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The strange attractor of the Lorenz model is found to be well approximated by suitably chosen two-dimensional
invariant manifolds through the three stationary points of the flow in phase space. The stationary probability
density, defined by the two-dimensional flow on the invariant manifolds, is determined in the vicinity of the origin of
the phase space in terms of two parameters and compared with the numerically determined stationary distribution

on the Lorenz attractor.

I. INTRODUCTION

In recent years there has been much interest in
expanding the scope of traditional statistical
mechanics to encompass also the statistical be-
havior of dissipative, nonconservative systems.
Such systems may be roughly divided into two
classes—those which derive their statistical be-
havior from a coupling of their degrees of freedom
to stochastic random forces, and those whose
dynamics is governed by completely deterministic
laws but which exhibit apparently random behavior
nonetheless, because their trajectories in the
steady state lie on strange attractors.!

Turbulent hydrodynamic systems almost cer-
tainly belong to the second class, which is there-
fore of great interest. Perhaps the simplest
prototype system within that class, which still
has some physical relevance, is the Lorenz mod-
el.? It was designed to describe certain features
of Bénard convection® in high-Prandtl-number
fluids. It is governed by the nonlinear differential
equations

X==0x+0Yy,
Y= =y +¥x =22, (1.1)
Z=<bz+xy.

The three variables x, y, 2 describe heat con-
vection in a horizontal fluid layer heated from be-
low. x and y are the amplitudes of streaming ve-
locity and temperature, respectively, in a roll
pattern in suitable units, while z is the second
harmonic amplitude of the temperature profile,
which provides for nonlinear feedback for the
fundamental amplitudes x,y. The geometrical
factor b is usually taken as b=%. The Prandtl
number ¢ is assumed to satisfy 0 >b + 1. The
Rayleigh number 7 is proportional to the total
temperature difference across the fluid layer.
Its numerical value controls the state of the sys-
tem.

Besides Bénard convection there are other

physical systems which are modelled by the Lo-
renz equations.*® Within the last few years an
abundant literature on the properties of the
Lorenz model has grown up.”~?° We now have a
rather detailed knowledge of its surprisingly rich
bifurcation behavior if the parameter 7 is var-
ied.’®!® Various approximation schemes of sta-
tistical mechanics have also been tried with nota-
ble success to elucidate some of the statistical
features of the dynamics found in numerical stud-
ies.'®!® However, very little progress has so far
been made with a more direct statistical me-
chanical approach to the stationary dynamics on
strange attractors. In the present paper we want
to report the first steps of such an approach.

It is very tempting to consider the strange at-
tractor in the phase space of a dissipative system
in analogy to the energy hypersurface in the phase
space of a conservative system, and then to gen-
eralize the statistical mechanics on the energy
hypersurface to a statistical mechanics on the
strange attractor. Unfortunately, such a program
meets with severe difficulties. The first difficulty
is the rather complicated geometrical structure
of the strange attractor, which, for the Lorenz
model, is locally the product of a two-dimensional
manifold and a Cantor set.'? Fortunately, at
least for the Lorenz model, this difficulty may
not be really severe from a practical point of
view, since numerically the Cantor set structure
is not an important geometrical feature of the
Lorenz attractor. Hence, for practical purposes,
all the different submanifolds of the product may
be lumped into one effective two-dimensional
manifold. The flow on the strange attractor is
then approximated by the two-dimensional flow on
that manifold. This flow is only a semiflow,
since its trajectories forward in time merge with
each other at some places of the manifold. This
is the price one must pay for neglecting the Can-
tor set substructure.

The next difficulty then is that neither the
Lorenz attractor as a whole nor any of its two-
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dimensional submanifolds is known analytically.
It is the aim of the present paper to remove this
difficulty by computing analytically a two-dimen-
sional surface which approximates the Lorenz
attractor found in numerical studies. This sur-
face is constructed locally and piecewise by three
differentiable invariant manifolds through the
stationary points of Egs. (1.1) for » >1:

P0= (0’ 0, 0)’
(1.2)
P,=@[blr-1)]Y2,+ b -1)]Y2,r-1).

The knowledge of these manifolds then allows
us to determine the two-dimensional flow, which
approximates the flow on the strange attractor.

The next step of statistical mechanics would
now be the construction of a time-independent
probability distribution from the properties of the
flow on the hypersurface. The basic ingredients
of such a construction for conservative systems
are the ergodicity of the flow on the energy hyper-
surface, which usually has to be assumed, and
the incompressibility of the flow in phase space
which follows from Liouville’s theorem. Both
properties together prescribe the unique micro-
canonical distribution over the energy surface.

For the semiflow approximating the flow on the

Lorenz attractor the ergodicity assumption seems -

also highly reasonable. A unique time-independent
probability distribution over that surface must
then be generated by that flow. Unfortunately,
however, the flow is compressible, which makes
the explicit construction of the stationary proba-
bility density very difficult. Althoughitis straight-
forward to formulate its local properties, i.e.,
the partial differential equation it satisfies, we
have so far not been able to characterize it
globally, i.e., to formulate the necessary initial
conditions. Thus, in the present paper, we have
to content ourselves by computing the stationary
probability distribution locally in the vicinity of
P, in terms of two unknown parameters, which
may be taken as the normalization constant and
the curvature of the distribution across the z axis
for a given value of z. Both parameters could
only be computed by global methods. Neverthe-
less, our results for the probability density near
the boundary of the attractor in the vicinity of P,
are definite. They show that the probability
density approaches zero on the boundary of the
attractor and rises with the distance from the
boundary by a power law. The exponent is ex-
pressed simply in terms of the parameters of the
model. These analytical results can be checked
against those found numerically.

The paper is organized as follows. In Sec. II
we determine three two-dimensional invariant

manifolds through P,, P,, respectively, and show
that they accurately approximate the Lorenz at-
tractor, which is computed numerically. In Sec.
III we determine the stationary probability density
in the vicinity of P,. Section IV contains the dis-
cussion of the results and our final conclusions.

II. INVARIANT MANIFOLDS CONTAINING
THE STATIONARY POINTS

Let us assume that the Rayleigh number 7 satis-
fies 7 >rp with r=0(0 +b +3)/(0 =b - 1). The tra-
jectories in the steady state then lie on the Lorenz
attractor. In the three-dimensional phase space
of the Lorenz model we now look for two-dimen-
sional manifolds which we write in the form

x=f(y,2). 2.1)

We require that locally these manifolds be left
invariant by Egs. (1.1). Differentiating Eq. (2.1)
with respect to time and inserting Egs. (1.1), we
obtain the partial differential equation of f

(-y+rf-f) L+ (y-va)Lsofzoy. @)

We now consider those two-dimensional invariant
manifolds which contain the stationary points P,
P,.

By linearizing Eqs. (1.1) in the vicinity of P,
and writing the corresponding equation for f, one
finds that within this approximation there is only
one two-dimensional invariant manifold passing
through P,. This is the plane containing the two-
dimensional flow, which spirals outward from
these two unstable stationary points. This mani-
fold is locally attracting and therefore stable.

A similar analysis linearized around the origin
P, reveals that there are infinitely many two-
dimensional invariant manifolds passing through
that point. Of these, only three may, in general,
be represented by planes in the vicinity of P,, and
two of them are attracting. Of these we chose
the one which extends into the half-space z >0,
which is known to contain the strange attractor.
These considerations now completely fix the
special solutions of Eq. (2.2), which we want to
determine.

We look for solutions in the form of a power-
series expansion

f(yo+n:zo+§)=xo+2 Z T o SN (2.3)
n=0 m=0
with
ay=0, (xo:yo:zo)e{Po,P&}'

Comparing coefficients we obtain for n=1 the
two closed nonlinear equations
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a5, ¥+ r =zp)a a0, + (@ =dlag, —x4a,,=0,

(2.4)
a3\ (r =20) +yo,8,,+ (0 = Da,, +x,a0,=0 .
For (xo, yo,zo)=Po, we obtain
a01=0’
_=0+1+[(0 —1)*+4r0]*" 2.5)
1" % ,

where the sign of the square root was determined
by choosing the locally attracting invariant mani-
fold through P,,.

The numerical values for the essential coef-
ficients for 0 =10, »=28, and b=% are given in
Table I. For (x,, o, 2,) =P, We obtain a cubic
equation

ad, b =1)2br - 2b + 2)
+a3,b(2b - 30 +2+7(20 -3 =b)) (2.6)

+a0,(0(r =1))2(br +0%+¢ —0b) ~ob(r —1)=0
J

ng:" (m-m+1)(x,+y,8,,),

which, in the region of interest (» >7,, 0 >b +1)
has one real solution.

The coefficient a,, is determined in terms of
a,, by

(O =b)ag, +[b(r - 1)]2a2)
a,;= . (2.7)
11 [b (,’. - 1)] 172 —-a,,
The higher-order coefficients of the power-series
expansion (2.3) are determined by the linear
recursion relations

=g -m+@r -z)m +1)a,, =bn-m)+y,mn -m+1)a,,,

C(,ﬁzx: (1’ _zo)(m + 1)a°1 _xo(m + 1) ’

am-l,nc(rnlzl+amnc(n2|:l+am+ 1,nc(m321=bmn, (2.8)
where
nz2, n=2m=0
and
(2.9)

n=1 v
bmn= VE__z “Zo [ =2 (b =m = 1)@y 1 oyns 10 Qv+ Vo = e+ V =1 =0) 0y noys 1G]

v

n-1
+ ;1 "z: [n +1-n)a,. 1-pn-v@uw t m-p+v-1 —”)am-1-u,n-uauv] .

=0

We have no information on the convergence prop-
erties of these power-series expansions but sus-
_pect that they are only asymptotic expansions.
We will return to this point briefly in the con-
cluding section. We have solved the recursion
relations for the coefficients with n < 10. It turns
out that within an accuracy of ~1%, the manifolds
determined by the expansions around P, and P,
overlap and together form a connected two-di-
mensional surface.

In Fig. 1 this surface is compared with the
strange attractor obtained by numerically solving

TABLE I. Parameters of the invariant manifold and
the probability density near P, for b= % 6=10, r=28.

ay agy as3
il:nv:ii?:ltd 4.58 10" 6.58 x10®  -5.15 x10°°

Cy % Q
pszs:?tiyhty 1.74x10%  2.23 x10° 3.43

I

Egs. (1.1). The boundary curve in Fig. 1 is
formed by the trajectory flowing outward from
the point P,. The comparison shows that the nu-
merical agreement between the three invariant

(vz) -20 o 20

FIG. 1. Comparison of the manifolds [Eqs. (2.1) and
(2.3)] for n <10 and the Lorenz attractor. The solid
lines are the contour lines f=-4, 0, 4, 8, 12, and 16
determined from the manifolds through P, (lower part)
and P, (upper part). The dots are determined numerical-
ly and indicate the corresponding contour lines of the
Lorenz attractor.
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manifolds through P, P, and the numerically de-
termined attractor is very good. The good agree-
ment is quite surprising in view of the fact that
the invariant manifolds have been determined from
local properties of Eqs. (1.1) only, while the at-
tractor, which they approximate, is a global
property.

We now investigate whether the invariant mani-
folds are indeed attracting within the boundary
curve. To this end we introduce

E=x _f(y’z), (2-10)
and consider

E= (—o - -z)% —y—zé) ==c(y,2)§. (2.11)

We have checked that indeed
c(y,z)>0 (2.12)

within the boundary curve, wherever f approxi-
mates the attractor.

III. STATIONARY PROBABILITY DENSITY

We now consider the flow described by Egs.
(1.1) restricted to the invariant manifold
x=f(y,z). It satisfies the equations

y==y+7f(y,2) =2f(y,2),
3.1)
2==bz +yf(y,2).

The probability density P on the invariant mani-

fold satisfies the continuity equation

9P o 9 =

o tay (=3 +7f=2f)P]+——[(=bz +/y)P] =0.
(3.2)

We are here interested in the time-independent
probability density satisfying 8P/28t=0. We as-
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sume that the system is ergodic so that the time-
independent probability density is unique. Equa-
tion (3.2) specifies the variation of P along the
characteristics, which are given by Eq. (3.1).
Initial conditions for (3.2) would have to specify
P along a curve intersecting the characteristics.
Unfortunately, no such initial conditions are
available here. Instead, the stationary distribu-
tion must be determined from a complicated
global self-consistency condition, which ex-
presses the uniqueness of the distribution under
the flow on the invariant manifold. So far this
problem has defied any solution. However, some
progress can be made, if we restrict our atten-
tion to the vicinity of the point P;,. Our goal is

to determine the probability density near the
boundary of the attractor given by the curve

z=R(y).

The function R(y) satisfies the equation
dR ~-bR+f(y,R)y

dy ~ Sy, R) ~75, O ° @-3)
Near y=0, it is of the form

R(y)=cy*+0(y%), (3.4)
where c, is obtained from our result for f:

c=a,,/(b+2ra, =2). (3.5)
We now introduce the new coordinate

&=z -R(y) (3.6)
in Eq. (3.2). At the same time we take

P=exp(u). 3.7

We obtain for small y and £, arbitrary but re-
stricted to that part of the manifold through P,
which approximates the attractor (cf. Fig. 1):

0={[(r =&)f, =1 =b]+92[(r =&)f \c,+ 3f,(r =) +S =, /il +O (¥4}

+yr =)=y +0(y3)]g—; +{=bE +y2[= 2c,0r = £)f,+2c, =bc, +£)] +O ()}

where f,=1,(¢), f,=/5() are defined by the power-
series expansion for f(y,z) around P,:

F(,2) =f,(2)y +f3(2)y* +0 (%) . (3.9)
We look for a solution to Eq. (3.8) of the form
u(y, &) =uy(C) +u,(8)y2+0(yY), (3.10)

with the appropriate symmetry u(y, £)=u(-1y,¢).
Inserting in Eq. (3.8) and comparing powers of y?
we find

ou
-, (3.8)
I
0=(r-¢)f,—1-b -btul),
(3.11)

0=G(¢) + [2(r = &), = 2Ju, () -bLus(¢),
with
GE)=r -&)fic,+3fs(r —¢) +fi=cof)
+[=2¢,(r =&)f,+2c, ~bc,+ 1]
X (1/68)[(r -5)f, -1 -b]. (3.12)
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The solutions are

uo(8)= fc bl_s [ =s)f\(s) -1-blds+A,
(3.13)
G(s)
| BSE(s)

“z(§)=E(§)( ds+B),

with
E(§)=exp( f C-52;[(r-s)f1(s)-1]ds), (3.14)

where A,B are constants of integration which
cannot be determined from our local calculations.
A is a normalization constant, B gives the curva-
ture of u(y,¢) across the ¢ axis for{=1, y=0.
Close to the boundary of the attractor we have ex-
plicitly

fiza,+a g +0(?),

(3.15)
fy=ag+0(k),
and
#o(¢)=QIn +const+0(¢),
(3.16)
Uy(£) = ~upo + 0 (8, £ Fo1™)
with the constants
Q=(ra,,-1-0)/b,
(3.17)

Uzo ={1/[2(7au - 1)]} [calra,; =a,))(1-2Q)
+a,(1+Q) +3ra,,] .
The probability density close to the boundary

of the attractor and for small y has, therefore,
the form

P(y,z)=const(z = c,y%)° exp(-uyy?), (3.18)

and contains only one unknown parameter, which
is the normalization constant. Comparison with
numerical results is made in Fig. 2.
Unfortunately, the probability density on the
entire attractor cannot be determined in this way,
since more and more unknown parameters would
have to be introduced while extending the domain
of the calculation. In principle these parameters
are fixed by self-consistency conditions which ex-
press the single-valuedness of the probability
density on the attractor. However, in practice,
it has so far not been possible to carry through
such a completely self-consistent calculation.
One simple consequence of the self-consistency
of the steady-state distribution is the fact that the
stationary probability density P in the vicinity of
P, vanishes for » >7;. In other words, the at-
tractor has holes around these two points. This
immediately follows from the fact that the flow
on the two-dimensional invariant manifolds through
P, for r >r, spirals away from P, without any
possibility ever to return. The only self-consis-
tent solution near P, then is P=0, since taking
P=0 near P, initially, P remains zero self-con-
sistently at all times. Our result that P vanishes
on the boundary of the attractor near P, implies
that P vanishes along the whole boundary of the
attractor, as long as this boundary is formed by
the trajectory of the semiflow through P,. This

4 0.002

4 0.00I

PCY, 2 20

40

FIG. 2. Comparison of the probability density P(y,z) [Eqs. (3.7), (3.10), and (3.13)] near P, with the numerically
determined probability density (dots) for three different values of y (solidlines). The dashed line is the asymptotic
form (3.18) for y=0. The dotted curves are determined by summing over the probability densities on all submanifolds

of the attractor for fixed y,z.
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result ceases to be valid when the trajectory
through P, merges with other trajectories which
carry a nonzero probability density. This happens
on the boundaries encircling the points P,.

IV. CONCLUSIONS

In this paper we have investigated the Lorenz
model in its three-dimensional phase space. We
have formulated a linear recursive scheme by
which two-dimensional invariant manifolds through
the three stationary points P,, P, of the model
can be determined in the form of power-series
expansions. The points P, possess only one such
invariant manifold; P, has infinitely many, but
only one which reduces to a plane near P,, is
locally attracting and passes through the region
in phase space occupied by the strange attractor.
We have solved the power-series expansion of
these three invariant manifolds up to tenth order.
The results show that within the accuracy of the
calculation, the manifolds are connected with each
other and, together, form an attracting connected
two-dimensional surface which approximates the
Lorenz attractor, without sharing the Cantor-set
substructure of the latter. The reason why the
manifolds approximate the attractor is not known.
It is also not known in a rigorous way whether the
power-series expansion of the manifolds is con-
vergent or asymptotic. However, the following
rough argument seems to indicate that the ex-
pansion can only be asymptotic.

The coefficients of the power-series expansion
around P, satisfy the relation [cf. Egs. (2.8) and
(2.9)]

a,,,,,=b,,,,,/c(,,,22, ’ (4.1)
with

B =g -m+rm+1a,-bmn-m).

For sufficiently large n,m, it is possible to
make ¢'2, arbitrarily small, while b,,, remains
finite, i.e., the coefficients a,, becomes very
large in high orders.

It is interesting to note that the invariant mani-
folds we have calculated also exist for Rayleigh

numbers smaller than the critical one, 1<7 <7g.

This is in agreement with numerical results*?°
which indicate that a preform of the attractor for
r >7; already exists in the region » <7;. The
principal difference of the results for » <7, as
compared to the case » >7, is that the points P,
are attracting for » <r;. Thus, the steady-state
probability density on the manifolds is completely
concentrated in the two points P, for » <7,, and
the actual attractor consists of only these two
points. For 7 >7; the points P, are repelling on
their surrounding invariant two-dimensional
manifolds, which is the reason why these two
points are surrounded by holes in the steady-state
distribution.

The complete form of the steady-state distribu-
tion cannot be obtained from local calculations
of the type performed in this paper. However,
the form of the distribution near the lower bound-
ary of the attractor near P, could be determined
locally. The reason that this was possible is as
follows. The probability distribution on the z
axis for not too large positive z can be calculated
exactly, since this part of the phase space is de-
coupled from the rest, as can be seen from Egs.
(1.1). Furthermore, the form of the probability
distribution in the close vicinity of the z axis
follows from the assumption of differentiability
and symmetry arguments. The trajectories close
to the z axis are just the ones which pass by close
to the lower boundary of the attractor; therefore,
the knowledge of the distribution near the z axis
allows us to determine the distribution close to
the lower boundary.

We found that the probability distribution at the
lower boundary vanishes by a power law. The
exponent could be determined in terms of the
parameter of the model and agrees with numerical-
ly determined values (within the statistical un-
certainties of the latter). The calculation of the
distribution further away from the lower boundary,
but not too far from the z axis, required that we
introduce a further undetermined parameter (be-
sides the normalization constant) which would only
be determined within a self-consistent calcula-
tion. Adjusting this parameter we obtained agree-
ment with numerical calculations for larger dis-
tances from the lower boundary.
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