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Four-wave mixing processes with double and trip]e resonances are discussed in detail. Explicit expressions for the

resonant nonhnear susceptibilities of various cases are derived. It is shown that in some cases, four-eave mixing can

yield a spectrum with reduced inhomogeneous broadening. Possible appHcations of multiresonant four-eave mixing

as a spectroscopic technique are considered. They include high-resolution spectroscopy, deduction of transition

matrix elements, study of transitions between excited states, measurelnent of longitudinal relaxation times,

distinction between resonant hnan scattering and resonant Quorescence, etc. Selective polarization arrangement

aHows us to suppress the nonresonant background, separately measure the real and imaginary parts of the resonant

no»i~ear susceptibility, ~i»~im the effects of absorption and laser intensity fluctuations, and greatly enhance the
si~~&-to-noise ratio.

I. INTRODUCHON

Four-wave mixing is a well-known nonlinear
optical effect. ' It describes a mixing process in
which three propagating light waves interact non-
linearly in a medium and generate a fourth wave.
The third-order nonlinear susceptibility that
governs the process should naturally exhibit re-
sonances which are characteristic of the medium.
They can be probed through the resonant enhance-
ment of the four-wave mixing output. Thus, the
process can be used as a tool for spectroscopic
studies. ' With the recent advances of tunable
lasers, it is being rapidly developed into an im-
portant practical spectroscopic technique for
many applications including chemical analysis,
combustion research, studies of material proper-
ties, etc The m. ost important advantages of this
technique over other techniques are its capability
for high-resolution spectroscopic study, for
elimination of strong fluorescence background,
and for time-resolving measurements of ultrafast
dynamic properties.

In most four-wave mixing experiments reported
in the literatures, single resonances of the third-
order nonlinear susceptibility are usually probed
and studied. Singly resonant fou, r-wave mixing
has the merit that the experimental arrangement
is relatively simple and interpretation of the re-
sults is often straightforward. It generally yields
the kind of spectroscopic information one would
obtain from one-photon or two-photon transition
measurements. Then, similar to resonant Haman
scattering versus ordinary Haman scattering, '
four-wave mixing with double or triple resonances
should be able to yield more selective spectroscopic
information. In addition to the resonant frequen-
cies, the dipole matrix elements between selective
states can, in principle, be deduced. Extremely

strong resonant enhancement is of course also ex-
pected in doubly or triply resonant four-wave
mixing, as has been demonstrated in recent ex-
periments. ' Druet et al. have recently shown that
it is also possible to obtain Doppler-free spectra
with doubly and triply resonant four-wave mixing. '

In this paper, we give a more thorough discus-
sion on the various problems involved in doubly
and triply resonant four-wave mixing processes.
We begin by deriving in Sec. II the expressions for
third-order nonlinear susceptibilities under dif-
ferent resonant conditions. Both one-photon and
two-photon resonances are explicitly displayed,
including a predicted two-photon resonance be-
tween two excited states. Since real absorption
occurs in resonant four-wave mixing, the nonlinear
susceptibilities may consist of a part involving
only transverse relaxation and a part involving
also longitudinal relaxation. The latter often
dominates if the longitudinal relaxation time is
much longer than the transverse relaxation time.

The resonant spectrum of a singly resonant
third-order susceptibility is usually dominated
by inhomogeneous broadening. This is not the
case with double and triple resonances. ' When-
ever there is a product of two resonant denomina-
tors with damping constants of opposite signs,
the inhomogeneous broadening of the correspond-
ing resonant line of the nonlinear susceptibility
can be greatly xeduced. This can be considered
as a generalization of the saturation spectros-
copy. ' We discuss in Sec. III how the Doppler-
free spectrum can be obtained by doub1y or triply
resonant four-wave mixing, and extend the con-
sideration of Drat et cl. to ions or molecules
in solids.

The output of four-wave mixing in doubly and
triply resonant cases is often complicated by ab-
sorption at the pump frequencies and/or the out-
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put frequency. Absorption reduces the active
length of interaction, limits the pump intensity,
and broadens the phase-matching peak. Moreover,
the dispersion of absorption near resonance dis-
torts the resonant structure of four-wave mixing
and makes the four-wave mixing spectrum diffi-
cult to interpret. We discuss in Sec. IV how the
output depends on resonances, absorptions, and
polarizations of the four waves, and show that it
is possible to eliminate the dispersion effect of
absorption by polarization measurements. '

Resonant four-wave mixing can provide de-
tailed spectroscopic information about various
transitions. In Sec. V, we consider a number of
physical problems on which the application of re-
sonant four-wave mixing spectroscopy is most
attractive. We limit the discussion to the steady-
state case. It is seen that from the resonant four-
wave mixing spectra both the transition frequen-
cies and the transition matrix elements can be
deduced. In some cases, spectra with reduced
inhomogeneous broadening can be obtained. This
is most interesting for studies of Raman transi-
tions between excited states as they cannot be
achieved by other techniques. Doubly or triply
resonant mixing with an induced population change
also leads to a measurement of the longitudinal
relaxation times for various states. ' Then, by
observing the difference between different but re-
lated resonant four-wave mixing spectra, one
should be able to distinguish resonant Raman
scattering and resonant fluorescence, ' which has
been a controversy in recent years.

Finally, in Sec. VI, we give some considerations
to the practical experimental problems. The in-
coherent scattering and luminescence background
can be minimized by spatial and frequency filter-
ing, and in some cases, by time discrimination.
The nonresonant background of the resonant mix-
ing spectrum is most effectively suppressed
by induced gain or loss spectroscopy" or by
polarization arrangement. ""The signal-to-
noise ratio of four-wave mixing is derived.
In most cases with pulsed laser sources, the
noise arises mainly from laser intensity fluc-
tuations. With the polarization-sensitive four-
wave mixing, ' however, this type of noise is
practically eliminated.

p"'(~.) =X "(~.= ~.+~.+ &.):E(&.)E(&*)E(&.) ~

The inverse of the damping constant I'„„=F„„
is the transverse relaxation time or dephasing
time (T,)„„ for transition between states (n~ and

(n'~. The relaxation of the diagonal elements is
governed by

n'
yn' npnn + ynn' pn'n'

yn'n pnn pnn

+ y„„p„„-p„n
n

(4)

where y„„.is the transition rate from (n'~ to (n~

resulting from random fluctuations and p„'n is the
population in (n~ at thermal equilibrium. As it
stands, only when we have an effective two-level
system can we rigorously transform Eq. (4) into

Using the density-matrix formalism, "one can
find X+' from the perturbation expansion in a
straightforward way. There are, in general, 48
terms in the expression of X+' ." In many physi-
cal cases, however, only the resonant dispersions
of)|'" are of interest. One can write)|" as

X(3) X(3) +X&3)
X NR Ry

whereX' andXR'are, respectively, the nonre-
sonant and resonant parts of X+". The number of
terms in XR is then greatly reduced from 48. In

this paper, we shall only concern ourselves with

the doubly and triply resonant cases.
In dealing with resonances, the damping coef-

ficients for the resonances are important. In the
density-matrix formalism, damping relaxation
of an off-diagonal element pnn can be written as"

II. NONLINEAR POLARIZATIONS AND NONLINEAR
SUSCEPTIBILITIES FOR FOUR-WAVE MIXING

Four-wave mixing is governed by a third-order
nonlinear polarization P ' . In the steady-state
case, P ' is characterized by a nonlinear sus-
ceptibility X'":

In general, in a multilevel system with all levels
participating in the relaxation of excess population
in (n~, the concept of having a longitudinal relaxa-
tion time for (n~ does not hold. In special cases,
however, Eq. (5) can be considered as a good ap-
proximation of Eq. (4). This happens, for exam-
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pie, when relaxation of population into (gtl is
negligible, Ii.e., the term Z „.y„„(p„„-p„'„) in
Eq. (4) can be neglected] as is often the case for
optically excited states. For ground states, on
the other hand, only in limited cases can the re-
laxation of p«back to p~~ be appraximated by
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This is the case, for example, when one relaxation
route from (nl to (gl dominates in the relaxation
process.

While the approximations of Eqs. (5) and (6)
should be justified separately for individual cases,
we shall assume for simplicity in the following
discussion that they do hold. We consider here
only the doubly and triply resonant four-wave mix-
ing processes.
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A. Doubly resonant four-wave mixing (hl
(nl

(hl
(nl

We assume only two input laser frequencies
e, and e„and consider the various doubly re-
sonant cases shown in Fig. 1. We also assume
that only the ground state (gl is initially populated.
In Figs. 1(a)-1(d), the output frequency is 2a&,

Following the density-matrix formalism
or Yee and Gustafson's diagrammatic technique, "
we find for Figs. 1(a), 1(b), 1(c), and 1(d), re-
spectively,

&QI

(gl
(i)

&9"

1I

FIG. 1. Schematic representation of various doubly
resonant four-wave mixing processes. In (a)-(d) the
degenerate cases are explicitly shown using the double-
path diagrams Qtef. 14). There are also two degenerate
cases in (e)-(h) and eight in 6) aad (j).
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where ellipses denote terms with j and l interchanged. Resonances are explicitly shown in the above ex-
pressions by the frequency denominators with damping constants. The physical processes governed by
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the nonlinear susceptibilities in Eqs. (Va)-(Vc) are often known as doubly resonant CARS (coherent anti-
Stokes Raman scattering). Equation (Vd) shows, however, that the same four-wave mixing process can be
used to probe resonant transition between excited states when (&d, —&ua) =—&d„.„,"if I'm+ I'„r rs I'„„. The
strength of this resonance is greatly enhanced as ~, and co, approach resonances. It depends critically
on the corresponding damping constants and hence the damping mechanism. A model calculations of this
resonance is given in Ref. 13.

Similarly, we obtain for Figs. 1(e), 1(f), 1(g), and 1(h), respectively, at the output frequency 2&us —~,

(3)
IXR (~4=~a-~a+~a)~&»&=
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where the ellipses represent terms with j and l interchanged. Again, the nonlinear susceptibility in Eq.
(Vh) governs the physical process that probes the resonance between excited states. As seen in Eqs.
(Va)-(7h), all resonances involve only transverse dephasing relaxation. This is not the case if the output
frequency is &u, or &aa. We find for Figs. 1(i) and 1(j), respectively, with the output frequency at &u„

Ne' ~ &41r&lm&&mlrrlg&, (glrrlm&&mlr&lg&'«glrsln&&nlr Ig&21' T C
R &s- &s -~a+ a)a iris& s ~,+~ i' (~.-~ ) +I'+

i(nlr, lm&&mlr~ln& &nlr, lm)&mlr, ln&&l&nlrslg&&glr&ln&21' T A
&() r «&mn ~, +&O „) (&da —~m) +1m (7i)
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y+ +g —+em y ~2 &dnm

Interchanging a), and a)a in Eqs. (Vi) and (Vj) for X„'(a),= &u, —a)a+ &ua) yields the expressions for X'Rs'(&us =
&ua

—a), + &d,). The case of Eq. (Vi) involves a double resonance with a real population change and hence the
longitudinal relaxation times Tn and T~. Equation (Vj), an the other hand, is a coherent process involving
only transverse relaxation.

Four-wave mixing with 2y 2Qpg ox My+4)2 at resonances is a simple extension of the above discussion.

B. Triply resonant four-wave mixing

We now consider cases where all the three frequency denominators are near resonances. Again, we
assume that there are only two input laser frequencies ~, and ~,. The relevant processes are shown in
Fig. 2. The nonlinear susceptibilities corresponding to Figs. (2a)-(2d), respectively, are

r. .& ) si Ne' (glr&ln'&&n'lrr lg'&&g'lrsln'&&n'lr lg& pr'r&

U&R a)s ~a a)a+~a i&in&
=- s

(&()s &r)n'r +ai n'r) («)s &r)a &dr'a +sir'r) (Sa)
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IXR (~u, = oui ~i+ ~,)]jiij = (&e'/g')&glr j ln'&&n'lrj Ig&&glriln'&&n'lr~ lg&4

x(((ui —(d„g+iT„g) '((u, -(d i-&d„„+ir„„)' [(oui-&u -iT ) ' ((-u, -ru„, +iT„,) ]

(Sb)

(GJg Ri 4P +iNi)] jjig (Ne'/if ')&g' lrj ln'&&n' lrj lg&&glriln'&&n' lrj lg'&pl.

x([- (oui —(u„ i +iT„i )((ui (u„—i iI—„i)((u —iui —~ui i —iI i)]

+ 2I „gTi„(&di—(u„'g +iI „'g ) [(QPi —(u„g) + I „i] (8c}

[Xiii(iu, = e, —e, + iu,}],j» = (Ne'/5')&gl«ln&&nlr, Ig&&glr, In'&&n'Ir, Ig& p,',

x(((u, —(u~+iT~) '((u, -~, —u)„„-iT„„)'[((u, -(o~+iT~) '-((u, -&g„i-il'„.,} ']

(8

Again, in these expressions, various resonances are explicitly shown. That the processes can be divided
into two parts is also apparent, a coherent part involving only transverse relaxation and a partially inco-
herent part with population change involving longitudinal relaxation.

C. Four-wave mixing with three input frequencies

In the literatures, four-wave mixing with three input laser frequencies is seldom discussed. " It is,
however, an interesting case since three separately tunable laser beams can provide much greater flexi-
bility in four-wave mixing, especially when triple resonances are probed. We consider here only a special
case where two of the three frequencies (dg and (dy are nearly equal. Then, the most important modifica-
tion on the nonlinear susceptibilities with two input frequencies is on the terms involving real population
change with T, relaxation. The factor T, should be replaced by i(e, —~', +i/T, } ' and the factor i2I'~/
[(&oi-e~)'+I'i~] should be replaced by [(oui-+~ iT~) '-—(&ui —&u~+iT~) 'J (or with iu, and e', inter-
changed). For example, in the case of triple resonances, Eqs. (Sc) and (8d) become, respectively,

IXÃ(~i = ~i —~', + ~.)1;ii~ = (Ne'/a'}&g' lriln'&&n'lr jig&&g Irwin'&&n'lr( Ig'& pgoi

x([(+,' —e„, +iT„, )((u', —(u, —&ui, —iT...)(~u', —(o„.i iT„.i)] —'

+((g,'-iu„, +iI'„., ) '((u, -(u', +i/T, „) '[((ui-(u„i —iT„i) '-(~', -iu„i+iT„.,) ']),

IXR (~i = ~u. —'tdi+ ~u,)]jjij = (&e'/iI')&gl« ln&(nlrj lg&&glr. ln'&&n'Iran lg&p,;
x((~R ~hr+iTia) (~l —~R-&A' -iT '8) [(~y-&~+iTsr) —(~1-&A'i-iT 'g) ]

+(iu,'-(u +iI' ) '(oui —~', +i/Tn) ' [((u, —(o„. —iT„, ) ' —((o', —iu„, +iI'„, ) ']}.
(9b)
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There are also two similar equations for X&('(&us

= &u', —&u, + &u,) and Xas& (&us = &u, —&u, + &u',) obtained
by interchanging &u, and &u', in Eqs. (9a) and (9b).
A similar modification applies to X&gl(&u,) for the

FIG. 2. Schematic representation of various triply
resonant four-wave mixing processes. There are four
degenerate cases in (b)-(d).

doubly resonant cases. As is apparent in Eqs.
(9a) and (9b), one clear advantage of having three
input frequencies is that we can now vary +, —~',
to probe a zero-frequency resonance with a T, '
halfwidth. The triple-resonance condition may,
furthermore, selectively enhance, e.g., the
(&u, -&u', +i/T, „) ' term of Eq. (9a) against the
(&u, —&u,'+i/Ts) ' term of Eq. (9b). In contrast
to resonances at finite frequencies, these zero-
frequency resonances are not subject to inhomo-
geneous broadening, and therefore their halfwidths
yield directly the T, relaxation times of the re-
sonant states. This is fundamentally different
from the case discussed in the next section where
inhomogeneous broadening is reduced through
double or triple resonances with damping constants
of opposite signs. We shall give a more explicit
description of the proposed measurement of T,
using this scheme in Sec. V.D.

Physically, terms involving T, in XR arise from
a population change represented by the diagonal
terms of the second-order density matrix
p&" (&u, —&u',). For example, the second term of
Eq. (9a) can be written as

b&,)(, , )}
N's*(g'l«ls'&&n n (&u. —&ul)(it'Ii'& lg'&

(10)
g(&u', —&u„ i + ir„.i )E, (&u,)E,*(&u',)

Now, through population relaxation, other ~m& states also become populated, i.e., p&ai (&u, —&u',) u 0. Should
P" (&u, —&u', ) also contribute to X&)'? Indeed, Eq. (10) should be generalized to

«i(~t)E.*(~'t) . (~ -s~~ +tr~)
The above equation manifests a rather interesting situation: As &u,

'- &u~, the p&s' (&u, —&u',) is resonantly
enhanced. This leads to the unusual triply resonant four-wave mixing depicted in Fig. 3. We can, in
general, deduce p'i (&u, - &u',) from Eq. (4). However, in the case where a particuls. r relaxation route from
~it'& to ~m& dominates and T~ for ~m& is well defined, we can write

p~.'.(,— ',) =y.'„p'.*'. (,— ',)/(, — ', /T,.)
s'y'. (tt'l«lg&(gli'slit'&Ei(&u, )Es (&u&)( I I pc
5'(&u, -&u', +i/T, „)(&u,- &u', +i/T, ) (&u, - &u„.s t'r„., -&u', -&u„.i+ir„.i (12)

where y'„ is a constant. It is possible to have
lpssga(&u& &ui)l + IVIII'n'(&ui &ui)l as &u&

happens when T, &1/y'„. . Thus, the process in
Fig. 3 can yield a spectrum of d (&ut) vs
(&u, —&u',) showing two superimposed Lorentzian
lines with halfwidths T~~ and T, , respectively.
Again, such a resonant spectrum is expected to
exhibit no inhomogeneous broadening.

r
i} g

Q &dE &) Cd)
l}

1'

n'I

ml

III. EFFECTS OF INHOMOGENEOUS BROADENING
ON X(R&

The resonant frequencies of a system often de-
pend on its local environment. For atomic and

FIG. 3. Special triply resonant four-wave mM~~ pro-
cess in which the level (m ( is populated through relaxa
tion of excitation.
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[Xe') = fXeed[e, d, " )( dedd). , (13)

Clearly, among the various resonant frequency
denominators in XR', the zero-frequency reson-
ances are not affected by the local parameters
and can be pulled out of the integral. Therefore,
the zero freque-ncy resonances in Eq. (9) do not
suffer inhomogeneous broadening and their half-
widths yield directly T,.

molecular gases, the resonant frequencies are
modi5ed by the Doppler shifts, and for ions in
condensed matter, they are modi5ed by the local
crystal field. Thus, the effective X+R' must be a
weighted average of XR over the distribution of
the resonant frequencies.

We can assume that the eigenenergies
E„E;,.. . of the states ~i), ~ j)e. . . of the system
depend on some local parameters e, P, y, etc.
Then, the resonant frequencies (E, -E~)/k
-=[dd, (a, p, . ..) are functions o'f a, p, . . . ~ If the
distribution function g(a, P, . . .) for the system
is known, the average XR can be explicitly written

A. Doppler broadening

The simplest case of inhomogeneous broadening

is the case of Doppler broadening in a gas medium.

Its effect on XR' has recently been discussed in

great detail by Druet et al.' Taking into account

the first-order Doppler shift, the resonance fre-
quency is

[ddt —
4P&g (1 V/C) (14)

with the particle velocity v being the only local
parameter. The function g is simply the Max-

wellian distribution

g(v) = (I/v w v,) exp(- v'/v, ') . (15)

In this case, the averaging can be carried out

analytically.
An immediate question one might raiseiswhether

the doubly or triply resonant four-wave mixing
spectroscopy can eliminate Doppler broadening.
Consider first the doubly resonant cases. Aside
from the zero-frequency resonant terms, a typical
term of XR' has the form

«'„' d,f ded[=e)/[te —te;, (X-e./e)+dr, ,)[te, —|4()-e/e)+er„l, (16)

V—:V/Vp x

5, = 5,'+ i&,"= (c/v )(1 —[d,/[d'q s i I'[q j[d q),

$[)= $[e+ imp -=(C/Vp)(1 [dp/[d)xd + iTp)/[dp)) x

Eq. (12) becomes

«ee « fdv e =/de.(v d)("v )-d, —

Kd) =Ave /vp[dgy[dp) ~

(1V)

(18)

The above integral can be evaluated in terms of
the plasma dispersion function"

ds) eZ((= $'+i)")=w ~~P dv for $"&0, (19)(v- $)
which has the properties

z(t'p) = -zp(-&),

z'(g) -=~( = -2[1+('z(t)],-dZ =

d2Zz"(&)-=d], = —2[z(g) + (z'(t)], (20)

Z'(g'=g' ih")=Z(()-i2&wexp(--&'),
dN «v2

Z*()P)=w '/' dv for $'&0.(v- t)
The last equation results from the analytical con-
tinuity of Z($). We then find that XRP) behaves

where A& is a constant independent of v. If we de-
fine

l

differently near the double resonance $,' = $&, de-
pending on the relative signs of $," and $,". If
(," and gP are both positive, then we can write

x",) = K.[z(t.) -z(t.)]/($. —$,), (21)

which shows no singularity as $,- (&. In fact,
with (,"= gf,', we have XRP) =KCZ'(g, ) as g- 5f„and
XRp' vs $,' has a width more than twice the Doppler
width. The same behavior occurs with $," and )P
both negative. If, however, $," and $&' have op-
posite signs, then with the help of the last equa-
tion in Eq. (20), we obtain, as $,- $,*,

X„"=K [zd')($,)+i2&me ~' '~'~/($, —$p)], (22)

where + and —correspond to (,"& 0 and $,"& 0,
respectively. The last term in Eq. (22) diverges
as $,—g&. It has a Lorentzian line shape with a
halfwidth $,"+$p =(c/vg(I'd&/[d', &+I',/[dP, ). In
other words, as [d, /[dd& - [d,/[d,', at double reson-
ance, and if the Doppler width is much larger than
the natural widths, XRP' vs [d,/[dP„can be approxi-
mated by a Lorentzian with a linewidth given by
the sum of the normalized natural linewidths
(I'd&j[d&&+I'»/[d)', )). Thus, a Doppler-free spectrum
is obtained. For the various doubly resonant
cases in Eq. (7) and Fig. 1, we note that Eqs. (Vd),

(Vg), and (Vh) should yield Doppler-free spectra.
The above discussion can be extended to the

triply resonant cases. A typical term in the aver-
age nonlinear susceptibility XR is
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s) v& . , vt . , (k„=A dvg(v} &u, —&u 1-—(ail', ~ —~,', 1 ——~ail'~, au, -&uo„~l- —(ail' „cj c ~ c~

(23)

with Kz 0
F($)=Z*($~) if t'" &0. At triple resonance (,'- t'f,

= g, if $, , (f, and t'," all have the same sign,
thenXg~ shows no singularity, and for (,"=If,'
= g, Zing~= Kr Z"(F„)/2 Th.e spectrum should ex-
hibit Doppler broadening. On the other hand, if
one of the t", say $,", has an opposite sign from
the others, we obtain as Q- $, = („
Zdg~=Kr[Z"($, )/2+i2 me ~'/(g, —g~)($, —$,)]. (24)

g(a, P, ...) = [(I/Wva, ) exp(- a'/a', )]

x [(I/WwP, ) e xp(-P' /P,')]... , (28)

where ao, P0, ... are constants. Finally, Eq. (13)
should be used to calculate &PR &.

The number of parameters u, P, ..., required
to describe the crystal field can often be large
(more than ten in a crystal of lower symmetry).
Consequently, the calculation of (X+)~) averaging
over the crystal-field distribution is, in general,
extremely difficult even if the constants h~&&

hjjjjj e, .. . in Eq. (27} are known. In some cases,
however, one particular term, say au, in the
local potential of Eq. (25) may dominate. Then,
neglecting the effects of P, y, etc., we approxi-
mate a& jj(a, P, . ..) and g(u, P, . . .) by

The last term of Eq. (24) again gives a Doppler-
free spectrum. The two denominators yield, in
general, two Lorentzian peaks with halfwidths

(rjj/~;j+r„/~;, ) and (rjj/(ojj+I' „/&o „), re-
spectively. They can, however, merge into a
single peak as $,'- $,'. For the triply resonant
processes in Fig. 2 and Eqs. (8} and (9}, all ex-
cept Eq. (Sa) should yield Doppler-free spectra.
Note that the last term in Eqs. (8c) and (Sd) also
contributes to the Doppler-free spectra since we
can write 21'„,/[(ap, —&u„)'+ I''„,] = [(&u, —ru„,
—iI'„,) ' —((u, —(o„.,+ iI'„,) '].

jjjjj(+)= tvjj + +&&jj,a,
g(a) —= (I/&van exp(- o,~/~Q .

(29)

( F($,) F((~) F($,)' i(4 (-a)(h. -4) (5n- &.)(t'n - 4) (4-4)(4 —t'~b '

=Are'/v'ur', &ujo, ~', F(()=Z(g) if g" &0, and function g(u, P, ...) is a Gaussian

V=(V)+au +Pue+ ~ (25)

where (V) is the average potential and u, us, . ..
are the normalized potentials of various sym-
metries with their strengths a, P, . . . being ran-
dom variables subject to the local variation. Then,
the eigenenergy of state ~i) is a function of a, P, ...
and, in the first-order approximation, can be
written as

&j(a, P, . ..) = Xoj+ ab, A.j +Paw, 8+ ~ ~ ~ . (26)

The resonant transition frequency between states
[i} and ( j) becomes

B. Inhoinogeneous crysta1-field broadening

We consider here ions or molecules in a con-
densed matter. The energy levels of the ions or
molecules are modified by the local potential V
due to neighboring ions. This is sometimes known

as the crystal-field effect. We can write

Although the variables are different, these ex-
pressions are identical to those in Eqs. (14}and

(15}for the Doppler case. Therefore, under this
approximation, the previous discussion for the
Doppler case can apply eqn~&&y well to the present
case. In particular, it is seen that crystal-field-
free spectra can be obtained by some doubly and

triply resonant four-wave mixing processes.
We should, of course, remember that Eq. (29)

is only an approximation. Thus, the elimination
of crystal-field broadening is neve. perfect if the
effects of other crystal-field parameters, P, y,
etc., are taken into account. However, if the
crystal-field broadening is mainly due to a, these
first-order "crystal-field-free" spectra should
still show significant narrowing. Our case here
is somewhat similar to the case of laser-induced
fluorescence line narrowing which has recently
been used to study spectra of ions in solids. "

&o,j(a, P~. ..) =&jj+&b&jj,a+pn~jj, &+ ~ ~ ~

(2V)
IV. OUTPUT FROM RESONANT FOUR-WAVE

MIXING

The inhomogeneous broadening results from local
variation of the random crystal-field parameters
a, P, etc. In the central limit, the distribution

Given the nonlinear polarization, the output of
four-wave mixing can be derived from the wave
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equation in-the usual way. We assume here no

pump depletion, slow amplitude variation, and
negligible boundary reflection of the generated
wave. Let the pump fields be

~ @ss 4"&s (3) ibk' z

ez i2kc R &X (&6=(cj+(ca+44)&u»S((SR(S3(e

ak=ak'+iak" = (kj+k'+k' -k,')

E„=S„(z=0) exp(ik„r-i(((„t), s = 1, 2, 3

and let the output field along z be

E, = S,(z) exp(ih~ —i&a, t) .
Then, the amplitude S,(z) obeys the equation

(30a)

(30b)

+ jz (Cjj( + QR((+ (R» &8() I

k„=k„'+in„((k„' z)k„'= [(o„Ve((u„)/c]tj„'.

(31)

For simplicity, we have used here the plane wave

approximation with the assumption that k, is per-
pendicular to the boundary surface of the nonlinear
medium at z = 0. The solution of Eq. (31) leads to

W
2

&",-)I„.(&X~»&((. +&X'R &(JN)SgS.,S„(l-e""')e "'*. (32)

In the absence of an incoming beam in the output
mode, S„(0}= 0. The power output per unit area
at ~, and k, with polarization i is given by

4';((g„k,', z) = c [e'((u, )]' 'IE„(z)I'/2(j . (33)

IE„(z)I
= IS„(O)exp[a(z) —~„z]I,

(34)
2 2

g ( ) =
( ~.,-)*„,.(&x'"& ~ +&x"'& )

In the special case where the output field also
acts as one of the pump fields, for example,
E„=E», the solution of Eq. (31) takes a different
form. Since &u, = ((j, and k, = k„we must have

~,= —~„and the nonlinear susceptibility be-
comes j'"(&u, = (d, —&u, + ~,). We also have in this
case 6k= k, (~,)+k,((c,). For E»((d,}=E~~(&u,), the
real part of b, k will vanish. We then find

I

[1-exp(-Ak" z)]/(d, k" .z), which reduces to z

when IAk" zI «1. It reduces in magnitude as
Ib, k'I increases from zero. In the limit of
Ihk" z I «1, this phase-matching peak as a func-

tion of AI(' has a halfwidth of -(j/z. In the limit
of Id, k" zI »1, the halfwidth becomes b, tj" inde-
pendent of z. In four-wave mixing, phase match-

ing can be achieved in infinite number of ways

by properly adjusting the directi'ons of propagation
of the three pump waves. In actual experiment,
which phase-matching arrangement is preferred
depends on practical consideration, such as op-
timum beam overlapping length, better spatial
discrimination against scattering background,
etc. The generated wave amplitude in Eq. (32}
or the gain coefficient in Eq. (34) is, of course,
a maximum at phase matching.

x S„S~(I—e"" *}.
The real part of g, (z) represents a gain coef-
ficient. For E„((((,) = Eg, ((((,), and &X'~»&(»( being

purely real, we obtain

(36)

From Eqs. (32) and (34) it is seen that the output
of four-wave mixing generally depends on a num-
ber of factors. We discuss here the effects of
phase mismatch, resonant enhancement of X"
and absorption, and polarization of input and out-
put waves.

A. Phase matching

As in all optical parametric processes, phase
matching is of prime importance in four-wave
mixing. This is governed as usual by the factor
[I- exp(i6k ~ z)]/(hk ~ z) in Eqs. (32) and (34). At
phase matching, b 4' = 0, it is a maximum equal to

B. Polarization consideration

The output field of Eq. (32} with S„(0)= 0 can
be written in the form

E.=A(&X"~»&+&X"R"&):E,E.E.. (36)

Thus, given E„E„and E„ the polarization of
the output field depends on the tensorial proper-
ties of &X(NRj& and &y+g~&, and the output power is
proportional to Ie, ~ (&)|„"R'&+&)|R»&):e,e,e, I', where
e's are the unit polarization vectors. The con-
tributions of X+~ and ~XR can, in principle, be
separated through their dependences on the pump
frequencies, and their tensor elements can be
deduced through appropriate polarization arrange-
ment. In some cases, however, I&y~~»& I is much
larger than I&)tR»& I. Small fluctuations in the out-
put would make the extraction of the dispersive
&XR'& out of the nondispersive &y+~»& background
rather difficult. Yet it is the dispersion of &y~g'&

we are often interested in finding. To achieve
this aim, we must suppress as much as possible
the &X+~3( & background. This has been demon-
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strated with the induced gain or loss spectros-
copy" [Eq. (34)], or the optical heterodyne de-
tection of the Raman-induced Kerr effect." In
fact, even in the general case [Eq. (32)], a selec-
tive polarization detection of the output may be
used to suppress the (X+~~) background. '

—ENR+ E R

zp = e„(a~e„.(~x"&:z,z,z,), (37)

Z,"= [&"„e„(e„'&XR'&) +A." e(e. '& XR&)]:kZ.Zs

where e„and e„are orthonormal to each other.
Then, by using a polarization analyzer to selec-
tively detect only the e„polarization component of
the output, we obtain, after the analyzer, an out-
put

E, = e„A„(e„.(+yg~&): E,z,z, . (38}

In this case, the (X~~@& background is completely
suppressed. By detecting both e„and e„polariza-
tion components and taking their ratio, we obtain

(39)

e .&x"& e ee I»IA"e &x~"& eee I

then we have

R-=(A„"/A~)e„~ ()+(g'&: e,e,e,/e„()+(*'):e,e,e, .

IR,I*= Ita 8+RI*

= (tan8+ R')'+ R"'

= tan'8'+2(tan8)R' if Itan8I» IRI, (41}

where R= R'+ iR". When a quarter-wave plate is
inserted to advance or retard the relative phase
of the e„component by 90, the signal becomes

IR,I*= Itan8~fRI'

= tan'8 v 2(tan8)R if I tan8I »
I RI . (42)

From Eqs. (41) and (42), we realize that we can
obtain R' and R" from measurements of IRJ* and
IR,I', respectively. If (X+~»& is real, as is often
the case, then they allow us to find Re(yg'& and
Im(X'g & separately in terms of (X~&. This has
been proposed and demonstrated in Ref. V.

C. Absorption and resonant enhancement

Often inherent to resonant four-wave mixing is
absorption at pump and/or output frequencies.

(40)

This ratio now yields a spectrum of (PR») norma-
lized aipinst (X~»&. It is independent of the pump
fields and therefore in real experiments will be
free of trouble caused by the fluctuations of the
pump fields.

We note that R is generally complex. In the
above arrangement, we will detect IRI'. If, how-
ever, the analyzer is rotated by a small angle
8 away from e„, then following Eq. ($7) the signal
IRI' is replaced by

I

Absorption is detrimental to four-wave mixing.
It broadens the phase-matching peak, reduces the
effective length of interaction, and sometimes
makes the deduction of the dispersion of X~'~ from
the observed spectrum less straightforward.
Aside from the attenuation factor exp{-i„z),
the effect of absorption on E„(z) in Eq. ($2) or on

g, in Eq. (84} is again governed by the factor
[1 exp(-flak z)]/(.d,k.z). We consider here the
phase-matching case, hk' = 0. This factor then
reduces to

2 = [1—exp(- ak"z)]/Ak" . (43)

Clearly, the simplest case is when Ihh"z I « I so
that I =z. This is actually equivalent to saying
that the effect of absorption is negligible [aside
from the factor exp(- a„z) mentioned above].
Such a case can happen when {1)all absorption
coefficients a„are sufficiently small, or (2) the
interaction length z is sufficiently small, or (3}
the four waves form tmo counterpropagating pairs
with a„~-a» and o.» -——n„(In passi. ng, we
note that counterpropagating waves in foux-wave
mixing can have important effects on the Doppler-
broadened spectra. ) The observed spectrum after
normalisation against 8~8»8» exp(- a„z) yields
the dispersion of X ". [We assume $„(0)=0 in
this section. ] Note that in Eqs. (32) and (34), the
amplitudes 8&, 8~, and 8» are all taken at z = 0.
For a pump wave propagating into the nonlinear
medium at z = l and leaving the medium at z = 0,
we have g = g (I) exp(- aL).

In the opposite limit when the attenuation of
pump waves is large so that hk"z» 1, the factor
a in Eq. (4$) reduces to (hk'} '. Then, aside
from the exp(- a,„z) factor, the output amplitude
in Eq. (32) or g, in Eq. (34) becomes independent
of z, as one would expect physically. The ob-
served spectrum is proportional to I((x~~& &»&

+&x~g~& &gag)/&h" I' exp(-2a«z), assuming all pump
waves enter the medium at z = 0 (or in measuring
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the gain, the spectrum of Reg& is proportional to
Re [((Xwa) ~f~& +(XR );;~~)/h&"]). Even if the (X'„"„)
background can be eliminated by polarization ar-
rangement, it becomes proportional to

1&x'Ri) oa~e ""/&&"I'

= I(XR )va~e " /(au+ae+ast

(44)

Thus, in deducing the dispersion of XR from the
observed four-wave mixing spectrum, one must
have knowledge about the dispersions of a' s. Note
that a„& is often only appreciable when +„ap-
proaches a resonant transition frequency. There-
fore, near resonance, the resonant enhancement
of the output through (X'") may be partially offset
by the presence of resonant absorption. In par-
ticular, the absorption at the output frequency
should be avoided, if possible, since it leads to
a direct exponential attenuation on the output.

Complication of the output spectrum due to ab-
sorption can, however, be eliminated with the
polarization-sensitive scheme discussed in Sec.
IV B. As shown in Eqs. (39) and (40), the ratio B
is independent of a' s, and therefore the corres-
ponding output spectrum becomes independent of
absorption. This is another great advantage of
using the polarization-sensitive scheme for re-
sonant four-wave mixing spectroscopy.

In some cases, a, &
dominates over the other

a' s. If a„z»1, the output of Eq. (32) with S,&(0)
=0 becomes proportional to ~((X'„' )„»,
+(X'R'),»,}exp[- (a„+a~+a»)z]fa ~. Physically,
this means that the output is effectively generated
in a section of the order of an attenuation length
1/a„. at the end of the medium. Again, in the out-
put spectrum, the resonant enhancement of X„'
is partially offset by the a' s, and in deducing the
dispersion of XR from the four-wave mixing spec-
trum, dispersion of the a's must be taken into
account, or the polarization-sensitive scheme
must be used.

V. PHYSICAL EXAMPLES OF RESONANT
FOUR-WAVE MIXING

A. General consideration

While different four-wave mixing processes
may require different experimental arrange-
ments, a number of general observations can be
made, following the discussion in the above sec-
tion. First of all, our aim is to measure the
spectrum of X~„', but X~' often produces a trouble-
some background. Extraction of the XR spectrum
from the )| '~ background requires that either
~X~('~ a )y~'~ for that the selective polarization ar-
rangement (Sec. IVB) should be used to suppress

XNR Othe~se, the nomnear spectroscopic
measurement will not be possible.

Phase matching is of prime importance in four-
wave mixing. It not only maximizes the output

signal but also yields a highly directional output
beam. The latter feature allows spatial filtering
of the output to discriminate against the intense
pump beams. This is essential especially when

the output frequency is not very different from the

input laser frequencies. In principle, keeping
the phase-matching condition satisfied, the angles
between the output and input beams can be made
very large, enabling a more effective spatial
filtering. In practice, however, because of the
finite beam size, larger angles between input and

output beams lead to a shorter interaction length.
The resultant signal reduction could be compen-
sated by higher input intensity, but then, in many

media, the maximum input intensity is limited
by the occurrence of other nonlinear optical pro-
cesses such as self-focusing, nonlinear absorp-
tion, optical breakdown, etc. Therefore, in an
actual experiment, a particular phase-matching
configuration should be chosen such that within
the limiting intensity, an optimum signal-to-noise
ratio is achieved with the help of spatial filtering.
Phase matching is less important if the effective
interaction length is limited by absorption.

In doubly and triply resonant four-wave mixing,
absorption cannot be avoided, yet it reduces the
output and complicates the spectrum, and there-
fore should be minimized if possible. Too strong
an absorption weakens the signal too much and
renders the four-wave mixing spectroscopy im-
possible. Crudely speaking, the effective length
of interaction in the presence of absorption is
limited by the attenuation length. To minimize
the effect of absorption, one would like to use a
medium with an actual length much less than the
attentuation length and use intense pump beams
to obtain a good output signal-to-noise ratio. In
practice, the pump intensity is again limited by
the occurrence of other detrimental nonlinear
processes. One must therefore use a longer
medium and struggle for an optimum signal-to-
noise ratio. Then, to obtain the dispersi6n of
(Xi)~) from the four-wave mixing spectrum, the
polarization-sensitive scheme suggested in Sec.
IVB should be used to eliminate the effect of ab-
sorption.

As a spectroscopic technique, resonant four-
wave mixing can yield spectroscopic information
about various transitions. It should be most
valuable as a tool to probe'transitions between
excited states, since many such transitions cannot
be studied by ordinary absorption or luminescence
experiments. Some four-wave mixing processes
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can be used to at least partially eliminate in-
homogeneous broadening, so that resolution of
overlapping inhomogeneously broadened lines be-
comes possible. In some cases, even the homo-
geneous linewidth could then be measured. With
three input frequencies, the T, lifetime of an ex-
cited state may also be deduced from the observed
spectral linewidth. The aforementioned informa-
tion is difficult to obtain with other spectroscopic
techniques. We shall discuss some of these ap-
plications in the following subsections.

B; Doub1y resonant four-wave mixing

We will consider here a few applications of the
doubly resonant four-wave mixing spectroscopy.

Resonant CARS is probably the most familiar
doubly resonant case. It is described by Figs.
l(a) and 1(c) or Eqs. (Va) and (Vc). Aside from
resonant frequencies, the X&' spectrum in this
case yields information about the resonant and
nonresonant Raman cross sections. In Eq. (Va),
for example, the ~Z ( )~ term is the nonresonant
Raman transition element, the square of which is
proportional to the nonresonant Raman cross sec-
tion; the term &g'(r, )n)&s)r, (g&l(&u, -&o~+fl'~) is
the resonant Raman transition element. Then, if
the nonresonant Raman cross section is known
from spontaneous Raman scattering, we can de-
duce from Xz" the resonant Raman cross section.
On the other hand, if the resonant one-photon
transition matrix elements (g' ~r, )s) and &s~~, ~g)

are known from absorption and luminescence
measurements, then we can deduce from X)~ the
nonresonant Raman transition element. Since
the damping coefficients in the two resonant de-
nominators af Eqs. (Va) and (Vc) have the same
sign, no reduction of inhomogeneous broadening
is possible in resonant CARS.

The same information on resonant frequencies
and transition matrix elements can be obtained
by resonant CSRS (coherent Stokes-Raman scat-
tering), described in Figs. 1(f) and 1(g) or Eqs.
(Vf) and (Vg). Hawever, in Eq. (Vg) with &o, and
+, —~, at resonances, the damping constants in
the resonant denominators are of opposite signs,
and therefore, in this particular case, a reduction
of inhomogeneous broadening should occur (see
Sec. III). This allows a more highly resolved
spectroscopic study of transition between the ex-
cited states ~s) and ~g'} in Fig. 1(g).

Figures l(b) and 1(e) can also be called resonant
CARS and resonant CSRS, respectively. With the
prescribed double resonances, the transition fre-
quency between the excited states [s) and (s') can
be determined. Then, if the one-photon transition
matrix elements from (g} to ~s) and from (g) to

[n') are known from absorption measurements,
the nonresonant Raman cross section between )s)
and ~n'} can be deduced. No reduction of inhomo-
geneous broadening is possible in these cases.
However, if the transition is homogeneously
broadened, then these processes yield the damp-
ing parameter I'„„which is difficult to obtain
by other means.

The same information about Raman transition
between (s) and ~n') can be obtained from processes
in Figs. 1(d) and 1(h) or Eqs. (Vd) and (Vh). In
these cases, however, reduction of inhomogeneous
broadening should occur and allow a better re-
solved spectroscopic study on transition between

Only two frequencies are involved in the pro-
cesses in Figs. 1(i) and 1(j), and one of them is
solely responsible for the double resonances. As
a xesult, little spectroscopic information, aside
from what is already known from linear optical
measurements, can be deduced from these pro-
cesses in steady-state operation. Physically, Fig.
1(i) involves a population change induced by the
resonant pumping, which is then probed by a non-
resonant beam. A spatial grating can be created
if two ~, beams are present. Four-wave mixing
then corresponds to nonresonant scattering of the
probe beam from the induced grating. On the
other hand, a birefringence can be induced in the
medium if only one ~, beam is present. Four-
wave mixing in this case corresponds to the prob-
ing of the induced birefringence by a nonresonant
beam. This last case is often known as the re-
sonant optical Kerr effect. We note that the re-
sonant Kerr effect here involves a doubly re-
sonant X~", while the well-known Raman-induced
Kerr effect" (RIKE) involves only a singly reson-
ant X&'. In actual experiments, these processes
are often complicated by population redistribution
in other levels through relaxation as governed by
Eq. (4), and the measured }(„' will not be simply
described by Eq. (Vi). A very special case involves
a fast relaxation of the excitation energy into local
heat. A thermal grating can then be induced if two
~, beams intersect each other. Scattering of the
probe beam by the thermal grating is generally
known as forced Rayleigh scattering. " With
pulsed excitation and delayed probing, the popula-
tion relaxation and diffusion of the thermal grating
can be studied, but we shall not dwell on transient
effects in this paper The pro.cess in Fig. 1(j)
simply describes the perturbing effect of the non-
resonant field on the resonant transition. While
these processes seem less interesting here, they
become more attractive when the nonresonant
Geld approaches resonance in the triply resonant
cases.
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C. Saturation spectroscopy and polarization spectroscopy

The induced population change in a certain en-
ergy state can be selectively probed by a resonant
transition. In an inhomogeneously broadened
system, the induced population change by a mono-
chromatic laser excitation is a hole-burning ef-
fect. Then the resonant probing should yield a
spectrum with reduced inhomogeneous broaden-
ing. This is now a well-known high-resolution
spectroscopic technique. If induced gain or loss
is measured, it is known as the saturation spec-
troscopy, ' and if induced birefringence is probed,
it is known as the polarization spectroscopy. ao

Thus, for example, in Figs. 2(b) and 2(d), the
induced polarization change in the ground state
is probed, and a high-resolution spectrum for the
(g& - (n& or )g& - (s'& transition can be obtained.
In Fig. 2(c), the induced population change in the
excited state ~n'& is probed, and the high-resolu-
tion spectrum of the ~s'& —~g'& transition can be
obtained.

However, the expressions of XR3' in Eqs. (Sb)-
(Sd) for Figs. 2(b)-2(d) show that aside from the
contribution due to induced population change (the
term involving T,} there is also a contribution
from coherent four-wave mixing (the term inde-
pendent of T,). The latter should also yield a
spectrum with reduced inhomogeneous broaden-
ing, as seen from the signs of the damping con-
stants in the resonant frequency denominators.
Therefore, the observed high-resolution spectrum
is actually a superposition of two lines. Only
when T, is much larger than T, = I' ' can we ne-
glect the coherent mixing contribution.

We realize that induced gain or induced bire-
fringence measurement is not the only way to study
the processes in Figs. 2(b)-2(d). The same pro-
cesses can be studied with the usual four-wave
mixing configuration generating a spatially separa-
ble output beam in the phase-matching direction.
However, in this case, care must be taken to

avoid the effect due to induced thermal grating
which arises from relaxation of the excitation
energy into local heat.

We also realize that through relaxation, other
levels which are not being directly pumped may
take on a population change. Resonant transitions
from such levels can therefore also be probed.
If the intrasystem relaxation is much faster than
the intersystem relaxation (i.e., diffusion of the
burned hole across the inhomogeneously broadened
line), then the observed spectrum should again
exhibit a reduced inhomogeneous broadening.
This generalization of saturation and polarization
spectroscopy may find applications in high-resolu-
tion spectroscopic studies, especially in con-
densed matter.

Incidentally, we note that resonant RIKE (Raman-
induced Kerr effect) belongs to the category of
polarization spectroscopy and is described by
the process in Fig. 2(c) or Eq. (Sc).

D. Measurements of T,

As we mentioned earlier in Sec. IIC, the spec-
trum of four-wave mixing with three input fre-
quencies can be used to obtain the T, lifetimes.
Physically, two input beams with frequencies ~,
and ~', near a resonance can induce a population
change oscillating at the frequency Qpy (Lly WUh

an amplitude proportional to [(cu, —e',)+i/T J '.
The induced population change in a particular
state can then be probed by a resonant transition
from the state, and the resulting spectrum as a
function of (&u, —&u',} yields T,.

Let us consider the process described by Eq.
(9a) as an example. We first consider the case
of TyI » 1 We are interested in the variation of

yR (~2) as (&u, —~',) scans over 0. Then, Eq. (9a)
shows that the term involving T,„.arising from
an induced population in ~s& is mainly responsible
for the spectral variation of XR . This term after
averaging over the inhomggeneous broadening can
be written as

l (d dP )
ff'g' + ~I 'g' (y 'g ~I ff'g y g + ~~ 'gi

(45)

If T~ »F„g,I'„g, the integral in the above equa-
tion is practically independent of ~', in the range
of ~~, —~', ~- T,„', and therefore we have

(46)

Thus, the spectrum of (Xi~3'(~',)& vs &u', should yield

I

a value for T,„.We also note that when e, and
&u,

' are at resonances, the integral in Eq. (45)
actually yields a doubly resonant line with reduced
inhomogeneous broadening. This means that
(Xi~3'(&u', )& can be sharply enhanced when the probe
frequency ~, approaches resonance. In other
words, the induced population in (n& can now be
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selectively probed by the resonant probing. This
is important since in practice a large number of
states can be populated through relmuLtion and
they can all contribute to &Xi~e}.

If we assume that through relaxation a state
jm& becomes populated by p'~ given in Eq. (12},
then the more rigorous expression of (Xi(~& taking
into account P'~ using Eq. (11}should be

Ne (»' jr, jg&(gjr~l»'&
(Xaa(4&a &x-~i+&s}Iu»= gs z/ T~'

1
&I n'c g +n'c + &I n'e]

(4V)

where form =»', we have y„' „=u, - -&u', +i/T, .
The above equation reduces to Eq. (45) only when
all terms with m 4n' can be neglected. This may
happen when w,'= w„c . On the other hand, if
~,'= co~, then the particular term relating to
P@ is resonantly enhanced. Again, the resonant
enhancement can be sharp and strong since at the
double resonance of ~,= z„c and +,'~ +~~, the
integral in Eq. (4V) yields a line with reduced
inhomogeneous broadening. This is the four-wave
mixing process described in Fig. 3. From Eq.

I

I

(4V) we expect that the spectrum of (pig~(e,'}& vs
+', could yield T~ if we selectively tune ~, to
various resonances.

If T,l -1, the spectrum is more complicated.
%e assume here that the inhomogeneous broaden-
ing can be described by a Gaussian distribution
of Eq. (29) with a single parameter. Then using
the calculation developed in Sec. III A, and neglect-
ing the weakly dispersive part, we obtain the aver-
age of Eq. (9a) as

{X{{{II'=(a, -w', +v))u, = fde{{a){{{'{w')]u,

r
0 0 / 0 0 1+n'c' I +n'c' rc'c +s'c'
p 0 )

(M~ RI)+Sg () g+Z! O Ng + 0 Fg g
~(&n'r(&„g+ &n'g') . &{{'c Ia'c n'c j.

( 0 0

!
tl c 2 +yf c 1 ~L+n c fI c +n'c'+ n'cf '

E. +fv'C + +n'e'

0 I 0 1
+ 0

I +n'c' & +I'c'
{w,-w'{+s, — s, +{({'„,, +

' {'„)
I&s'c'(~x- ~a+{{/Txw') . +{{'e (48}

where s, =u, -~„c and s, =wm-w„. c.. Since T,l0 0

- 1, the doubly resonant denominators in the above
equation as ~',-+, complicate the spectrum.
However, with three input frequencies, we have
the freedom to choose s, and s„aside from
choosing u,' as the scanning frequency. For ex-
ample, we can let s,=0 and s, =2K„c.. Then, as
ru', approaches ru„only the (u, -&o', +i/T~ ) '
term is at resonance; the other denominators
simply contribute a sloping background and some-
what distort the resonant lineshape. The lifetime
T~ can again be deduced from the resonant line-
width.

%Ye note that in the actual experiment, another
output beam at ~,"= e, —~,'+ ~, should be simul-
taneously created with (X~)'(&o,')& obtained by inter-
changing ~, and ~', in &XR (&u,

' = ru', -&u, + &u,) .&The
two output beams at +,' and ~," may interfere, but
they can be separated through phase matching with

appropriate wave-vector arrangement.
Measurements of Ty and T~ using four-wave

mixing spectroscopy with two input frequencies
have been proposed and demonstrated by Yajima
et al.' Because of the lack of a third adjustable
input frequency for selective resonant probing,
the experiment has little flexibility and the inter-
pretation of the results is less straightforward.

E. Distinction between resonant Raman scattering
and resonant emission

Recently, the problem of distinguishing resonant
Raman scattering and hot luminescence has re-
ceived a great deal of attention. ' »om the physical
point of view, the two processes are different
in the sense that Raman scattering involves only
transverse excitation with T, relaxation times
while luminescence involves a longitudinal pump-
ing with a real population change and a T, relaxa-
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tion time. In practice, however, it is difficult
to resolve the two in the spontaneous spectrum,
although they may be distinguishable from time-
dependent measurements.

As we know, both resonant Raman scattering
and hot luminescence have their counterparts in
four-wave mixing. Resonant Raman scattering
corresponds to a coherent triply resonant four-
wave mixing process involving only transverse
excitation. Hot luminescence corresponds to a
triply resonant four-wave mixing process in-
volving a longitudinal pumping of population to an
excited state followed by a resonant probing at an
emission frequency. (We call this a resonant
emission process. ) Thus, just as in the case of
light scattering, although Fig. 2(c} appears to
describe a single four-wave mixing process, it
actually consists of both coherent resonant Raman
scattering and resonant emission. This is ex-
plicitly shown by the two separate terms in Eq.
(Sc). Again, it will be difficult to resolve the two

parts in the overall four-wave mixing spectrum,
although we know that if T,»1"„', the resonant
emission part should dominate. Both the coherent
Raman process and the resonant emission in Eq.
(Sc) have a reduced inhomogeneous broadening.
On the other hand, if +, instead of ~, is the out-

put frequency as described by Fig. 2(a) or Eq.
(Sa), then the process becomes purely coherent
Raman and can be called a resonant inverse
Raman process. However, this process does not
have a reduced- inhomogeneous broadening. It has
a strength ratio of - I'„, /I'„, compared with the
coherent part of Eq. (Sc).

With three input frequencies in the triply re-
sonant four-wave mixing, Eq. (Sc) changes over
to Eq. (9a}. It can be seen clearly from Eq. (9a)
that the coherent Raman process now has a very
different spectrum as a function of (&u, —e',) from
the resonant emission. Thus, the triply resonant
four-wave mixing of Eq. (9a) provides a unique

method which can unambiguously resolve the con-
tribution of resonant Raman scattering and re-
sonant emission in a single process.

VI. EXPERIMENTAL CONSIDERATIONS

A characteristic advantage of nonlinear spectros-
copic techniques is that the absolute intensity of
the signal is fairly large. This means that usually
it is not necessary to use low-signal detection
systems such as photon counting. Usually, low-
gain photomultipliers or even photodiodes are
sensitive enough to detect the nonlinear signal.
However, the sensitivity is actually limited by
various sources of noise, due to some other light
coming onto the detector, which constitutes a

fluctuating background superimposed on the re-
sonant signal. This problem has recently received
considerable attention and several new schemes
have been proposed to reduce this background and

improve the signal-to-noise ratio. We discuss
in this section various types of background as
well as some experimental arrangements that im-
prove the sensitivity.

A. Discrimination against incoherent background

In four-wave mixing experiments, scattered
light and/or luminescence from the sample are
often present and some care must be taken to dis-
criminate against them. Since the nonlinear signal
is a coherent beam this discrimination can be
relatively easy through spatial and frequency fil-
tering, except in unfavorable cases. Time resolu-
tion and polarization selection may provide ad-
ditional discrimination against such noise back-
ground. For example, the use of pulsed lasers
and gated electronics ensures a very effective
time discrimination against background light or
luminescence with long lifetime as in the cases
of flame and plasma studies.

Frequency discrimination is most conveniently
performed through a monochromator, with the

help of interference filters. In many cases a
double monochromator is preferred because of its
high rejection ratio. Very often the spectral
resolution of the experiment is provided by the
laser linewidths. Then, the resolution of the

monochromator can be low so that it can easily
track the signal frequency in synchronism with

the frequency scan of the input laser. Another
experimental scheme uses a broadband con-
tinuum source as one of the incident beams. "
The resulting signal can be recorded by a spectro-
graph or by an optical multichannel analyzer. The
advantage is that the signal spectrum can be vir-
tually obtained on a one-shot basis. However, a
very smooth continuum is required if high resolu-
tion and sensitivity are expected.

Spatial discrimination is most effective when the
signal beam has a low divergence. A good trans-
verse-mode structure (ideally Gaussian TEM,g
of the incident beams helps in this respect. Two
apertures are needed to provide a complete spatial
selection, one in the near field and one in the
far field. When the input beams are focused on
the sample (Rayleigh range shorter than 10 cm),
the easiest way is to put an aperture at some dis-
tance from the sample to provide the far-field
selection. The signal beam is then refocused onto
a pinhole or the entrance slit of a monochromator,
which provides the second aperture. When the
input beams are not focused (e.g. , in the case of
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high peak power), the far field can be selected by
an aperture placed in the focal plane of a con-
verging lens. Special geometries have been sug-
gested to improve the discrimination against elas-
tically scattered light 2' This is especially im-
portant when the signal frequency is so close to
one of the input frequencies that the frequency dis-
crimination is ineffective (e.g. , in detection of
acoustic" or low-frequency Raman modes). For
instance, counterpropagating pump and probe
beams can be used in RIKE or stimulated Raman
gain spectroscopy. " Phase matching may be set
up to allow large angles between the interacting
beams, "but one then needs incoming beams with

fairly high peak power and small-divergence,
because the large crossing angles reduce the in-
teraction volume.

B. Suppression of nonresonant background
by polarization arrmngement

As discussed in Sec. IVB, the polarization-
sensitive detection scheme allows discrimination
against the nonresonant background X ', a sepa-
rate determination of the real and imaginary parts
of XR, and the reduction of the effects of absorp-
tion and laser intensity fluctuations. It also im-
proves significantly the signal-to-noise ratio as
we shall see later. A typical experimental ar-
rangement is shown in Fig. 4. Each input beam
must be in a pure state of polarization when

reaching the sample to ensure a good extinction
ratio for the nonlinear output beam after the analy-
zer —a ratio of 10 ' to 10 ' may be obtained with
some care on good optical quality samples. An
adjustable retardation plate between the sample
and the analyzer may help to compensate for
residual birefringence in the sample, focusing
optics or cell windows.

Two photodetectors monitor simultaneously the
two polarization components separated by the
analyzer. The ratio of the two output signals pro-
vides a normalized quantity, characteristic of the
polarization state of the nonlinear output wave but
insensitive to the laser intensity fluctuations. To
analyze different polarization states of the out-
put, it is preferable to use a polarization rotator
(half-wave birefringent plate or double Fresnel
rhomb) in front of the fixed analyzer instead of
rotating the analyzer Since th.e monochromator
for selecting the signal frequency may depolarize
the beam and spoil the extinction ratio, the ana-
lyzer should be in front of the input slit. The two
analyzed components can be focused on different
parts of the slit. They are then spatially sepa-
rated at the exit slit, and can be separately de-
tected by the two photodetectors.

4)i~
Sample

)/4
Plote

A/2
Plate

Analyzer

R

lPD I l

Mono-
chromotor

IPD2I

FIG. 4. Possible experimental arrangement for polar-
ization-sensitive four-wave mixing spectroscopy.

C. Signal-to-noise ratio with pulsed lasers

Several authors have recently discussed the
signal-to-noise (S/N) ratio in stimulated Raman
gain spectroscopy, "optical heterodyne detection
of nonlinear spectroscopy, "and Raman spec-
troscopy in gases. " We consider here the im-
provement in the S/N ratio when using the po-
larization-sensitive technique just described. We
restrict the discussion to the case of pulsed
lasers.

We assume that the four-wave mixing output is
large enough so that the shot-noise is negligible
compared to the classical noise due to intensity
and mode fluctuations of the input beams. In ad-
dition, we assume that the stray light can also be
reduced to a negligible level. With high peak
power lasers, these conditions can often be met
in practice, and the ultimate limit for the de-
tection of weak resonances is determined by the
fluctuating background at the detector. We con-
sider and compare here the signal-to-noise ratios
of three different but related cases: (1) ordinary
four-wave mixing without polarization selection,
(2) measurement of jX~g~/pi~ [ with background sup-
pression of pi~ by polarization selection, and (3)
measurement of RegR /y 3„) and imp'R /y~) with
polarization selection.

(50)

If each data point is taken by averaging over N~

shots, the background fluctuations are reduced
by a factor of ~N~. Then, the effective signal-
to-noise ratio is

S (hI„& N, SvN~)(R

@.&Im&
(51)

(I) Ordinary four-suave mixing. In going through
a weak resonance ([y'g'l « lx'~3' l), the resonant
signal has a relative variation (MR&/(I„„& with re-
spect to the nonreso a t background due to X'NR p

(I & ix&5 lm )((g

where XR'=XR+iX„" and X~ is assumed to be real.
This is to be compared with the fluctuations in the
nonresonant background relative to the average
background

8,=(5I* &"/&I &.
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(&) Background suppression by polarization
selection. The normalized resonant signal at the
detector in this case is IRI' with R given by Eq.
(38) or (39). The background of the resonant
spectrum here is due to the finite extinction co-
efficient p of the analyzer. The signal relative
to the background is IRI'/q. The fluctuations in
the background now arise from relative fluctua-
tions and nonlinearities in the two detection chan-
nels, and can be designated as 8,/~N~. Thus,
the signal-to-noise ratio is

s IRI~~,
N &8~

(3) Measurements of Re(X~)~) and Imping~). Fol-
lowing Eq. (41), for example, the normalized re-
sonant signal is 2(tan8) R', and the background is
tan'8+g, where g is again the extinction ratio of
the analyzer. The signal relative to the back-
ground becomes 2(tan8)R'/(tan'8+q). With 8,/
~N, being the background fluctuations, the signal-
to-noise ratio is given by

(52)

S 2 (tan8) RVN~

N S,(tan'8 + q)

which has a minimum at tan8 = 8 =Wg.

(53)

As a numerical example, we consider four-
wave mixing is an isotropic medium with, for
instance, R =yR/2y~. We assume typical values
of 8,=0.1, 8,=0.01, g=10 ', 8'=10 ', and
N&=100. Then, we find for S/N=1 in the three
cases the detection limit of

5x10 '

IxR/x'„", I= 2x» '
6x10 6

for the three respective cases. Case (3) is there-
fore the most sensitive way to detect a weak re-
sonance. It leads to an improvement of 3 orders
of magnitude in sensitivity over the ordinary case.

It is interesting to note the close analogy be-
tween the present case and the simpler case of
stimulated Raman gain spectroscopy. "'" The in-
tensity variation of the probe beam due to the
Raman gain is similar to case (1)." The Raman-
induced Kerr effect is the polarized version" as
in case (2), and its optical heterodyning scheme

as in case (3)." The main difference is that the
local oscillator is provided here by the nonresonant
background, instead of the probe beam in the
Raman gain experiment.

VII. CONCLUSION

We have considered in this paper the various
aspects of doubly and triply four-wave mixing pro-
cesses. Emphasis is on the potential applications
of four-wave mixing as a spectroscopic technique.
Explicit expressions for the resonant nonlinear
susceptibilities are derived. It is then shown
that with double and triple resonances, four-wave
mixing can yield high-resolution spectra with
reduced inhomogeneous broadening. Unlike the
usual spectroscopic techniques, multiresonant
four-wave mixing allows us to probe the spec-
troscopic details of transitions between excited
states, to measure the longitudinal relaxation
times, and to distinguish resonant Haman scat-
tering from resonant fluorescence. A number of
factors possibly affecting the output signal are
considered. In particular, an experimental arrange-
ment using the selective polarization scheme is
discussed in detail. The normalized polarization-
sensitive output effectively suppresses the back-
ground due to the nonresonant part of the nonlinear
susceptibility. It also greatly reduces the detri-
mental effects of absorption and laser intensity
fluctuations, and can enhance the signal-to-noise
ratio by three orders of magnitude in comparison
with the ordinary scheme of four-wave mixing.

More complicated cases of multiresonant four-
wave mixing have been avoided in the present
work. Thus, nonlinear absorption is assumed
negligible, compound relaxation processes are
not considered, and complex geometry and bound-
ary conditions are not treated. Inclusion of these
factors in our description requires special treat-
ment for special cases. Finally, a separate class
of interesting problems we have not considered
in this paper is on transient resonant four-wave
mixing processes. This will be the subject of our
next investigation.
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