )]. In this sense there is
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b'0.5
35'

Q8

04

02.
-4 -2 2

V/Vf

0.020 O.o4 O.os 0;os O.I

(k10)

FIG. 4. Dispersion curves for the boundary-value
problem for different electric-field amplitudes
b = (eE/m~p~ti'.

an effective tunneling. These nonlinear modes are
related to the recently observed anomalous prop-
agation. " The experiment was carried out with a
CO, laser beam, transmitted through an overdense
z-pinch plasma. While we have not taken into ac-
count an electromagnetic pump wave, and probably
mixed couplings, it appears that a nonlinear mode
is responsible for the nonlinear propagation. It
occurs in the regime vo/v, —1, which is the one de-
scribed here. For very large amplitudes b= (eE,/-
m&o', v, )'&0.74, there is no propagating mode. For
even higher amplitudes new modes at smaller fre-
quencies appear. The region where the lower and
upper branch of the dispersion curve are joined
corresponds to very large v~. One should remem-
ber, that the distribution function was evaluated
explicitly with the assumption v «o/h. In prin-
ciple, f canbe written for any v, but the actual
calculation of the dispersion relation becomes
extremely complicated. By leaving v~ as a param-
eter in f and the integral in (57), one has to de-
termine it from the dispersion relation, which
should be corrected. A converging procedure will
indicate self-consistency. At the present time this
has not been done', therefore the portion of the
graph where the two branches connect should not
be trusted.

Once the dispersion relation is known, we de-
termine to what kind of equilibrium the normal
modes correspond. By taking particular values
for (&u, k, Z, ) from Fig. 4 we calculate f„ the dis-
tribution averaged over the fast oscillations. The
results are quite striking. For the upper branch
fo has almost a Maxwellian form (see Fig. 5}. This
is not surprising, since the upper branch is related

FIG. 5. The average distribution function on the upper
branch from Fig. 4. The normalization is f„(v= 0) =2&,
0=0.0, ((o/(o.$2=0. 70, and (SR+=0 04

For 5 0 we have the Langmuir wave; X 0 gives
the ponderomotive density depression. Equation
(61) predicts correctly the critical' for the ap-

F

-2 0 2 4 6 8
V/V)

FIG. 6. The average distribution function on the lour
branch from Fig. 4. The normalization is f~(m=0) =2m,
&=0.5, (co/co~) =0.20, and g'X )~=0.02.

-4

to the linear Langmuir wave. The lower branch
however, exhibits a double hump (see Fig. 6). This
is a true nonlinear mode, corresponding to a plas-
ma state far from the initial equilibrium.

The basic features of all these phenomena can be
described by the oscillating frame approximations
(14) and (16}. In this case the effect of trapped
particles is neglected and the picture is only qual-
itatively correct. The nonlinear dispersion rela-
tion for the boundary-value problem to all orders
in v, /v, and second order in kXv is (see Appendix
E}

x=mp(-
~

I+ ————.(513x9&b&bl
2x& 2 x 8 x' 12 x&.

(61)
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pearance of the nonlinear mode (lower branch) and
the limit when no propagating mode is present.
The boundary-value problem exhibits much strong-
er nonlinearities even without trapped particles.
The electric-field amplitude comes in the dis-
persive term in (58}, while (61) contains an ex-
ponential factor.

V. DISCUSSION AND SUMMARY

We have described the kinetic theory for re-
versible nonlinear processes in a plasma. The
particles interact with a single large-amplitude
wave. Our study has been limited to electrons in
a one-dimensional problem. The extension of the
concept of adiabatic invariants to three dimen-
sions, an external magnetic field, and ions is,
in principle, straightforward. Serious technical
difficulties will most likely stand in the way. From
a practical point of view these generalizations are
very important. One should review the parametric
processes, which in the case of large v, /v, have
been treated correctly only for a dipole pump. "
The adiabatic theory will allow us to find the non-
linear steady-state current and the resulting mag-
netic-field generation. Furthermore, the excita-
tion of higher harmonics can be studied.

Some basic phenomena, however, have been left
out. These are the irreversible processes which
originate in the domain of phase space where the
adiabatic approach fails. The time evolution of the
adiabatic invariant must be found. Here we note
the interesting relationship between the time as-
ymptotic form of I'(t) and potential scattering in
quantum mechanics, as studied for the harmonic
oscillator in Ref. 16. Also the effect of many
small-amplitude waves on the evolution of the non-
linear equilibrium has to be explored. The ex-
ample in Ref. 1V illustrates the connection with
stochastic processes. The particles near the sep-
aratrix are most susceptible to perturbations.
These may ultimately lead to a change in the plas-
ma state by irreversible transfer of energy and
momentum from the wave to the particles.

From the Vlasov equation only the total distribu-
tion function f is a constant of the motion. Any

averaging procedure will break the inherent dyn-
amical symmetry. Therefore, an equation for
(f},where( } stands for average, will include
some effective terms which describe an interac-
tion. Quantities like the diffusion coefficient wQl
have to be estimated. These bear no basic physi-
cal significance, but may prove useful in certain
regimes. This problem is similar to the one in
fluid theory. An infinite set of equations has to be
truncated by a clever approximation.

In our approach we explore the solutions for f in

phase space, where a fundamental quantity —the
adiabatic invariant —is well defined. For large-
amplitude single waves this determines the plas-
ma equilibrium. When we evolve the system from
a certain initial state we find the possible stable
modes. If at t=0, f=f„, andZ =0 there are only
two stable modes in the +~, range of frequencies
to which the system evolves; the Langmuir wave
and the trapped particle mode. This is what was
observed in the experiment described in Ref. V.

We hope that experiments in the near future will
further confirm the existence of nonlinear plasma
states and open the door to a vast and rich field of
research.
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and v =(2v, v h}+' is the trapping width, and when
nearly all of the particles have velocities in the
range v& vph v~ This implies that

2= 4ace,
(1 — ma)' 2+ate, (1+sin() (Al)

where a =kv, /&o, ut=v/v, , tv, =v, /v, , g =km —tot.
The adiabatic invariant for the free-particles in

the initial-value problem

kf 2&2
( (dvo1~

( )II+ & P, (A2)

when expanded to the fourth order in v, gives

(
kI l 1I ( 1 zoo

/
=sgn/so- —//- —+a+ '(1 P)/a&E a

W
+ ', (2P'-4P+8)4a'

z83a2
+ 0, (-2P'+6P' —9P+5)4~5

5' 4a'+, (8P' —32P'+72P'-SOP+35),64a'
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where o. =1 —aw and P =1+sin).
In the special case of the dipole approximation

k =0, it is easy to see that using (A3) in (24} re-
produces the oscillating frame result of (9). Sub-
stituting (A3) into the distribution function {24)and
averaging over g terms up to v'„we obtain

is

Q J 0$
= —1+(1 a-w)'+2aw sin)

Ir- 2a sgn! —-w!,
v, (a )

(Bl)

( (4) exp(-w')
v

w2 aw 1 t
x 1+wo 2 — s —

2 2!
Q Q 2Qj

(
+w',!,(w' —3w'+ g},+ 4, (-w'+ —,')P (4Q4 ' 4 Q5 2

-( ' —-') — ! . (A4)16 Qe 16

To compare this with the perturbation expansion
of the Vlasov equation for the initial-value case the
chain relations (3a) and (3b} have to be expanded to
write f, to fourth order in v, . By extending the
procedure outlined in Sec. II, we get

with kf~/v, given by (A2}. On expanding this to
order vp', we obtain

n J -i'4&
!v,

=w'+2 ' sint' 1 ——!+ ', (P' —2P+-', )a Qi Q'

cw
Q

a2W4
+ ~

' (kP' P'+-4P' —kp+P2) (B2)Q'

where a =1 —aw and P =1+sin). In the dipole limit
k 0, (B2) reduces to

(k J/v, )"'' — (w+w, sin(()t}2+(w,'/2), (B3)

3 4 1 1 1
64 p M) 2 m so if)Q Q Q

1 1 1 1
64 p f4) co m 2 g)Q Q

64 ' a "a' a "f"' (A5}

It is then a matter of trivial algebra to show that
the result one gets from taking all the derivatives
in (A5) gives

f (4) —(f OI) (4)

APPENDIX B

We can similarly set up the perturbation expan-
sion for the boundary-value problem. The corre-
sponding adiabatic invariant for the free-particles

I

which substituted into (45) reproduces the result
(13). Substituting (B2) into (45) and averaging over
$ terms up to v40, we find

exp(-w'} w'
~f aw i,

@vs

W4
+ '. , (9-20w'+4w'}

+, (27 —10w ')2aw

45a', 45a'w')j+, w' —1— 7 ~

(B4)
To compare this with the perturbation expansion of
the Vlasov equation for the boundary-value prob-
lem, we expand the chain relations {3a}and (3b}
to order v', :

1, 1 zo 3 w,' w 1 w 3 w,'w 1 1
fo 1 +

4 wo Vw 2 Vw +
32 V~ 2 V~ V~ 2 V~-

54 V~ 2 V~ —V~ —V~w Q zo Q w Q Q Q

1 wp 1 1 w 1 wp 1 w 1
64 Vf4)

—V|ft —Vf4t Q2 V14 —
64 Vf4

—V|f 2 Vf4
—Vif (B5)

APPENDIX C

The dispersion relation (57) can be written as
2 2& oo

w, = ", dg dwwf sing,
1T ~7l' p ~ oo

(Cl)

Again, it is a matter of algebraic manipulations to
show that (B5) is the same as (B4).

I
where f is the complete distribution function. To
derive the nonresonant dispersion relation, we
assume that all the electrons are free. Then f in
(C1) is replaced by f of Eq. (24). We derive the
initial-value dispersion relation to a11 orders in
the electric-field amplitude vp, but only to second
order in (k)(v). Sof~ is expanded to second order
in a =kv) /((). To this order
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(dl"l~'*'
( \) (

1 .
)E vt)

+awo[2w, (sin']+ —', ) —w sin&]

+a'w, [-aw', sin((sin'$+ &)

+ —', ww, (sin'$+ —,') —w'sin)] .

(c2)

equation and little progress can be made without
additional assumptions. The procedure again will,
be to use f(I) with I ", I' given by (30) and (31),
which is justified if Q can be approximated by a
plane wave for one wavelength. To determine the
trapped particle mode we approximate f by fr'
from (34} and expand I" at the bottom of the poten-
tial well: Q, =-u&v, /k and p'&1 [see (29)]. From
(31) one can write

Substituting (C2) into (24) and again expanding to
order a', we put this f into (Cl}. We then derive
the dispersion relation for the initial-value prob-
lem:

2(r& v, )'i' k

With the proper normalization the distribution
function becomes

(D6)

= 1+ —,a'+;a2w2O.s

pe ]
(cs) 1 1 a & 1 4

f= exp iw-—a' 16w, ~ a

APPENDIX D

The Poisson equation can be written in the form
/(w —1/a)'

xcosh)
2gaw,

(D7)

td~(f d-(v,,d)dd - &), (Dl)

«N~ ~ (f ddf*.. dvf(v, d) —d). (D2)

The solution for P from (Dl) will be oscillatory
around P, which satisfies

v'(y, ) = o, v" (y, ) &o. (Ds)

On the basis of the analogy to a particle motion in
V(P) one may call P, a point of stable local equi-
librium. In terms of the distribution function (D3)
leads to

dv v, , =1,
~ OO

(D4)

where Q is defined in (19}and f is given by (24)
and (27). We can treat (Dl) as the equation of mo-
tion of a particle in a "coordinate" space Q and a
potential V(p):

aw, = 1 or &o =me =(ekE/m)"', (D10)

which is exactly the dispersion relation (59).
Now we turn our attention to (D5) which will es-

tablish the condition for stability of the trapped
particle mode. From (31) one obtains

where w = v/v, , a =kv, /ar, w, = v, /v, . Now we take
only the exponential growing term in cosh( ) and
use the saddle-point method to calculate the inte-
gral in (D4). The saddle points are at

w, , =(1/a) [1+2(aw, )"'] . (DS)

The distribution function f in (D7) can be approxi-
mated by

1 (w —w, )'&, (w- w, )'if = exp — ' ~+exp-
2vVv, . v'aw, ) Paw, j

(D9)

By using f from (D9) in (D4) we find the following
relation for the equilibrium point:

d ' 0. (D5) (D11)

For a given f the stable normal modes can be
found from (D4) and (D5). As we pointed out be-
fore, f is written explicitly in terms of I, not Q.
The Poisson equation is an integrodifferential

which is simply the inverse of the nonlinear fre-
quency evaluated at w =a&e. We differentiate f r'
from (34) with respect to Q and use I' from (D6)
at v =a&s and BI'/sQ from (D11). The integrand
in (D5) up to a trivial multiplication factor becomes

sf 1 a' ( 1 ' . 1 1 ' a'(w —1/a}' 1 1-exp —,— I w —— sinh —w- — — cosh —w-—sQ, a' 16 I, a 2 a 4 2 a (D12)

We substitute (D12) in (D5) and the numerical integration leads to the following condition for the stability
of the trapped particle mode

a =kv, /a&&0. 86. (Dls}
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From the dispersion relation (D10}and the definition of temperature (—,m v,
' = T) and amplitude of the elec-

trostatic potential (E =kg) we find

ey/T) 2.7.

This is consistent with the experimental observations in Ref. 7.

(D14}

APPENDIX E

To derive the nonresonant dispersion relation for the boundary-value problem, we expand k J'"/v', to or-
der 6:

&kZ" &"'=(w'-2ww, sing+wosin'$+ 2w,'}
i

+a(-2w'w, sin&+ 3ww,' sin'] + —,'ww,' —w,' sin'g ——,'w,'sing)

+a'(-2w 'w, sing + Sw 'w,' sin'$ + 3w,'w ' —5ww,' sin'( —", ww—,'sin(

(E 1)

This expression is then substituted into (45) and the resulting distribution function is again expanded to
order a'. This final distribution function is substituted in (C1) to give the ponderomotive dispersion re-
lation:

& (ul'
~

=exp(=,'w Q'[1+ —,
' a'(1 - g w,'+ —,', w,')] . {E2}
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