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Exact equation of state for ideal relativistic quantum gases
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The use of analytical methods yields the fugacity of the ideal relativistic quantum gases in terms of the particle
densities, pressures, and energy densities, which we compute numerically. The exact equation of state in the
thermodynamic limit arising from these solutions may be computed and compared with their respective series
expansions.

I. INTRODUCTION

The problems relating to a manifestly covariant
formulation of equilibrium thermodynamics and

statistical mechanics have been widely discussed
in the literature. ' Within this framework one can
derive the invariant phase-space measure for the
ideal relativistic quantum gases, which was used
by Touscheck in his covariant formulation of rel-
ativistic statistical mechanics. We shall show in
this paper how this structure yields a proper basis
for the discussion of the ideal relativistic gases
NRG) whose cluster structure' and equation of
state4' have been previously investigated. Al-
though the qualitative behavior of the thermodyna-
mical quantities of the IRG is quite clear, it may
well be of interest to study their detailed structure
in order to compare it with the corresponding ser-
ies expansions. The understanding gained through
this comparison may then be informative as a
starting point for the interacting system, for which
the IRG serve as the first simplified model usable
even in several branches of actual physical re-
search. The nonrelativistic and ultrarelativistic
limits are often too crude approximations for rela-
tivistic massive systems since they neglect the
temperature dependence present in the relativistic
cluster coefficients.

The thermodynamical potential Q(P, V,A) is re
lated to the grand partition function =(P, V, A) in

covariant form as a function, respectively, of the
inverse temperature P, the volume V, and the
fugacity A. This relationship leads to the known
form'

The statement of the first and second laws of thermo-
dynamics implies directly the usual demands on the
non-negativity of the specific heat and the compre-
ssibility. ' Particularly interesting for our further
investigation is the relationship involving the par-
ticle number N. Analogous with the non-negativity
of the specific heat and compressibility it may be
noted that the external conditions on the entropy
demand that

(
BA'I
&N) gz

(2)

We shall see later how the case of strict equality
relates to the large fluctuations yielding the Bose-
Einstein condensation. The condition in (2) relates
directly to the particle mean square fluctuations'
(~)', which is clearly non-negative, so that we
find

1p=- —Q(p, V,A), (4a)

(~)I p -l~
E~~ 6~

where p. is the relativistic chemical potential by

P '1nA. The importance of these relationships will
become clear from our calculations on the IRG of
the following sections.

We shall evaluate the thermodynamical functions;
in particular the-pressure p, the particle density
n, and the energy density z from the use of the

J
thermodynamicpotentialQ in Eq. (la) inthe grand
canonical ensemble. We can readily calculate
these quantities by carrying out the necessary op-
erations as given by

Q(p, V, A) =-p 'q doln[1+qA exp(-p„p")]' (la)
n =-— [ PQ(P, V,A)], (4b)

with g =+1 for Fermi or Bose statistics and do the
phase-space measure: e= ——[PQ(P, V, A)].1 8

y ap
(4c)

dg =2V„p"e(po)&(p -m }
( )~ . (1b}

The Eqs. (4a)-(4c) can be solved for A as was
first carried out by Leonard' for the nonrelativistic
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quantum gases and then by Nieto' for the ideal rel-
ativistic quantum gases using an analytic method
based upon the theory of singular integral equa-
tions. ' After combining pairwise these equations
resolved for A, one arrives at the exact equations
of state in integral form. These equations will be
analyzed in the thermodynamic limit using various
approximate (virial) types of expansions as have
been employed for a long time in the classical in-
teracting gas theories.

In this paper we shall discuss the thermodyna-
mical properties of the IRG. In Sec. II we shall de-
velop the mathematical techniques for the compu-
tation of the exact fugacity equations for both the
Fermi and Bose systems which are compared with
a relativistic Boltzmann gas.4 The following sec-
tion uses these results in the thermodynamic limit
for the exact equation of state of the IRG for these
cases as has been remarked by Balescu. We shall
discuss in Sec. IV the virial expansion of the equa-
tion of state, which is gotten from the cluster de-
composition of the grand partition function and is
compared for the first few orders with the numeri-
cal results of exact solutions. Section V contains
our conclusions with some remarks about the pos-
sible generalizations.

H. INVERSION OF THE FUGACITY EQUATIONS

Through the use of Eq. (1a) we are able to calcu-
late the thermodynamical quantities p, n, and e
from (4a)-(4c) for the IRG from 0:

0

+ zA' dy
" +f.(y)

y(y+nz)
1 z

1 —z

(6b)

0

Pe=zA dy
' +.(y)

y(y+qz)
1 mPz
V 1-z

(6c)

The letter z =A/A, with A, =exp(mP) is the normal-
ized relativistic fugacity, which coincides with the
nonrelativistic fugacity. The so called' "optical
wavelength" A is such that A'g is given by 2v'P'.
The f'unctions f~(y) with h representing p, n, e are
given by

fq(y) = [lny(lny+2mP)]~ */3, (7a)

f„(y)= (lny+ mP)[lny(lny+2mP)]'~~, (7b)

f,(y) = (lny+ tnP)3[lny(lny+2mP)]'~'. (7c)

g is the usual statistical factor and in all these
equations [(5a)-(5c)] the upper term is for the
fermions (q =+1), the lower one is for the bosons
(q =-1), while the middle one is for the classical
gas (q =0).

When we perform the substitution y =exp[mP(t
-1}]into these equations, we find the following in-
tegrals of the Cauchy type'.

0

Pp=zA '
dy +

y(y+qz)
(6a)

1——ln(1 —z)

0

+ 0

ln(l -Ae ~)1

VP

Amn= 2, g dtt(t' —I)'~'
F

+ 0

1
V e~-A

A
g g dtt (t —1) ~~

g

+ 0

1 mA
V e~-A

(5a)

(5b)

(5c}

The basic problem for ideal quantum gases con-
cerns the solution" of Eqs. (6a)-(6c) for z in or-
der to find the fugacity as a function of p, n, or e,
respectively. For the classical gas this problem
is trivial because the fugacity then appears only as
a multiplicative factor. However, for the quantum
gases the relationship to the fugacity is much more
complicated. Its solution was first obtained by
Leonard' for the nonrelativistic quantum gases,
for which he interpreted z as a complex variable
in order to use the Hilbert problem' for the inver-
sion of Eqs. (6a)-(6c). Afterwards, the same
methods were used for the ideal relativistic quan-
tum gases' as well as for the relativistic gases
with a given hadronic mass spectrum' since in all
these cases the structure of the thermodynamical
functions is quite similar and differs only through
the stated form of the involved functions f„.

Through the examination of the asymptotic be-
havior of the thermodynamical functions p, ,z, & on
the branch cut (-~, -1] for fermions and [1,~) for
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bosons, which is induced by the Cauchy integrals,
one gets the essential information for the solution
of the Hilbert problem. The mathematical details
are given in the cited literature. " For the nor-
malized fugacity z of the IRG it is then found

(mP)'e «K, (mP}- q

0

dt '" + 0, (Sa)
8, „(t}

1T «'l tl
1

8„,(t) =-0, h =P, n, e. (13}

Obviously, in the thermodynamic limit the Eqs.
(9), (10), (12), and (13) can be summarized in the

following formula:

8, ,(t) = arctan F(()-(A /V')[m81/(( 1)—] —A'()a)
'

(12c}

The limits (lla) and (lib) are reached in the ther-
modynamic limit for those cases where Bose con-
densation has not yet taken place. ' For complete-
ness we define for the classical gas

1 (mP)'e 'K, (mP) -)1 8, „(t}=q' arctan) sy, (t}
I}Fq t +@A hj

(14)

0

dt~ «t+ 0, Sb
1

1

ws

Pe
(mp) 'e ~[mpK, (mp }+ 3K, (mp) ] —g

0

dt '" + 0 . (6)
W, l

Here K, (x) stands for the modified Bessel functions

of the second kind. " If we define the principal
value integrals' for the functions

F«(t) =t ) dy ', h P, n, e; t a[I,~),«b)
1

Before we look at the numerical results for the
fugacity in terms of the three different thermody-
namical parameters let us discuss Eqs. (6) in

a bit more detail. Since the functions 8, „(t) are
bounded by -I from below and 0 from above, the
corresponding integrals in Eq. (6) are limited by
the same bounds. Therefore, at low pressures or,
respectively, at low densities the statistically de-
pendent terms in Eq. (6}become irrelevant and

only the first term characterizes the behavior of
the fugacity. Thus the relativistic quantum gases
are in this case well described by the correspond-
ing relativistic Boltzmann gas.

For the parametrization of the numerical results
it is convenient to introduce the function

L(m, p) =A '(mp)'e~K, (mp)

which has the property

the functions 8„„(t)for fermions are given as
lim L(m, P}=2A ',
m5~0

(16a)

8„„(t)=arctan)~ ',„-~~, h =pp, n, pe (10)vf, (t}
&Z, t+A'~P '

where the branch of the arctangent is chosen such
that

lim 8„„(t)=0,
f~ eo

lim 8„„(t)=-v.
1~1

(1la)

(11b)

F(1)—(A /F)(1/1 —,1) —A''F)'

(12a)

(12b)

For bosons the functions 8„,(t) contain additional
condensation terms

lim L(m, p)=ga ',
Nag

(16b)

where A. = (2vp//m)'t' is the thermal wavelength.
One should notice that L(m, p) is just the particle
density of a relativistic Boltzmann gas with z equal
to one.

Figure 1 shows the normalized fugacity z of the
IRG as a function of L '(m, P)n in the thermodyna-
mic limit. Due to the chosen parametrization, the
fugacity of a Boltzmann gas (broken line} is now in
this case independent of m and P, while it depends
only on the product mP for the relativistic quantum
gases. Figure 1 clearly reflects the stability con-
dition (2) mentioned in the Introduction.

The cases mP =0.01 and mP = 5 correspond to the
two limiting cases of an ultrarelativistic and non-

relativistic gas. This correspondence can be seen,
if one compares the condensation densities g, of a
Bose gas, for which one has in both limits'
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FIG. 1. Inverse normalized fugacity versus L '(m, P)n for (a) Bose and (b) Fermi gases. The dependence on mP for
the quantum gases (—) is compared with the classical Boltzm~~~ gas (—-).

lim g, =2A ~g(3) =(1.202)2A ~,
0

lim s, =z 'g(—') =2.612k. ',
sg~ ~

(17a)

(17b)

with those of Fig. 1(a). In order to get a feeling for
the densities where Bose condensation occurs, the
scaling factor L '(m, p) is given in Table I for the
special case of a pion gas with mass m„=140 MeV.

For the special case mP = 0.5 the behavior of z as
a function of the three thermodynamic quantities

PP, s, and —,
'

Pe is compared in Fig. 2. The fact
that the relative order of the curves in Fig. 2(a)
(Bose gas) and Fig. 2(b) (Fermi gas) is inter-
changed clearly expresses the attractive (Bose)
and repulsive (Fermi) nature of the different kinds
of statistic.

HI. EQUATIONS OF STATE

Once one has derived the fugacity z as a function
of p, e, and e, there is no problem in getting the
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TABLE I. Scaling factor L (mP)
-f for the case of a pion gas

22

L ~(m~ p)(GeV )
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exact equations of state for relativistic gases
through the combination of any two of these three
relations. In the thermodynamic limit we get,
therefore, the three equations of state:

q "„,e„-„(f)-e,„(f)

I

———IL(m, P) — (W)'e~~, (W)
3l A ~

&PP P~ ]
'

PP

(18a)

d 8, „(t)—e. „(f) (18b)2

I
———

~
I (~,P) — (W)'&~&&(~&)

&1 31
&n P~&

' P~

8 (f) 9 (f) (18

It is clear from the structure of Eqs. (18) that the
main deviation of the relativistic quantum gases
from the behavior of a relativistic Boltzmann gas
is contained in the right-hand side of these equa-
tions. For a Boltzmann gas (q =0) Eq. (18a) yields
the ideal gas equation Pp/n =1, which is compared
in Fig. 3 with the behavior of the relativistic quan-
tum gases. Obviously, the deviation from the clas-
sical behavior becomes smaller when the param-
eter mP becomes smaller. In Fig. 3 the condensa-
tion points are marked by an arrow. For mP =5
the condensation would occur at L '(m, P)n =2.14.
However, it must be remarked that the crossing
of the curves is only due to the chosen units (see
Table I}.

We have also computed the kinetic energy per
particle (e/s-m) times the inverse temperature P.
The result is shown in Fig. 4 for Bose [Fig. 4(a}]
and for Fermi [Fig. 4(b)] gases. Again the con-
densation points are marked by an arrow. The
starting point of the curves at L '(m, p)m = 0 can be
seen to range between the two limits, 1.5 for a
nonrelativistic gas and 3 for an ultrarelativistic
gas.

IV. SERIES EXPANSIONS

PP =L(~,P) biz,
-1

s=L(m, P) /kb z,

(20a)

(20b)

where the cluster coefficients 5~ are defined as
follows:

In this section we compare the exact solutions
for the fugacity and the s-pf' equation of state with

series expansions.
We start with the cluster expansion of the grand

partition function for IRG'.

=(p, V, g) =exp~ 2, &, (-q)' 'Jf, (&&) ~.

(19)

Now by using the relations (4a) and (4b) we get the
pressure and particle density of the IRG as clus-
ter expansions in termsof the normalized fugacityz,

1.3

1 ~2-
CL
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0.0'I
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0.6-

0.5;
T'

0 0.5 1~ 5
I

2

L '(m, P)n

5.0

1.0

0.01

~Q. 3. Equation of state for relativistic Bose (—), Fermi (-~ -), and Boltzm~~~ (—) gases.



1216 FRITH JPF KARSCH AND DA VID E MILLER

2.5C

C

Ial

1.5

QS-

0
1.5

L '(m, P)n

I

2.5

3.5-
(b)

0.01

0.5

1.0

2.5-
5.0

1.5-
I

1.50.5

FIG. 4. K ' imes ininetic energy times in

2

Fermi gases.
imes inverse temperature r

L (m, P) n

re per particle versus L ~(m ns (m, P)n for relativisticic a Bose and (b)

(-s))'-'ff, (rsvp)s &&s-1&ws (21) sides of the e uati
t

qua l,on term by term.
l.on yields the mell-k

m. This substitu-
e - nomn result"

Here b, = I for all IRG, while for
i hi I coe ficients charact
tion of the relat

c erize the devia-
a xvlstic quantum as

l i l lo d

th '
d

og ue to statistics.
ions ecrease monotonically with

The vvirtual expansion" of the n-
stt o b df'e e ined as

PP a, (p)[L, '(m, p)ssJ' '.
f=1

(22)

The coefficients ( )
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a, (p) =1,

~(P) =-f. ,

s,{p)=4f, —2f„
as(P) 20@s+185 ~s 33 4I

(23)
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tion (18a) in Fig. 5 f
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e actsol tio dth i 'an the virial expansion of the
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FIG. 5. Comparison bebveen the exact equation of state for relativistic Bose and Fermi gases (—) and several or-
ders of the corresponding virial expansions for the special value mP= 0.5.

equation of state, we postulate the following ex-
pansions:

e„„(t}-q- — dt "," = [L '(m, P)n]~ 'd„~,
1T j=l

(24a)

Similarly, we can obtain the coefficients Qp

dq, =b2,

dP~ =bs —b2,

d~, =b4 —Sgb, +2b,',
(26)

1 1—=—L(m, p)+ [L '(m, p)n]~ 'd„~.
j=l

(25b)

If we insert the expansion (25b) into the cluster ex-
pansion (20b), we get

oo

nL '(m, p) = &b ~1+ Q [L '(m, p)n]'d, , I

=1 k j=l

~ [L '(m, P)n]', (26}

from which we can determine the coefficients g„j
in terms of the cluster coefficients through the use
of the geometric series expansion for the term in
bi'ackets. This evaluation is valid at low densities.
We obtain

d =-2bn, l 2 j

e, „(t}-q- —" dt '," = [L '(m, P}PP]' 'd, ,
1 j-l

(24b)
From these expressions we get a series expansion
of the fugacity equations similar to the virial ex-
pansion for the equation of state

I.(m, p)+ g [L '(m, p)pp]~ 'd~, , (25a)
j=l

As an example we compare the first few orders of
the expansion (25b) with the exact solution (Sb) in

Fig. 6. It should be noted that the higher-order
corrections for the Fermi gas [Fig. 6(b)] yield
better results for low particle densities but be-
come worse than the first correction at higher
densities. Of course, this could already be seen
for the virial expansion, if we would have contin-
ued Fig. 5 to higher densities.

Whenever the fugacity expansions (25) are valid
we get now a cluster expansion for the equation of
state, which is symmetric in pp and .

L jm, P PPj 'd&j —n~ 'd„j
j=l

(29)

From this expression one gets back the usual viri-
al expansion if one solves for pp/n,

=1 —PP g L ~(m, P)[n~ 'd, j (PP)~ 'd~ &],—
j=l

d„~ =3b3 —4b2 ~

d~ 3 =4b„- 18b2b3+ 16b2,
(27) (30)

and then substitutes in kth order the correction due
to (lt —1)th order for pp. Thus we have found a
connection between the exact equahon of state and
their virial expansion through the expansion of the
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FIG. 6. Comparison between the exact solution (—) for the inverse normalized fugacity of (a) Bose and (b) Fermi

gas and several orders of the corresponding series expansions for the special value mP~ 0.5.

statistic-dependent term of the exact fugacity equa-
tions.

V. CONCLUSIONS AND GENERALIZATIONS

In this paper we have directly computed the
equations of state of the ideal relativistic quantum
gases. Furthermore, we have shown how these

equations are related to the series expansions in
terms of the cluster coefficient. We shall now
mention a few immediate generalizations of the
ideal relativistic quantum gases. "

The extension of our calculations to a multicom-
ponent system poses no additional formal problem
for ideal gases. This is because the equilibrium
conditions for a system with many different nonin-
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teracting particle types allow one to treat the com-
ponents separately. This situation arises from the
fact that the total grand partition function - is a
simple product over the constitutent. Due to this
fact the pressure as well as the density can be
summed independently in terms of the constituent
fugacities. Thus we obtain the equations for the
constituents similar to (5a)-(5c}for p„s„and s„
where i labels different constituents as functions
of z, . Therefore we may repeat our analysis over
again in connection with the cluster expansion as
well as the virial expansion.

In order to simulate a strong interacting hadron
gas one can introduce a mass spectrum of.the form
p(m)-cm'exp(bm}, where a, 5, and c are con-
stants, as it results for example in the bootstrap
model. '4 Also in this case the foregoing procedure
can be used to derive the exact equations of state. '
This is possible because the only difference arises
from an additional integration over the mass spec-

trum in Eqs. (Va)-(Vc) and thus the one particle en-
ergy spectrum is not affected even in this extreme
case of an interacting gas. The equations of state
of a hadron gas enable one to study the relation of
bootstrap to the statistics of a Bose gas, especially
the connection between Bose condensation and the
parameter g, which decides whether there is a
highest temperature (a ~-~) or a phase transition
(a &-~}in the bootstrap model.
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