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The saturation of resonant third-harmonic generation in absorbing and phase-matched high-density systems is
investigated theoretically as well as experimentally. It is shown that the saturation is determined by the two-photon
b pti [~patt fag( )l. Itgi
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the level populations and of the effective refractive index destroying the phase matching. This has to be compared
with nonresonant systems which are»recited by the Kerr effect, the intensityMependent changes of the refractive
index [real part ofps" (co)].Optimum conditions for resonant systems are reported.

I. INTRODUCTION

Since the first paper on resonant third-harmon-
ic generation (THG} in Sr-vapor, ' a large number
of publications have dealt with the generation of
coherent radiation in the vacuum ultraviolet spec-
tral region. While the first experiments' ' were
performed with nanosecond light pulses, the in-
terest shifted to the application of picosecond
pulses' "since time-integrating effects like ioni-
zation losses were thought to be destructive to
the process of harmonic generation. Recently,
however, Scheingraber et al."demonstrated that,
even with Gash-lamp-pumped dye lasers, conver-
sion efficiencies in excess of 10 ' are feasible at
moderate input intensities as low as 5X10' W/cm'.

The resonantly enhanced polarization gives rise
to appreciable conversion efficiencies at much
lower input intensities than in nonresonant sys-
tems. At high input intensities, however, the
resonant systems investigated so far show severe
saturation which limits the maximum energy-con-
version efficiency to less than 10 ', which has to
be compared with conversion efficiencies as high as
0.1 achieved in nonresonant systems. ""

For nonresonant THG, saturation effects have
recently been studied in detail by Puell and Vtdal."
It was shown that the maximum attainable conver-
sion depends only on the material parameters of
the nonlinear medium, namely the ratio of the
third-harmonic susceptibility g'~ and the Kerr
constants X'g'. The saturation is determined by
the breakup of the phase-matching condition due
to the intensity-dependent changes of the refract-
ive indices.

For resonant THG, however, the results of
Puell and tidal" are no longer applicable, since
the physical processes which lead to saturation,
are more complicated because of the absorption
processes involved. Furthermore, resonant
systems are very sensitive to the time scale of
the generating light pulse. For picosecond pulses,

e.g. , coherent excitations ami their implications
on the pulse propagation have to be considered. ""
In this paper, however, a discussion of the satur-
ation phenomena observed with pulses of 600-nsec
duration is given. In this time domain several
attempts have been made to explain the saturation
observed in the, so far, most carefully exmnined
experiment on resonant THG by Ward and Smith4:

(i) Ward and Smith' interpreted their results on
the basis of population saturation, where the re-
sulting power-broadening of the resonant transi-
tion leads to a P (3(v) ~P(~) ' dependence for the
generated harmonic power P(3&a} at large input
powers P(~)

(ii) Elgin and New" showed that the optical Stark
shift, neglected by Ward and Smith, compensates
the population saturation and, hence, in the limit
P(~)-~, a P(3cu) ~P(&u) dependence is expected.

(iii) Finally, Georges et al."pointed out that the
ionization of the nonlinear medium may lead to a
substantial loss of atoms participating in the pro-
cess of harmonic generation. Taking into account
power broadening, Stark shifts and ionization
losses, they claim very good agreement of their
theory with the experimental results of Ward and
Smith. 4

All these investigations have been performed
without considering phase-matching effects or the
depletion of the fundamental wave due to two-pho-
ton absorption. For the interpretation of the %'ard
and Smith experiment, these approximations are
valid, since the experiment was performed in a
pure t.s-vapor cell with its density N and length
L adjusted to approximately one coherence length.
Their column density NI. = 6X 10"cm ' was so
small that, even for a complete saturation of the
resonant levels, the attenuation of the fundamental
wave and the resulting change of the coherence
length was negligible. (In normally dispersive
systems the coherence length may even increase
with increasing population of the upper resonant
level. "}Such a low-density system, however, has
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one severe disadvantage: Since the column density
NL is limited by the coherence length, which nor-
mal]y imposes a rather low value onNL, a large
harmonic output can only be achieved with large
input intensities, and, hence, very soon the satu-
ration limit due to power broadening and the Stark
shifts is reached.

In our recent paper" on resonant THG in Sr, we
have demonstrated that by adding Xe to the sys-
tem~ perfect phase matching is possible with NL
as large as 2X 10' cm '. Owing to this large num-
ber of interacting atoms, much lower input inten-
sities are acceptable, making the inQuence of
Stark shifts and power broadening less pronoun-
ced. Nevertheless, the high-density system shows
saturation, . as it will be shown in Sec. IV, but for
different physical reasons. Here, the depletion
of the fundamental wave due to two-photon absorp-
tion can no longer be neglected, and even small
changes of the initial population distribution in-
duced by the two-photon absorption will influence
the phase-matching properties of the system.

Since the high-density system appears to us
more promising for reasons outlined in the follow-
ing sections, we present in this paper a theoreti-
cal and experimental investigation of its proper-.
ties. In Sec. II the theory of quasistationary reso-
nant THG is outlined including depletion of the
fundamental wave and changes of the phase-match-
ing condition due to changes of the level popula-
tions. Analytical expressions for the generated
third-harmonic intensity and the optimum experi-
mental parameters such as initial mismatch and

atomic column density NL are given. In Sec. III
the experimental setup for the investigation of
saturation effects is described. The experiments
were performed in a Sr-Ke mixture, using a Qash-
lamp-pumped dye- laser tuned to the 5s'-Ss5d
two-photon resonance of Sr. In Sec. IV the ex-
perimental results and a comparison with theory
are presented.

H. THEORY

In this section an analytical description of res-
onant THG is given based on the following model:
We consider the interaction of two plane electro-
magnetic waves with a gaseous nonlinear medium,
such as a metal vapor, as they propagate aloag
the medium. The two electromagnetic waves, the
fundamental and the generated harmonic, are
assumed to be monochromatic. The nonlinear
medium is approximated by the 4-level system
shown in Fig. 1. The frequency of the fundamental
wave is tuned to exact resonance with the two-pho-
ton transition ( I)- [2), i.e., 2~= N, -E,)/+=0».
Level 3 stands for all the intermediate levels

l)i Ã/lrti 4XÃ///XXXX/X/ll/X//Ã//g,

l3)

FIG. l. 4-level system indicating the relevant energy
levels for two-photon resonant third-harmonic genera-
tion. State [ 3) stands for the intermediate states, where-
as state

~ 4) represents the ionization continuum.

—ac',"(qu&) fi,E, ,

where E,=E,exp(ik, z} and P, are the Fourier
components of the electric field and of the nonlin-

ear polarization at the frequency q~. Note that

the definition of the wave vector h, =qcst, /c in-
cludes the linear refractive index n, , whereas all
the remaining phases are included in the complex
amplitudes E, . In the following we set n, = 1, ex-
cept for the differences of the refractive indices.
6, is the number density of the ground state of the
nonlinear medium and

o',"(q~) = (4sq&/c}X',"(q~) (2)

is the one-photon absorption cross section at the

fretluency qua, with p,"(ques) being the imaginary-
part of the linear susceptibility with respect to the

ground state
IP aol

~0 is the dipole matrix element for the transition
[0) )k) and ru„=0„—iF„ is the corresponding
complex transition frequency with the linewidth

r„.
The response of the nonlinear medium to the

incident electromagnetic fields is contained in
the nonlinear polarization P~. There are two

different approaches in evaluating P," .

through which the population of the upper resonant
level 2 may relax with the lifetimes T, and ~„re-
spectively. Level 4 represents the continuum

which may be reached from the ground state (1) by

the absorption of either one harmonic photon or
three fundamental photons.

With the slow-amplitude approximation, the
propagation of the electromagnetic waves through
the nonlinear medium can be written as

dE, . 2r(q(u)'
exp'L-& ~g j

C
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(a) In the first method the density matrix for-
malism is used throughout and P~is finally de-
rived from the relation P= Tr(pp). '" » This
procedure yields intensity-dependent susceptibili-
ties per atom, since all the intensity-dependent
effects associated, for example, with the absorp-
tion processes are directly included. The main
advantage of this approach is that it includes all the
significant effects, such as Stark shifts of the
atomic levels, saturation of the resonant transi-
tion, and coherent excitations. For a multilevel
system, however, the resulting set of equations
becomes somewhat complex and the different phy-
sical processes taking place in the medium are
hard to distinguish.

(b) The other approach treats the atoms which
are excited to different energy levels as different
atoms with their own constant nonlinear suscept-

ibility, which can be found from ordinary pertur-
bation theory" "taking the corresponding excited
states as the initial state: The total nonlinear
polarization of the medium is then found from a
summation over all the excited states, whose
populations are calculated from a rate-equation
system.

In our analysis we use the latter approach. We
are well aware of the fact that one has to be care-
ful with rate equations at high intensities. How-
ever, since we are interested in a steady-state
solution, there is no problem. In this case the
advantage of the rate-equation system is that the
physical processes become more transparent.
Furthermore, approximations and their limits of
validity are more easily discussed.

In this case we can write the nonlinear polariza-
tion as

P ", =Q( 4N; [3X'q'r'(3&(})ESEf'E,*+X q~ ((((})E,[ E,[ + X'(~(((},3&(})E,[EJ ] —(No) N( )Xp-'(((})EJ,
P ~3 =Q(-'Ng [X'i'r'(3~}E,E,E, + X 'Ps(»)E. I E.I'+ X'~'s(3~ ~)E~I Eil'1 - (g, —N~)X',"(3~)E,] .

(4)

The first three terms in Eq. (4) represent the
contribution of level i to the three independent
third-order nonlinear susceptibilities, whereas
the last term describes the changes of the re-
fractive index of the system due to the absorption-
induced population changes. y',"is the linear sus-
ceptibility of level i, whose initial number density
is N, &

. Usually N« =N, for i = 1 and N„= 0 for
i4 1 holds, where N, is the total number density of
the nonlinear system.

For resonant THG the third-order nonlinear
susceptibilities evaluated from perturbation theory ~

may be separated into a resonant part X'R contain-
ing the resonant transition (1)- ( 2), and a non-
resonant part X'„'„' covering the contributions of all
the other transitions. For our purpose we re-
strict ourselves to the resonant parts, which ar' e
orders-of-magnitude larger than the nonresonant
parts for systems operating near resonance.
Eence, we may write the nonlinear susceptibility
responsible for THG,

l

the relative Stark shift of the levels, 6G» = (1/4h)
[X',"(ru}—X',"(ru)][X,[', and the linewidth of the
transition I'». In our analysis, however, we ne-
glect the Stark shift, since for the intensity range
discussed below it is much smaller than the laser
linewidth used in the experiment. Furthermore,
we adopt the concept of the experimentally deter-
mined effective linewidth I,« introduced in our re-
cent paper, "which is valid as long as the Doppler
width is small compared to the laser linewidth.
Hence, we replace in Eq. (5) &(}» —2' by (G» —2')

i I « It should be noted that power-broadening
is not contained in 1;«, but results from the rate
equations.

Expressions similar to Eq. (5) can be derived
fo& the resonant parts of the other two third-order
nonlinear susceptibilities, namely,

Xs (3e}}((})—X sg (3((}}}~)

(5)
1 &is Pa~

K(~ —mw} . ~ Ir( „—3 })

&~ stands for the complex transition frequency
of the resonant transition ( 1)- ( 2). In general,
co~ =Q~+ 50~ —i1 ~ includes the unperturbed en-
ergy separation of both levels, 0» = (E, -E,)/g,

In the following we use the notation X'~" = X'~"

+ f X(g', where the real parts [X 'g'(a&} and X 'g'

(3', &u)] are responsible for the intensity-depend-
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= 2+(2v/c)'XN"'(e)4»

where 4. , = (8~/c)lE, l' is the intensity of the funda-
mental wave. In the steady-state limit, the popu-
lations of the different levels shown in Fig. 1 can
be readily written down as

N, =No[1+ (g, /g, )v,c"'((u)4, /25(u] /[1+ (4', /4'~)'],

N, N, [r,c"'((u)&,/2'(u] /[1+ (+,/4. ,)'],
N~ =N~vs/rm,

(9)

ent refractive indices (Kerr effect), and the
imaginary parts describe the two-photon absorp-
tion [X'g'(e)] and the Raman scattering [X'g'(sou, tu)
= X'~"(&u, 3&v)], respectively. In this notation the
two-photon absorption cross section is given by

&'"(~)= (v~/c)x'4'(~)lz, l'

ionization from the ground state, the harmonic in-
tensities under consideration are by far too low.
In contrast to the Cs experiment by Ward and
Smith, for our experiments described in the follow-
ing sections, the three-photon ionization via the
resonant two-photon transition is also negligible,
since the absorption cross section for the l2) -l4}
transition in Sr at a wavelength of 575.7 nm is cal-
culated" to be 3x10 ~ cm . Hence, the population
N, of the continuum would amount to only 1% of the
population of the upper resonant level at an input
energy of 1 J/cm'.

From Eq. (9) the population density N, of level
& can be evaluated and expressed in terms of the
population difference ~ and the fundamental in-
tensity 4,. For the last term in Eg. (4'} one then
can write

&(2)
(N.i Ni )x-'~"(e~}=~

2g 4',[ &~ x'i", (e~}1,

(12)

bA =N, N, (g, /-g, ) ~N, /(1+4[/4'mg) (10} where

being the population difference of the resonant
levels, where

@s = (&/2~)([ ~.+ ~.(1+g,/g. )l x"'(~)/&} ' '

is the saturation intensity; Here we took into ac-
count the degeneracy of the resonant levels by their
statistical weights g, and g„respectively. The
population of the continuum is neglected in this
model, since for a significant direct one-photon

[~& x'&", (e~}]=g ~i [ x'l'(e~) —x',"(~~}1 (13)

uses Einstein's sum convention. X'&"(q&u) stands
for the linear susceptibility of level i, averaged
over all its sublevels.

Inserting now Eqs. (4) and (12) into Eq. (1) and
neglecting all terms proportional to the third-
harmonic intensity, which is assumed to be much
lower than the fundamental intensity, we finally
get for the Fourier components of the electric
field at ~ and 3~ the following two equations:

'=I —'"~l x"'(~)lz l'z + """ 'x"'(~)l&,l'z, ,l,2c (14a)

' = i mal x'r' (3&u)z,'exp(idio)+ x)~'(sar, &o)lz, l'z, + ' ' "" x',"((u)lz, l'z,
l

~ -(3)
— "'(s ) z l1+~ '"' " lz l'l

2 3g g, 16k '
)

' (14b)

with LL4 = 3N, —k, being the initial wave-vector
mismatch of the fundamental and the harmonic
wave.

Before going on in solving Eq. (14), let us sum-
marize the most important assumptions which led
to the above equations.

(1}The Stark shift of the atomic levels is ne-
glected, since the laser linewidth is assumed to
be much larger.

(2) The population changes due to two-photon
absorption are evaluated from a stationary rate
equation system. Their influence on the nonlinear
susceptibilities, i.e., power broadening and their

I

action on the phases of the electric fields [second
term in Eq. (14)]are taken into account.

(3) The attenuation of the generated harmonic
wave due to one-photon absorption is taken into
account [third term in Etl. (14b)], including the
intensity-dependent ground-state population. The
corresponding population of the continuum, how-
ever, is neglected.

(4) Depletion of the fundamental wave takes
place only due to the resonant two-photon absorp-
tion [first term in Eg. (14a)].

All these assumptions can be met in the experi-
ment by proper adjustment of the experimental
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parameters. It is a model, which in nearly all
respects contrasts existing models. One may
call it a high-density model, since the two im-
portant aspects, namely the attenuation of the
fundamental wave due to the two-photon absorp-
tion and the resulting changes in phase matching,
are closely related to a relatively large number
density of the nonlinear medium. It will be shown
below, however, that in resonant THG it is more
advantageous to work in the high-density than in
the low-density regime, where the resonant trans-
ition easily saturates.

2, X—z'(~)N. P,'/(I+P,'/Pz) (15a)

A. Analytical solutions

We now proceed with the discussion of Eq. (14).
Withe, =p, e xp( ~), Eq. (14a) can be rewritten as

CfP1 &(d

dz 2c
' = ——x"'(~)~p'1

' =—x"'(~)~p'
dz 2c 1

+ sg, ~X'z'(~) [~& X'&", (~)1p,' (15b)

with p2z =(sz/c)4z. Integrating Eq. (15a) from z =0
to z =L, we get an implicit expression for 4', (L),
namely,

(4 —4.)(hz+4 4 )/(4P ) = a+,
with a, =N, o',"(ru) being the two-photon absorption
coefficient at the input intensity 4, = 4, (z =0).

Because of the complex dependence of the funda-
mental intensity 4, on the length z, it is more
convenient to choose pg as the new variable in-
stead of z. Dividing Eq. (14b) by Eq. (15a) and
writing E,=E,exp[i(Ekz+ 3y,)], we can integrate
the resulting equation from p, =p, up to p, =p~ and

finally get

( t J PL, ( pyE.= —3i[x'rs'(»)/x' (~)]~eel I"(pi)dpi
I J) p E po

(1V)

with

~(p ) = P ~ r~—~ + 5~( 3

po (pi ) p

Here we introduced the following abbreviations:

o"'(3~)(g,/g, )v,u,

(18)

I

efficient (imaginary part, 5).
In the following we restrict our discussion to

exact resonance, where the real part of 5 van-
ishes. We neglect also its imaginary part, since
one can show that because of the large denomina-
tor of the Raman susceptibility [see Eq. (7)] for
most of the nonlinear materials, X"z'(3&u, &u) is at
least two orders of magnitude smaller than X'g'(~).

The integral f~~~E(p, )dp, in Eq. (1V) can be
readily performed, yielding

(~g &x'g'')= [ ~g x'g", (~)]—[ c x'A'(»)]

y=y+iy = --,'a"'(3(u)N, -id, k,

(19a)

(19b)

(19c)

, op= —p
~~ +y ~ -p-y

1 2 ( 2

P-r ~ 1 —
I

(20)
O2 .

5=$+i5=3s&(2z/c)'[Xz (3&4, &) —Xz (&)]NOC'0 ~

(19d)

Their physical significance is as follows: y stands
for the one-photon absorption coefficient (real
part, y) and the initial mismatch of the system
(imaginary part, y). P, the real part of p, takes
into account the changes of the one-photon absorp-
tion coefficient due to the depletion of the ground
state, whereas the imaginary part P is the mis-
match associated with the population changes of
the nonlinear medium. Finally, 6 represents the
intensity-dependent mismatch due to the Kerr
effect (real part, II) and the Raman scattering co-

e imaginary part of thxs equation xs a measure
for the total change of the mismatch due to disper-
sion along the length L.

Expressing now the amplitude of the fundament-
al wave at a distance z in terms of the transmis-
sion of the system

T = @,(z) /4', (z = o) = (P /P )'

the remaining integral in Eq. (17) can be cast into
the form fexp(-a'T b'/T)dv T, whos-e solution
may be given in terms of complex error func-
tions. " After some tedious algebra, we get for
the intensity of the generated third-harmonic
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"-(~) @, 16' I exp(y,')[erf(y, ) —erf(y„)]+exp(y') [erf(y ) —erf(y, )] (', (22)

with y, =VPT/a2 +My/Ta2 and /gal Vp/a2 + ky/o2. A general discussion of this solution is rather cum-
bersome. If, however, one is interested in the evaluation of the optimum conditions and an insight of how
the different material parameters act on the system, Eq. (22) is very useful.

Let us first consider the case P =0; i.e., we neglect the inQuence of changes in the level populations.
Either from Eq. (22) taking the limit P -0 or from direct integration of Eq. (17), which is more conven-
ient, we get for the intensity conversion

4 3x'~ (3au) ' a, (1 rq=-~= -&» exp — '
~

—-lj 1-~T exp ——
~

——1~
xV'(~} . &. P'

2

2
(23)

(24a}

Depending on the ratio of the one-photon to two-photon absorption coefficient, a, /u„we may rewrite Eq.
(23} in the two forms

12& + ) ~ o (1 ~ 3g2 hk (1 I e& (1q=, N, X'r'(3ao}@, 1+ 'exp -~( —-1
I

-2T'~'cos —
(

——
)

exp — '
(

——1)~2y 0 F 0 02 &T ] +2 (T J- a 2+2 (T J.

for u, /2- [r(»u» and

(3)(3&) 2 u (1 hk(1 t a, (1X T T+exp —~l ——1I —2 W2' cos —
~

——1
~

exp — '
~

——1) Ix'~'(~) P J 2+&T (24b}

for a, /2 ~r( «n,

The preceding equations look quite similar. In
both cases optimum results are achieved for zero
initial mismatch 6, k=0. At low input intensities
the conversion increases with the square of the
input intensity [Eq. (24a)] and the optimum values
for density and length are reached when the med-
ium is optically thick with respect to the one-pho-
ton absorption. " Note that in this case the trans-
mission T can be approximated by T ~ (1+ag) '
and -(c.,/a~)[(1/T) —1] becomes (-a,L). Raising
the input intensity up to a level where the two-pho-
ton absorption coefficient overtakes the one-photon
absorption coefficient [Eq. (24b)], the conversion
reaches asymptotically with e, 0 a maximum val-
ue of

r(p. /p, -)'= P r/T -= o- (26)

is satisfied, giving rise to an optimum mismatch

@2

action region of the light waves. For realistic
systems this assumption is only valid at low input
intensities, where the population changes induced
by the two-photon absorption can be neglected even
with respect to the phases.

To include the latter effect we have to return to
Eq. (22) allowing for P 4 0. From a numerical
analysis of Eq. (22) we found that optimum condi-
tions for THG with respect to the mismatch h, k
are achieved if the relation

0 = l3x "r(3~)/x's'(&}1' (25)

as the medium becomes optically thick, now with
respect to the two-photon absorption. Similar to
nonresonant THG, '4 the maximum conversion ef-
ficiency depends only on the nonlinear suscept-
ibilities of the medium.

This result, which was already obtained by
other authors, ~' gives an upper limit for the
harmonic conversion under ideal conditions, name-
ly for perfect phase matching throughout the inter-

The physical interpretation of this relation be-
comes quite obvious comparing Eq. (26) with Eq.
(20}. It shows that the generated third-harmonic
intensity approaches a maximum, if the total mis-
match, integrated along the distance under con-
sideration, vanishes. Nevertheless, this numeri-
cal finding was somewhat surprising, since we
were not able to prove Eq. (26) analytically for
arbitrary experimental conditions. We succeeded
only in showing that for a, = 0 and low input inten-
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sities (4,«4~), Eq. (26) can be deduced analyti-
cally. " Qur numerical calculations, presented in
the Sec. IIB, revealed, however, that Eq. (26}
retains its validity even for e, 0 and 4, 4~ and
reproduces the numerical values for the optimum
mismatch with an error of less than 1'fo.

In the following we will neglect the one-photon
absorption (c., = 0} leaving this complication for
the numerical discussion presented in the Sec. II
B. With the optimum conditions for h, 4, the third-
harmonic intensity can be calculated inserting Eq.
(26) into Eq. (22}. After some tedious algebra one
obtains

3„"'(3(u} ' cg
X'&'(~) 6l && ~X'i"I

x
~

1+
@ ~[C (x}+S (x}]

( +402 [

4's &

where C(s}= J*,cos(-,'wu') du and S(x) = J*,sin(-,'vu')
du are the Fresnek integrals with the argument

6( + ~~( ))y @2 1/a

(28)

Equation (28) has some interesting properties
which follow.

(a) For @,«+8, we may write (1+T4", /4 ~&) =1
and the third-harmonic intensity is proportional
only to [C,'(x) + S '(x)], which has an absolute max-
imum of 0.9, reached for an argument @=1.21
(Ref. 27). Hence, 'in this case, we get a constant
maximum harmonic intensity

as long as 6( v;hX',"(4,/cK»1. 5. For 6( v, d, y',"(4,/
ck& 1.5, the optimum length as well as the opti-
mum input intensity approaches infinity, indicating
that in this regime the influence of the intensity-
dependent mismatch is negligible, and Eqs. (23—
25) are applicable.

From Eq. (30} it follows that by increasing the
input intensity 4„ the product NOL can always be
made small enough to fulfill the condition a, L«1,
which justifies our assumption e, = 0 used in the

n)(13X r' (3&)/X'g (~}l +o g (28)6 Tikxi

which depends only on the material parameters of
the nonlinear medium. The optimum experimental
conditions for reaching this value are expressed
in terms of the phase-matching condition of Eq.
(27) and, with respect to the length, number den-
sity and input intensity are given by T = (1+u, L) '
and the relation s = 1.21. This leads to

8v + ~ '/' 4cg1.21
c '& 3w~ "'(au)[v a

for 4', «4z (30)

derivation of the above equations, as kong as the
input intensity 4, stays below the saturation inten-
sity 4~.

(b} for 4, »4z we have to consider in Eq. (28} the
factor [1+T(4,/4~)']. Evaluating the derivative of

3 with respect to T; one can show that the maxi-
mum conversion efficiency becomes a constant,
namely,

(s)(3&) ~

2

~litaX - (3&I & P & 0 Sx ~ ~~ ~

(31)

The corresponding optimum experimental condi-
tions are again expressed in terms of the phase-
matching condition of Eq. (27) and, with respect to
the length, number density and input intensity are
given by the relations (1 —T) = u, L(@~/4, )' and
T«1. This yields

B. Numerical solution

The analyticaL solutions derived in Sec. IIA were
useful for determining power laws and upper lim-
its for the harmonic intensity. This, however,
was only possible for one of the experimental or
material parameters being dominant. In order to
find how the asymptotic values are reached and
how the system acts if alk the different physical
processes are of similar importance, one has to
evaluate Eq. (14) numerically.

First, we use the numerical solutions to show
how sensitive the harmonic output is to changes
of the experimental parameters (length and initial
mismatch). The calculations are performed with

(cl' 4,
(NOL)OPt

™
~ 2 ~ 2 -[,),',C.. . @,»C'~. (32)

The preceding results indicate that there are only
small population changes as long as the input inten-
sity is well below the saturation intensity. How-
ever, the resulting phase shift imposes a severe
limitation to the maximum attainable' harmonic
intensity. This is due to the intensity-dependent
phase shift, which cannot be compensated by the
initial mismatch throughout the medium as the
fundamental intensity drops from 4, to T@,.

For input intensities well above the saturation
intensity there is, on the other haad, a large
change of the population densities, and the phase
shift due to the different refractive indices of the
populated levels is also significant. This phase
shift, however, can be compensated by a proper
initial mismatch, even over large distances. The
medium is almost equally populated in the upper
and lower levels, ( 1) and

~ 2), and a depletion of
the fundamental intensity does not alter this pop-
ulation significantly as long as the intensity re-
mains well above the saturation intensity.
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the nonlinear susceptibilities of Sr when tuning
to the 5s'-5s5d two-photon resonance: ~= 575.912
nm, y'r' (3&u) =1.25x10 "esu, Pg'(ru) = 2.7x10 "
esu, (v, hx',")=—10 "esu, and o"' (3&v) =3.3
x10 "cm' for an initial particle density N-, = 7.2
x10"cm ' (8.5 Torr Sr).

In Fig. 2 numerical results for the harmonic
intensity versus length are shown for h, &=0 and
with the fundamental input intensity as a parame-
ter. For comparison, the harmonic output for
negligible two-photon absorption (dotted curves)
is also given, where the harmonic and the funda-
mental wave are always in phase (4&= 0), but
where the harmonic intensity nevertheless tends
towards a constant value due to the one-photon
absorption. Figure 2 illustrates clearly how in the
case of a significant two-photon absorption, both
waves come out of phase with increasing input
intensity at shorter and shorter distances. This
has to be attributed to the change of the refractive
indices originating from the population changes
induced by the two-photon absorption. For an in-
put intensity of 2x10' W/cm' the effective coher-
ence length is reduced to less than 1 cm and the
resulting harmonic output stays well below the
maximum value attainable without two-photon ab-
sorption. With increasing length the typical phase-
matching oscillations are damped out because the
fundamental and the harmonic wave come in phase
again as the fundamental wave is attenuated and
the intensity-dependent mismatch becomes negli-
gible.

From our analytical solution we learned that
this intensity-dependent mismatch can be compen-
sated to some extent by choosing the initial mis-
match according to Eq. (2V). This is illustrated
by Fig. 3 where the harmonic intensity versus
length is given for an input intensity of 2&10'

/ cm with &k as a parameter. The curve for
~k=0 is identical with the solid curve in Fig. 2.
Increasing the initial mismatch, one observes an
increase in length over which both waves are in
phase and the harmonic intensity increases. The
optimum output is achieved for a mismatch of Lh, k
= 2.5 (thick solid curve), where both waves stay in
phase over the largest distance. For 6k=0, both
waves come out of phase before the fundamental
experiences a significant attenuation which would
lower the total mismatch. For h, k=3.5, the mis-
match is perfect at the beginning but, as the funda-
mental is attenuated, the total mismatch is rapidly
decreasing and the waves come out of phase.
Hence, optimum mismatch results from a compro-
mise: The initial mismatch should be large enough
to compensate the intensity-dependent mismatch
at the highest input intensity but also sufficiently
low to keep the waves in phase over a long enough
distance as the intensity-dependent mismatch de-
creases due to the attenuated fundamental wave.
An experimental realization of this compromise
increases the harmonic output considerably. In
our example this increase amounts to a factor of
-100 for an input intensity of 2x10' W/cm', com-
pared to phase matching with h, k=0.

In order to show how the fundamental wave acts
on the nonlinear medium, we have plotted in Fig.
4 the harmonic intensity, the attenuation of the
fundamental wave, and the population difference
hN as a function of length. At the high input inten-
sity of 4, =6.4x10' W/cm', which is well above
the saturation intensity (2.7x 10' W/cm'), the non-
linear medium is nearly bleached. The population
difference ~ which drives the THG is very small,
but, nevertheless, an appreciable increase in
third-harmonic intensity can be observed. This is
due to the proper adjustment of the initial mis-
match 4k=9.72 cm ', which compensates the in-
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tensity-dependent mismatch resulting from the
small ~. The maximum third-harmonic intensity
is reached at a length of -150 cm, up to which the
population difference ddt as well as the fundament-
al intensity did not change very much. At longer
distances hX increases very rapidly up to No
= 7.2x10" cm ' as the fundamental intensity is
attenuated down to the saturation intensity. In
this region the third-harmonic intensity stays con-
stant (dotted curve) if there is no one-photon ab-
sorption, since the driving fundamental intensity
became too low for a considerable change of the
harmonic intensity. For an existing one-photon
absorption (solid curve), however, the harmonic
wave is rapidly absorbed by the nonlinear medium.
Note that even during the growth of the harmonic
wave, the one-photon absorption reduces the har-
monic intensity considerably. This is due to the
fact that for the one-photon absorption, the
ground-state-level population is responsible,
whereas for the two-photon absorption the popula-

tion difference ddt is responsible. Hence, even at
very high input intensities, where the nonlinear
medium is bleached, the one-photon absorption
coefficient remains a limiting material parameter
for THG. At this point we want to give the numer-
ical proof of Eq. (2V) for the optimum mismatch.
In Table I, the optimum mismatch according to
Eq. (27) is given together with the calculated val-
ues as a function of the input intensity for three
different values of the one-photon absorption coef-
ficient. The values for number density and non-
linear susceptibilities are those specified for Sr
at the beginning of this section. Note that the val-
ues for 6& found from Eq. (27) agree within less
than 1% with the numerical values of all input in-
tensities and absorption cross sections.

One may be surprised at the fact that, for dif-
ferent values of ot~i(3&g), the numerical as well
as the analytical values for 6)'t are different, al-
though Eq. (27) does not contain &r"' (3&@) explicit-
ly. This is due to the fact that the optimum length
is influenced by o"' (3~), and, hence, the trans-
mission T is changed.

For a given input intensity, the problem of find-
ing the optimum mismatch is therefore shifted to
the problem of determining the optimum length.
Once this length is found, the optimum mismatch
can be given by Eq. (2V) with high accuracy.
Nevertheless, Eq. (2V) is very useful, since one
usually wants to know the optimum mismatch for
a given experimental setup. Since the length is
given and the transmission T is known, one can
readily determine the optimum mismatch from
Eq. (27).

We now proceed to check the upper limits for
the harmonic generation. For this purpose, we
have solved Etl. (14) numerically including the
population saturation. The results are shown in
Fig. 5, where the optimum harmonic intensity is

TABLE I. Optimum mismatch Ak as a function of the input intensity @p for three different
values of the one-photon absorption cross section 8 (3~). ~n~ is obtained from a numeri-
cal integration. M~ is given by Eq. (27). ~ has been calculated for (r&6gjn) =-9.9 X10 t~

esu, g&1=1.25x10 + esu, g~~=2.13x10 ~esu, andN =7.2x10 cm

gO)(~) -0
num Ak~

di~(3') =3.3x 10-is cm
~num

8 & (~) =3.3x 1Q cm
~num ~an

2.5x ].06

5x 106
1x10'
2x 10~
4x 10'
8x 10'

1.6 x 10
3.2x10'
6.4x 10s

1.28x10'

0.016 12
0.11812
0.625 31
2.4049
5.649 1
8.1913
9.260 9
9.6144
9.723 1
9.756 6

0.01603
0.11747
0.620 52
2.382 8
5.604 2
8.154 6
9.242 5
9.605 2
9.7180
9.753 9

0.06403
0.224 73
0.770 80
2.489 4
5.7133
8.2114
9.268 5
9.6193
9.721 5
9.750 5

0.065 96
0.234 08
0.794 94
2.521 6
5.697 6
8.196 2
9.263 5
9.6174
9.723 6
9.755 2

0.068 97
0.289 96
1.020 66
2.9160
6.034 6
8.352 7
9.321 83
9.569 6
9.706 8
9.749 9

0.07749
0.294 95
1.041 5
3.021 3
6.1060
8.402 2
9.353 0
9.6251
9.722 6
9.7510
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FIG. 5. Third-harmonic intensity versus fundamental
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photon absorption cross sections.

plotted as a function of the input intensity for three
different one-photon absorption cross sections and
for two different values of y'g'(e). The strong sol-
id curve corresponds to our Sr experiment. For
each input intensity we searched for the optimum
harmonic output by varying the column density,
N, L, and the initial mismatch per number density,
h&/N, . The resulting optimum values for these
experimental parameters are shown in Fig. 6 and

will be, discussed below. From Fig. 5 we see that
for low input intensities the harmonic intensity in-
creases approximately with the third power of the
input intensity and the conversion efficiency is in-
versely proportional to the square of the one-pho-
ton absorption cross section, in agreement with
FAI. (24a). These calculations show that with de-
creasing one-photon absorption the harmonic inten-
sity is limited to the value given by Eq. (29) due to
the intensity-dependent mismatch. Increasing the
input intensity above the saturation intensity [2.V
X10' W/cm' for y'g'(ra)= 2.13X10 ~ esu and 1.9
&&10' W/cm' for Pg'(ru) = 4.26X10 ~ esu], one ob-
serves for o"' (3s&) = 0 a rapid increase in the max-
imum harmonic intensity, which finally, at very
high input intensities, approaches the constant
conversion efficiency given by Eq. (31).

In contrast to the case of no one-photon absorp-
tion, an upper limit for the harmonic intensity is
observed for o"'(3')e0 which depends on X'ss'(e)
and the value of a"'(3ru). This upper limit results
from the limitation in length imposed by the one-
photon absorption coefficient (see Fig. 4).

The experimental parameters which give rise to
the optimum harmonic output are plotted in Fig. 6.
A discussion of these data can be separated into
two parts.

(1) For input intensities well below the satura-
tion intensity, 40«4~, the one-photon absorption
cross section has a strong influence on the opti-
mum parameters. With increasing absorption
cross section, the optimum column density N, L
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FIG. 6. Optimum column density N pL and optimum normalized mismatch 4k/N p versus fundamental intensity for
different values of the one-photon and two-photon absorption cross sections.
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is reduced considerably down to an optical. depth
of o"'(3')N, I, = 5 —10. This results from a com-
promise between the one- ajmt the two-photon ab-
sorption: Instead of reaching the optimum output
at R,L -~, which is the case for negligible two-
photon absorption, this additional nonlinear ab-
sorption gives rise to a finite optimum value for
N, L, according to Eg. (24a). The optimum initial
mismatch is also influenced by the one-photon ab-
sorption, since with increasing cross section the
effective interaction length is reduced (keeping the
optical thickness constant) and hence a larger mis-
match is allowed.

(2) For input intensities well above the saturation
intensity 4, 4~, the optimum experimental par-
ameters become independent of the one-photon
absorption coefficient at„as the two-photon ab-
sorption coefficient e, exceeds e,. With increas-
ing input intensity the optimum value of NOL, in-
creases and approaches the limit given by Eg.
(32). This results from the bleaching of the non-
linear medium as the input intensity increases.
At the same time, the optimum mismatch ap-
proaches the constant value of n, k/N, = —(2r/'c}'
x3(o(r, ay,"')y",'(&u), according to Eq. (2V).

The experimental arrangement consists of a
flash-lamp-pumped dye laser tuned to the Ss'-
Ss5d two-photon transition of Sr, a novel heat-
piye system for preparing the Sr-Xe mixture,
and a diagnostic system for measuring the absolute
intensity of the fundamental and the harmonic
mave. The system is rather similar to the one
previously described. " However, for testing the
saturation phenomena predicted in Sec. H, two
important modifications had to be made.

First of all, the column density of the Sr vapor
mas reduced in order to obtain an optically thin
system. In this manner the phase-matching curve
shows the typical periodic structure of an optically
thin system and the important parameters of the
nonlinear medium can be determined more ac-
cuxately. In addition, the effects due to the one-
yhoton absorption" can be distinguished more
easily from the intensity-dependent effects which
are of interest in this work. In order to handle
short vapor columns with a well-defined length at
vapor pressures near or even below the melting
point of the active medium, the concentric heat-
pipe oven" had to be modified in a manner to be
described elsemhere. " In the experiments we
used a length of the nonlinear medium of 5 cm and
a Sr vapor pressure of 3.2 Torr (N, =2.8V 10x' e

cm ') corresponding to an optical depth of 0.5.
The density gradient in the transition zones be-

tmeen the nonlinear medium and the confining noble
gas was found to be identical with the gradient
measured in the concentric heat-pipe oven. "
However, the effect of the density gradient on the
phase-matching curve is more pronounced because
of the shorter length of the homogeneous nonlinear
medium with respect to the transition zones.

As a further modification, the Gash-lamp-pump-
ed dye laser was followed by an inverted tele-
scope. The purpose of this was to raise the beam
intensity for the investigation of the saturation
effects and to maintain a sufficiently parallel
beam. A tightly focused beam had a severe effect
on the phase-matching curve smearing out the
periodic structure. The focusing of a multimode
laser beam as it mas used in our experiments
leads to a rather complicated radial intensity dis-
tribution and it causes additional phase shifts"
which obscure the influence of the intensity-de-
pendent changes of the. refractive index due to the
two-photon absorption. Since the theory of the
preceding section mas not designed to describe a
tightly focused multimode beam, the laser beam
had to be carefu11,y prepared with respect to its
beam profile. For this reason the inverted tel.e-
scope was adjusted at lorn inyut intensities in such
a manner that the phase-matching curve shoms the
largest contrast between the maximum and the
first minimum {see Fig. V). This method turned
out to be the most sensitive and xeliable test of a
parallel beam. However, due to the xather large
beam divergence of 10 ' rad, the maximum
achievable intensity of our l,aser system was limi-
ted to 1.3 x10' W/cm'.

In order to specify all the important nonlinear
parameters mhich were not yet determined in our
previous paper" and which are required for a test
of the theory, the two-photon absorption cross
section of the Ss'-SsSd transition in Sr had to be
measured. This was done by measuring the trans-
mission of the vapor column as a function of the
laser wavelength for different intensities and dif-
ferent particle densities. In this manner the value
of Pg'(s&) is obtained with a laser linewidth of 0.3
cm ' according to Etls. (6) and (15a}. For this the
beam radius, the density profile in the transition
zones, and the length of the Sr vapor column have
to be accurately known.

For the investigation of the harmonic generation
in nonlinear systems, the phase-matching curve
holds the key to a detailed quantitative understand-
ing of the different physical processes involved.
The position of the minima and maxima is deter-
mined by the product of the length L, and the mis-
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match h, k of the nonlinear medium. The intensity
ratio of the maxima and minima is a measure of
the optical depth for the generated harmonic radia-
tion and is also affected by the beam profile of the
incident fundamental wave. The asymmetry of the
phase-matching curve reveals the particle-density
distribution along the optical path within the non-
linear medium.

We therefore started our experiments by record-
ing phase-matching curves at different input in-
tensities. Figure V shows two phase-matching
curves taken with input intensities of 1.5X10' and
1.3x10' W/cm', respectively. The individual
points represent an average of ten laser shots.
Figure 7 also shows a typical error bar.

We first restrict our attention to the lower of
the two phase-matching curves. The intensity of
the incoming fundamental wave was attenuated to
a level where the onset of saturation effects can
certainly be neglected. Nevertheless, the phase-
matching curve looks quite different from the one
shown in Fig. 5 of Ref. 11. The width of the maxi-
mum which gives rise to the highest conversion
efficiency, is significantly larger and shifted down
to a smaller pressure ratio Px, /Ps, correspond-
ing to a higher value of h4. Furthermore, the
phase-matching curve shows a well-developed
periodic structure on the low-pressure side. The
different shape of the phase-matching curves is
primarily due to the different optical depths. The
measurements of Fig. 5 of Ref. 11 were taken with
an optical depth of 7.5, whereas the optical depth
in Fig. 7 amounts to 0.5. Besides lowering the
particle density, the optical depth was mainly re-
duced by lowering the length of the nonlinear med-

MISMATCH hk (~m-1)

,1
4 3 2 1 0 -1

10+ i s &
~

i & i i l & ) & i ) i i i i
~

i i i i
~

& & s s

10o

g 10-1

~1022OZ

C)
10-4

10-5 s i » I i s» i »» I i » s i s s i ill» st i iii I » « I i i » I i ( i )i «» I i i i s

10 20 30 40 50 60

PRESSURE RATIO Q,IP@

FIG. 7. Phase-matching curves of the Sr-Xe system
taken with a parallel beam at two different input inten-
sities. The solid lines represent theoretical curves.
For the lower one, saturation effects due to two-photon
absorption can be neglected, whereas for the upper
phase-matching curve, saturation effects are important.
The dotted line shows the calculations neglecting satura-
tion effects.

ium to 5 cm. Since the density profile of the
transition zones between the nonlinear medium
and the confining noble gas are identical for both
sets of measurements, they have to play a more
prominent role for the phase-matching curve in
Fig. 7 where the length of the homogeneous section
of the nonlinear medium is significantly shorter.

The solid curve in Fig. 7 represents the theore-
tical phase-matching curve which is in excellent
agreement with the experiments. For the lower
one of the two curves, the linear and nonlinear
susceptibilities and the density gradient were all
taken from Ref. 11.

Increasing the input intensity to 4O = 1.3X 10' W/
cm', one obtains the upper phase-matching curve
in Fig. V. Neglecting all the saturation effects due
to intensity-dependent changes of the refractive
index, the theoretical phase-matching curve would
be given by the dotted line in Fig. 7 which differs
quite dramatically from the measurements. If
one, however, includes the intensity-dependent
changes of the level populations associated with
the two-photon absorption, the corresponding
changes of the refractive index give rise to a
theoretical phase-matching curve (upper solid
line) which is again in excellent agreement with the
experiments.

For the calculation of the upper phase-matching
curve, the two-photon absorption cross section of
the 5s'-5s5d transition is required. It was mea-
sured independently as described in Sec. III and we
obtained y'g'(~) =4.3&&10 "esu for a linewidth of
1 cm '. From this value the matrix element of the
5s5d-5s5p transition was extracted and used to
calculate the linear susceptibilities of the 5s5d
and 5s5P levels at the wavelengths of the funda-
mental and the third-harmonic wave. " With these
parameters the upper phase-matching curve in
Fig. 7 was calculated according to Eqs. (14) and
(15). It is important to note that there is no free
adjustable parameter.

There is another important piece of experiment-
al evidence for the strong two-photon absorption.
At high input intensities we noticed stimulated
emission from the 5s5d state to the lower Ss5p
state due to a population inversion originating from
the two-photon excitation of the 5s5d state. For a
quantitative agreement with the experiments, we
had to incorporate this process in our calculations
by modifying the set of rate equations (9). It was
assumed that the population of the 5s5d state fol-
lows directly the population of the 5s5P state due
to stimulated emission. As a result, taking into
account the different statistical weights, the 5s5d
state effectively adopts the lifetime of the 5s5p
state which is well known.

Two significant features of the high-intensity
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phase-matching curve are apparent from Fig. 7,
namely a shift of the periodic structure to smaller
pressure ratios and a reduced amplitude of the
periodic structure. The shift is mainly due to the
quantity (v, hy',") defined in Eq. (19b). The re-
duced values of the maxima originate from the de-
pletion of the fundamental wave due to the two-
photon absorption and the corresponding lower
population difference rhJV between the ground state
and the two-photon resonant state of the nonlinear
medium. The filling up of the minima is related to
the temporal and radial intensity distribution of
the incident laser pulse because the final phase-
matching curve results from an integration in time
and space where contributions of different parts
of the beam give rise to different changes of the
refractive index.

Finally, Fig. 8 shows the third-harmonic power
as a function of the fundamental intensity for two
different pressure ratios P„,/Ps, =46.3 (rectangu-
lar points) and 31.8 (circular points). The two
values are on the high-pressure side and the low-
pressure side of the phase-matching maximum in
Fig. 7 and they were chosen in such a manner that
they give the same conversion efficiency for an
input intensity of 1.3&&10' W/cm'. Each point in
Fig. 8 is again an average of ten laser shots. The
solid lines give the theoretical curves and the

dotted lines indicate a power law with a slope of 3.
The measurements in Fig. 8 clearly show the on-

set of the saturation and the inQuence of the initial
mismatch as discussed in Sec. II. At low inten-
sities both sets of measurements increase as the
cube of the fundamental intensity. The harmonic
power obtained with the higher pressure ratio
exceeds the measurements taken with the lower
pressure ratio by about one order of magnitude.
With increasing fundamental intensity, the high-
pressure curve starts to differ from the simple
third-power law (dotted line) until it levels off
around the saturation intensity @~ of 2.7 ~10'
W/cm' due to the depletion of the fundamental
wave and the bleaching of the nonlinear medium.
The low-pressure curve, on the other hand,
behaves quite differently. Here the change in the
refractive index causes a dramatic increase of
the generated third-harmonic power and around
10' W/cm', the low-pressure curve even over-
takes the high-pressure curve. The theoretical
curve then levels off at a third-harmonic power
which is larger by one order of magnitude than the
value of the high-pressure curve. This behavior
clearly reveals the importance of the initial mis-
match which improves the conversion efficiency at
high input intensities, as explained in detail in
Sec. II.
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A detailed quantitative analysis of the saturation
of two-photon resonant THG in absorbing media
has been presented. It includes the one-photon ab-
sorption of the third-harmonic wave as well as the
two-photon absorption of the fundamental wave
which gives rise to a depletion of the fundamental
wave and a change of the population densities. The
latter process is shown to lead to a change of the
effective refractive index and is the limiting pro-
cess in the conversion efficiency because of the
destruction of the phase-matching condition.

For high-density systems the limiting processes
occur at power levels where Stark shifts can still
be neglected. The optimum conditions are pre-
sented and the importance of the one-photon ab-
sorption for low input intensities and of the two-
photon absorption at high input intensities is
demonstrated.

It is shown that for resonant THG in phase-
matched systems, the highest achievable conver-
sion efficiency is given by q = (3y'r3 (3+)/
X'sa'(ai))'. Consequently, for resonant as well as
nonresonant THG, the limiting processes are due
to the same nonlinear susceptibilities. The non-
resonant case is governed by the real part of the
nonlinear susceptibilities, whereas for resonant
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systems the imaginary parts dominate. It should
be noted that the limiting nonlinear susceptibilities
X'se' are also resonantly enhanced. As a result,
the advantage of resonant THG at low input inten-
sities turns into a disadvantage at high input in-
tensities and it explains why the highest conversion
efficiencies achieved so far in nonresonant sys-
tems significantly exceed those obtained with
resonant systems.

In addition to the theoretical analysis, measure-

ments have been presented which demonstrate the
onset of the saturation due to two-photon absorp-
tion and which are in excellent agreement with the
theory.
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