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A general theory of the motion of a two-level atom in a resonant or near-resonant electromagnetic wave of
arbitrary amplitude and phase, including effects of radiative relaxation due to interaction with the quantized vacuum
field, is developed from first principles. Particular emphasis is placed on the effects of quantum-mechanical
fluctuations of the radiation force and on the associated diffusion of atomic momentum due to spontaneous and
induced absorption and emission processes. Analytic results and numerical examples are presented for (1) the lower
bound on the temperature achievable by radiation cooling in a standing wave tuned below resonance, (2) the heating
rate in a strong resonant standing wave, (3) the maximum confinement time for an atom in a Gaussian radiation
trap, (4) the deflection and spreading of an atomic beam transversely illuminated by a strong resonant running wave,
and (5) the transverse cooling of an atomic beam by a strong running wave tuned below resonance.

I. INTRODUCTION

The subject of atomic motion in resonant radia-
tion is now a rapidly developing field of research.
Numerous proposals have been put forward sug-
gesting applications of the radiation force to prob-
lems as varied as isotope separation, ' ' atomic
trapping and cooling, ' ' atomic-beam-deflection
spectroscopy, ' "and atomic-beam epitaxy. '
Several experiments have been carried out to veri-
fy basic'features of the resonance-radiation
force" "and to demonstrate certain applica-
tions. ' ' ' " Other experiments are currently in
planning or in progress at a number of laborator-
ies and universities.

Recent developments in the theory of atomic mo-
tion in resonant radiation have resulted primarily
from the analysis of specific proposed applica-
tions" and from the study of special problems, such
as atomic motion in a plane running wave or a plane
standing wave. ~ "The resulting body of theory con-
sequently lacks the unity of a general theory de-
rived from first principles. A step toward a more
unified approach to the theory of atomic motion in
resonant radiation was taken in a recent publica-
tion" in which a general theory of the mean radia-
tion force, based on Ehrenfest's theorem and the
optical Bloch equations, was developed and applied
to a number of problems of current experimental
interest. However, a theory based on Ehrenfest's
theorem describes only the mean radiation force
and says nothing about the fluctuations of the force
about its mean value.

The importance of fluctuations of the radiation
force in determining the motion of an atom in
electromagnetic radiation was first emphasized by
Einstein in 1917.~ In this early work, Einstein
showed that fluctuations due to both spontaneous
and induced absorption and emission processes
are necessary to account for the Maxmellian dis-

tribution of atomic velocity in thermal equilibri-
um. Although it has been recognized for some
time that fluctuations due to the random recoils
accompanying spontaneous emission (spontaneous
fluctuations) play an important role in certain ap-
plications, the fluctuations associated with in-
duced absorption and emission processes (in-
duced fluctuations) have often been ignored. Only
recently has it been pointed out that induced fluc-
tuations can be of importance in cooling, trapping,
and deflection experiments. '""

The purpose of the present paper is (1) to develop
a general theory of the motion of a two-level atom
in a monochromatic electromagnetic wave, in-
cluding effects of spontaneous and induced fluctua-
tions, and (2) to emphasize the central importance
of induced fluctuations and the resulting diffusion
of atomic momentum in a number of applications.

In the model adopted here, the atom is driven by
a classically prescribed electromagnetic wave (or
coherent state) of arbitrary amplitude and phase
and experiences radiative relation due to inter-
action with the quantized vacuum field. A new fea-
ture of the present theory is the description of the
translational motion of the atom in terms of an op-
erator f(x, p) whose expectation value, f(x, p)
= (f (x, p)), is the Wigner phase-space distribution
function. " Introduction of the Wigner operator
f(x, p) permits a straightforward derivation of
equations for the internal and translational motions
of the atom in the Heisenberg picture. This ap-
proach is convenient, particularly when the atom
interacts with the quantized electromagnetic field,
and physical interpretation of the resulting equa-
tions is more transparent than in an approach
based on the reduced density matrix for atomic
motion.

In the following section the properties of the
Wigner function for a structureless point particle
are briefly reviewed, the Wigner operator is de-
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fined, the Heisenberg equation of motion for the
Wigner operator is derived, and the classical lim-
it of this equation is examined. The purpose of
this section is to introduce the Wigner operator,
to fix the notation, and to derive a number of
properties of the Wigner operator useful in sub-
sequent calculations.

In Sec. III the theory of atomic motion in a clas-
/

sical electromagnetic wave is worked out neg-
lecting radiative relaxation. It is shown that the
motion of a two-level atom is determined by four
real functions defined on phase space: (1) the Wig-
ner function f(x, p), (2) the distribution U(X, p) of
the in-phas'e component of the atomic dipole mo-
ment, (3) the distribution V(X, p) of the in-quadra-
ture component of the dipole moment, and (4) the
distribution W(x, p) of population inversion over
phase space. The equations of motion for f, U, V,
and W' are derived, the quasiclassical limit of
these equations is calculated, and the quasiclas-
sical equations are applied to the optical Stern-
Gerlach effect in this section.

In Sec. IV the semiclassical theory of Sec. ID
is generalized to include radiative relaxation due
to interaction with the quantized electromagnetic
field. A Markovian approximation eliminates field
operators and leads to general equations of mo-
tion for f, U, V and W, now including rei'umtion
terms and terms describing recoil in spontaneous
emission. The quasiclassical limit of the atomic
equations of motion is then derived, and the con-
nection between the quasiclassical equations and
the Ehrenfest-Bloch equations of earlier work~ is
established.

Section V treats the diffusion of atomic momen-
tum associated with induced absorption and emis-
sion processes (induced diffusion). It is shown
that in the smooth-field approximation U, V, and
5' can be eliminated from the coupled equations
for f, U, V, and W; and the result is a Fokker-
Planck equation for f(X,p) which clearly displays
the coefficients of induced diffusion, as well as
the coefficients of spontaneous diffusion and the
mean radiation force. In addition, the diffusion
coefficients in a plane running wave and in a gen-
eral standing wave are calculated, physical inter-
pretations of induced diffusion are given, and for-
mulas for the mean energy and momentum trans-
fer to the atom are derived in this section.

In Sec. VI we present a weak-field solution to the
quasiclassical equations, and again find that U, V,
and W can be eliminated and a single Fokker-
Planck equation can be written for f(R, p). The
weak-field theory is applicable to a number of
problems not covered by the smooth-field approx-
imation of Sec. V. Specifically, the damping of
atomic motion by a standing wave tuned below res-

onance and the lower bound on the temperature
achievable by radiation cooling are calculated in
this section.

In Sec. VII the foregoing theory is further illus-
trated by application to several simple one-dimen-
sional problems. Analytical results and numerical
examples are presented for: (1}the heating rate
in a strong resonant standing wave, (2} the maxi-
mum confinement time for an atom in a Gaussian
radiation trap, (3} the deflection and spreading of
an atomic beam transversely illuminated by a
strong resonant plane running wave, and (4) the
transverse cooling of an atomic beam by a strong
running wave tuned below resonance.

The paper concludes in Sec. VIII with a discus-
sion of the limitations of the quasiclassical equa-
tions and some remarks about problems remain-
ing to be solved.

p(x)=(ped)'e'fd pp(p)e"''

yields the formula

(2)

f(&) (dp)'fX,ed'=ed(p+lil)P'(p-la)e""" (P)

for the Wigner function in terms of the momentum-
representation wave function y(p) = Q

~
Q).

The Wigner function has many of the properties
of the phase-space distribution function of classi-
cal statistical mechanics. For example, the inte-
gral of (1) over momentum space

d P X3 = X|t) % = X (4)

is the probability density JP(x) for position, the
integral of (3) over configuration space,

d'x x, p =@ p@~p =Wp

is the probability density W(p) for momentum, and
the integral of f(%,p) over all of phase space is
unity. The Wigner function cannot, however, be
strictly interpreted as ihe joint probability density
for the position and momentum of the particle be-
cause it is not always positive definite.

We now define the Wigner operator in the posi-

H. THE WIGNER OPERATOR

The Wigner function f(x, p) describing the quan-
tum-mechanical state of a structureless point
particle" is traditionally defined by the equation

f(%, (0=(xep)' fd ed(x ~ —,'d)'P (x--'l)e "'e" ())

where g(%) = (R
~
g) is the position-representation

wave function. A transformation to the momentum
representation
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tion representation:

f (2P)= ,(2 eq)
' fd'e [x——,i)S —,'1 [e "'e" (6)

(A)= ff d'ed'pA(i, p)f(i, p) (14)

When A is Hermitian A(i, p) is real. Incidentally,
the expectation value of Eq. (11)

The expectation value of the Wigner operator is
clearly the Wigner function

f(" p}=O' If(" P} I&) ~

In terms of the momentum basis Ip)

P(x, p)= (222)' fdq [])-',t[)(p+,'i [e'2'e~". (8)

Note that f(x, p) is Hermitian.
Now Eq. (6) can be inverted to obtain

.,)I [

-fd .pf=( 8*x)-', p),e" , ,
'""-'(2)

~2)e

and an arbitrary operator A can be expanded in
the position representation as

expresses the expectation value of the observable
A in the form of a statistical average, as if A
were properly represented by the classical ob-
servable A(x, p) and f(x, p) were a. valid distribu-
tion function in phase space.

If A = F(x} is a function of the position operator,
then N, IA Ix,)= Sgi) 6(x, —x,), and (12) gives
A(x, p) =F(x). Similarly, if A= G(p), we have

(p, I
A

I p,)= G(p, ) 6(p2 -p, ), and (13) gives A(x, p)
= G(p}. It follows that a Hamiltonian of the form
H= p'/2m+ V(x) is expressible in terms of the Wig
ner operator as

f' t

H= jl~ d'»d'p[p'l2m+ V(x)]f(x, p).

A=
J J"d'». d'» I@)(x IAIx,)(i I

~ (10}
To evaluate the Heisenberg equation of motion for
the Wigner operator,

Using (9) in (10) we find that an arbitrary operator
may be expanded in terms of the Wigner operator
as

sf(x, p) 1
et iS

=((2) ' ffd ed' '2[P'"/ 2 q(x')]

A= dgd pA X, p x, p,
where

A(2 p)= f d (qld IeA '[e2e-] i)e """.
or in the momentum representation

A(x, p) = fd'q(pe-, 'i([A [p — t()ed' " .

(12)

(13}

(16)x [f(x,p),f(x', p')],
we need the commutator p(x„p2),f(x„p,)] for
Wigner operators at two distinct points of phase
space. The position-representation matrix ele-
ments of the product f(x„p,)f(x„p,}are readily
evaluated using definition (6}. Upon substituting
these matrix elements into Eq, (12) and using the
result in Eq. (11},we get

f(x„p)f(x„p) = (ei) ff2edpp(xp) e'xp['-2( [Z, (2-x) -2 ( - p) ](2],
where

2(xi+X2) 2 v 2(pi+Pi) 2 0 4 2 2 Pl P2

The commutator of f(x„p,) and f(x„p,} then follows directly from (17),

[j(x„p) P(i„p)] = -2i(ell)' ff d'xd'pg(2 p)eie[2[Z (( -x) -2) ( —p)]82].

(18)

(19)

With the help of this commutation relation, we
find that the Heisenberg equation of motion for
the Wigner operator, Eq. (16), takes the form

~

~

—,—~ q [f(*,p)= f edp d(xp-p') (pip''), (2, 2)
St m j

where

z(x, p)=. 2 .f d [q(*~ ]e) — '(pe ) 2["e""
ig 2' p

(21}

and V is the gradient with respect to x. An expec-
tation average of Eq. (20) removes the carets on
f(x, p) and f(x, p'), and shows that the Wigner
function and Wigner operator satisfy the same
integrodifferential equation.

The classical limit of Eqs. (20) and (21) is de-
rived by writing V(x+2s} in (21}as Taylor series
in the variable s, evaluating the integral over s,
and taking the limit of the result as S-0. Equa-
tion (21) becomes
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J(x, p) = V V(x) ~ V~6(p),

where V~ is the gradient with respect to p, and

(20) reduces to

(22)

—+—V I f(x, p)= VV(x) V~f.(x, p). (23)

R(x, p}=. ), fd sE(x ~'—,'l)e "'~", (25)

then

d'g'd'p'F x' x, p x', p'

The expectation value of E(l. (23) is the classical
Liouville e(luation for the distribution f(x, p}.

We now list a number of relations involving the
Wigner operator that are useful in subsequent cal-
culations. First, the commutator of the Wigner
operator with the kinetic energy operator is

[f(x, p), p'/2m] = -imp' Vf (x, p}/m . (24}

Secondly, if F(x) i.s a complex function of position,
and if

(31}

(32)

H, = S~,S'S,

p, = pS+ p S',
A

where p= (1
I
p

I
2) and S' and 5 are, respectively,

the atomic excitation and deexcitation operators

s'= 12&& 1
I

s= ll&& 2
I

~ (33)

In addition, we shall need the operator

s's —ss' (34)

whose expectation value is the population inver-
sion. The internal operators S, S', and S, satisfy
the following commutation and product relations:

[s,s] =s„ (35a)

[s,s's] =s, (35b)

[s,ss]=-s, (35c)

and E„(x,t) is the classical electric field eval-
uated at the center-of-mass position x.

For a two-level atom with internal states
I
1)

and I2) of energy E,=O and E,=}f(uu, respectively,
the internal Hamiltonian and dipole-moment op-
erator can be written as

=ik d'p'R x, p-p' x, p',

dx dp F x xyp x yp

= -iS d P'R¹ x, p' -p x, p',

d'x' d'p' x' %', p' x, p

(26)

(27)

[s„s's}= 0,
ss'= ,'(i —s,-),
s's = ,'(I+ s,), —

S =S+ =02

SSB= -SBS=S,
S SB= -SBS+= -S+,

(35d)

(36a)

(36b)

(36c)

(36d}

(36e)

=iS d'p'R x, p'-p X,p',

cd dp F K x yp xyp

(28)
where I = S'S+ SS' is the identity operator.

A general monochromatic electric field may be
written as

E,(x, t) =-,' [E(% e}'"'+E*(X)e '"'] (3'l)

= -iS d'p'R¹ x, p-p' x, p' . (29)

III. ATOMIC MOTION IN A CLASSICAL
ELECTROMAGNETIC WAVE

The Hamiltonian for an atom of mass M in a
classically prescribed electromagnetic wave in
the electric dipole approximation is

H= p /2M+Ho —p E„(x,t), (30)

where p'/2M is the kinetic energy associated with
A

the center-of-mass momentum p, Ho is the Ham-
iltonian for the internal motion of the unperturbed
atom, p is the electric dipole-moment operator,

These relations can be proved by straightforward
application of E(l. (17) and simple changes of inte-
gration variables.

In the Heisenberg picture, the dominant time depen-

dence of operators S and S', which is due to the inter-
nal Hamiltonian (31), is contained in exponential fac-
tors e '"0' and e'"0', respectively. Therefore,
near resonance ((u= (u,) substitution of (32) and (3'f)
into the interaction term -g E„(x,t) yields two

slowly varying terms and two terms that vary too
rapidly to have any significant influence on atomic
motion. Discarding the inessential terms (rotat-
ing-wave approximation), "the Hamiltonian be-
comes

H= p /2M+k(uP'S

——,'K[A~(x)s'e '"'+ G(x)Se'"'] (38}

where KA(x) = p E(x) = lfA(x) e~'*'. Q(R) is the on-
resonance Rabi flopping frequency of the two-lev-
el atom, and e(x) is the effective phase of the ap-
plied field [for p real, Q(x) is the amplitude infre-
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quency units and 8(x) is the true phase of the com-
ponent of the applied field in direction p]. The op-
erator Q(x) is expressed in terms of the Wigner
operator as

()(x)= JJI d'ed'p()(x)T(x, p), (39)

+ O(x)Sf (x, p)e'"'] .
(40)

and hence

))=p'/P)d+P PP-!x gd' d'P[()'(*}sj(*,p} '"
(41)

After inserting H from (40}, a straightforward
calculation aided by Eqs. (24)-(29), leads to the
result

Here the Wigner operator refers to the trans-
lational or center-of-mass motion of the atom.
Since the internal and translational motions in-
volve different and independent degrees of free-
dom, each of the internal operators S, S', and S,
commutes with the Wigner operator f(x, p).

Now consider the Heisenberg equation of motion
for f(x, p)

'f(% )=' [f(-. -) B]et =zS

& eI-„.M PIT(*,jN= f d') {IT(% P —P) —T(x, p —p'))d7(x, p')e'"'

+ [T~(x,p' —p) —T~(x, p —p')]5"f(x, p')e p"p] (42)

where

T(x, p)= .(p, Jd'e()(x ~ —,'l)e """. I
—+—V iII.(x, p) = d'p'[B(x, p —p')II(x, p')

+ B*(x,p —p') ll'(ll, |)'}],
We see that the equation for f(x, p) contains the op-
erator

where 4 = e —co, is the detuning frequency and

(48}

II,(x, p) = S,f(x, p) . (45)

So an equation for this operator is required also.
Fortunately, the proliferation of operators ter-
minates at this point, and the Heisenberg equation
for II, involves only operators II and II . The
closed system of Heisenberg equations of motion
obtained in this way is

11(x,p}= Rf"(x,p}e'"' (44)

and its Hermitian conjugate II . Therefore, in ad-
dition to the equation for f(x, p), we need an equa-
tion of motion for II(i, p). Another straightforward
calculation, making use of Eqs. (24)-(29) and Eqs.
(35) and (36), shows that the Heisenberg equation
for II(X, p) contains the operator

C(x, p}= T(x, -p}—T(x, p),
B(x,p) = T(x, -p) + T(x, p) .

(49)

Let II, 11~, and II, (without carets) represent the
expectation values of II, II, and II„respectively.
Then we can remove the carets in Eqs. (46)-(48),
by taking expectation values, to obtain the system
of equations describing the time development of
the Wigner function f(x, p) in a monochromatic
field with arbitrary amplitude Q(x) and phase 8(x).

The following transformation of Eqs. (46}-(48) is
convenient for subsequent work. Let

II(x, p)=o(X, p)e "'*',
(50)

II (x, p) = o'(x, p)e'P'*),

and
+—' V

~f(x, p) = d'p' [C(x, p —p') II(x, p'}
&t M

+ C~(x, p —p'}II~(%, p') ],
(46)

U(x, p) = e (x, p) + o'(x, p),
V(x, p}= i [o (x, p) —o'(x, p}],
IV(x, p}= II,(x, p).

(51)

—+—~ IIx, p =@IIx, p
~~

+~ cPp' C* x, p-p' x, p'

-B (x, p-p'}Il, (x, p')],

(4I)

Then Eqs. (46) (48), with carets deleted, become

](g p
(
—+—'V f(x, p)&at

d'p'[a„(x,p —p') U (x, p')+a, (x, p —p') V(x, p')],

(52)
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)( 8 p(—+—V W(i, p)
Eat M

d p b xep —p U xep +5] xep —p V xep

Then, using the fact that V~5(p) is an odd function
of p, Eqs. (56} become

a„(x,p) = --'tfvQ' v 5(p),

&,(X,p) = --,'}IQve v, a(p},

i
—+—V i U (x, p) =

i
d +—' V 8

i
V (x, p}

8 p ~ ~ ( p
j '

i M ]

(53) b„(x,p) =0,

b,(x, p) = -Qa(p},

and Eqs. (52)-(55) reduce to

(59}

+ CPp Q„xyp-p Xep

—b„(x,p —p') W (X,p'}],

8 p
~at Mi
—+—v if = --,'g[VQ v U+Qve v v] (60}

i
—+—V iV(x, p)= -i h+ —VH iU(x, p)

~a p -l & y
M )

' ( M ]
+ d p g) xep —p Zap

(54} i
—+—v IU= I&+—ve iv--.'ttvQ v f, (61)/8 p -l & p

(at M J g M

I
—+—'v iv= —is+—ve iU

p l f p~a™~ E M

—gttQV O' Vqf + QW, (62}

where

—b,(x, p —p') W(%, p') ],
(55}

a„(x,g}=Re[r(x, -p} —r(%, 'P}],

a)(x, p) = Im [v(x, -p) —y(x, p) ],
b„(x,p) = Re [r(x, —p) + r(x, p) ),
b,(x, p) ~™[r(x,-p)+ v(x, p)],

and

-H(x)
g(x, p) = ., ), d's Q(x+-,'s}e "'I".

The variables f, U, V, and W are real.
It is readily shown that the quantities

(56}

(57)

u= d3xdsp U x, p

dsxd'p V x, p (58)

m= d'xcPp W(x, p)

are the components of the Bloch vector for the in-
ternal motion of the two-level atom. Therefore,
roughly speaking, U(X, p) and V(x, p} represent,
respectively, the distributions of the in-phase
and in-quadrature components of the atomic di-
pole moment, and W(x, p) represents the distribu-
tion of inversion over phase space. For an atom
in the ground state, we have U= V= 0 and W= -f.

Next, consider the classical limit of Eqs. (52)-
(55). Following the classical-limit argument of
Sec. II, we expand Q(x+2 g) in (57) as a Taylor
series in s, and discard terms that vanish as I'
» 0. We obtain

7(x, p}= ='iQ5$j+-,'K(VQ+tQVH)' V,a(p) ~

I a
i
—+—'V W=-QV.(a™ (63)

The term "classical limit" is really inappropriate

here, because as 5 approaches zero the Rabi fre-
quency 0 becomes infinite, indicating that the no-

tion of a Rabi frequency for the internal motion is
purely quantum mechanical. We shall refer to

Eqs. (60)-(63) as the quasiclassical equations.
An estimate of the range of validity of the quasi-

classical approximation is obtained as follows. It
is easy to see that the lowest-order neglected
term in the expansion of Eq. (57) would have made

contributions to Eqs. (60)-(63}involving an addi-

tional factor 5, an additional derivative of 0 with

respect to x, and an additional derivative of f, U,

V, or W with respect to p, as compared to the

highest-order terms that we re kept. Therefore, if

I is the scale size of variation of Q(x) and hp is
the scale size of variation of f, U, V, and W in

momentum space, the neglected terms are smaller

by the factor g/lt'p than the retained terms. The
minimum-scale size of the field Q(x) is on the or-
der of the optical wavelength X. So the condition
for the validity of Eqs. (60)-(63) is Klkhp «1 or
}Ik«np, where k= 2w/X. In other words, f, U, V,
and W must be smooth over a distance in momen-

tum space equal to the momentum Ik of one photon

of the resonant radiation. This is the case most
often encountered in practice.

The quasiclassical equations provide a simple
derivation of the optical Stern-Gerlach effect."
In a general standing wave [8(x)= 0] resonantly
tuned (6=,0}~ Eqs. (60} and (61}read

t g p
i
—+—V if =-2IVQ'V U,

(St M

/a p
i
—+—v

i
U= --,'IvQ v f .
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These equations have a solution of the form f =f „

U= -f, if
dipole moment p with the quantized electric field

and a solution of the form f=f, U=f if

(66)

The distributions f, and f each propagate as a
classical distribution function of a structureless
point particle [see Eq. (23}] but with potential en-
ergies V, = &SO and V = --,'SA, respectively, of
opposite sign. The general solution of Eqs. (64) is

f=f +f. ,

U=f--f, .
An atom initially in its ground state (U'= 0) has
f', =f'=-,' f', and consequently f, and f start out
identical. When f(x, p) is initially well localized
in phase space, the Wigner function (f =f, +f )
quickly splits into two components, because f, and

f are driven by forces F,= ——,'IVQ and F = —,'KVQ
in opposite directions. This is the optical Stern-
Gerlach effect which has been discussed recently
by several authors. "v~e'""

In the present section we have ignored spontan-
eous emission. Therefore the equations of motion
derived above can be applied with confidence only
for an interaction time that is much less than the
natural lifetime of the excited state. For transi-
tions in the visible, this limitation can be severe.
In the following section we generalize the equa-
tions of motion to include effects of spontaneous
emission.

IV. ATOMIC MOTION IN THE QUANTIZED
ELECTROMAGNETIC FIELD

To take account of the interaction of the atom
with the quantized electromagnetic field, in the
electric dipole approximation, we must add to the
Hamiltonian (30}the Hamiltonian

(68}

for the free electromagnetic field and a term
—p~ E(x} representing the interaction of the atomic

(69)

where ~ » a», ~, and 4» are, respectively,
the creation and annihilation operators, the fre-
quency, and the polarization vector of the field
mode of wave vector k and polarization index X

(= 1,2), and 'U is the quantization volume. The
creation and annihilation operators commute with
the atomic operators S,S', S, and with the Wigner
operator f(x, p), and between themselves satisfy
the usual commutation relations

(70)

(71}

The complete Hamiltonian is

H = p /2M+ H, + H„-p [E„(x,t) + E(x)] . (72)

Note that we have retained the classical applied
field E„(x,t) in the Hamiltonian. In the model
used here, the atomic motion is driven by the
classical applied field, while the quantized field
is treated as a zero-temperature heat bath whose
sole purpose is to cause radiative relaxation of
the atom. Such a model can be justified on the
grounds that a strong monochromatic wave is a
state of the radiation field involving large quan-
tum numbers, and hence the correspondence princi-
ple ensures that the applied field maybe treated clas-
sically. Alternatively, it can be shown that the pic-
ture of a classical applied field plus aquantized field
initially in the vacuum state is related by a canon-
ical transformation to the picture in which the
field is fully quantized and the applied field is a
coherent state. ~ We choose to work with a clas-
sically prescribed applied field because in this
picture much of the calculation of equations of mo-
tion has already been accomplished in the preced-
ing section.
„Onsubstituting p from (32), E„(x,t) from (37),
E(x) from (69), H, from (31), and Hz from (68)
into (72), and keeping oniy slowly varying terms
in the classical interaction and only energy-con-
serving terms in the interaction with the quantized
field, we get

H= p'/2M+)f&&p'S+ g K~~ai „si~„-—,'K[A~(x)S'e '"'+ A(x)Se'"']

(73)

where
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g;,= (2v&u„/kV)'I'p e-„,.
Next we express the interaction terms in (73} in terms of the Wigner operator by use of relations

ee(x)= ff d'xd'pe](x)f(xp), ,

(74}

(75)

8 '*= d xcPpe" '* x p (V6)

The Hamiltonian is then

H=p/p)d+H p' QHH o de *Hff -.dd(.p(.)H-f(R p) ' ~ pe(p' )dj(*p) ' ,']

+f&Z Jtjtd'~d'u[g;, .e '" *~,P7(x» -gee" *3'W,.«»»].
As before, me cwork with the Wigner operator and operators

II(x, p) = &f(x,5)e'"'

Il,(x, p}= S,f(x, p},
and, in addition, we now make use of field operators

feet

which are slowly varying for field modes near resonance.
With the help of Eqs. (24)-(29), (35), (36), (VO), and (Vl) we find, after some work, the Heisenberg

equations of motion for f, II, II„and31 ~, namely

I
—„+M &,If(xp p) = Jtd'u'[~(&, 5-5')Il(II, 5')+&'(&, 0-p')ll'(&, 0')]

(7V)

(78)

(79)

{g-„„e'1'*tII~ „[II(xpp -2IIR) —II(x, p+ —,'Ik)]

+gl „edi'*[II'(X~p 2@/K H (x p+&ilk)]51 J'

] —, e —p]H(x, p)=eep(xp) ~ —,
' fd'O'IC'(xp p)j(pp')-H'(pp-p')H(xp')]

(80)

g„e' [f(x, p 2 ffk} —f(x,—p+-', I'k) —II,(x, p --,')tk) - II,(X, p+-,'Ik) ]5-„„,(81)

,]B.(*,p)= fd p [ ( p - p'')'(H%, , )])e'(p, p -p')ir'(x p')]

(gg,e "'*b; „[Il(%,$--2tk)+Il(x, p+-aitk)]
k, X

+gl „e'~*[II'(x,p ,'tk)+ Il-'-(x, p+-,'ak)]i„g, (82)

5i,x f(~ k)@t,x

~d-„,J]fd'xdpe" H(xP). ',(83}

For later convenience, we have written Eqs. (80)-
(82} in "normal order" with field creation opera-
tors to the left and field annihilation operators to
the right of atomic operators.
. The field operators are now eliminated from

Il(x, p, t,)=ll(x-p[t, -t,]/M, p, t,)e''(" "', (84)

and this is an accurate solution of Eq. (81) over a
time interval 4t= tg tg that is large compared to
the optical period 2v/&u but much smaller than the
Rabi period 2v/0 or the natural lifetime of the ex-
cited state. For a time interval t, -t, =2m/(d,
equal to the optical period, the displacement

Eqs. (80)-(82) as follows. The solution of Eq. (81),
to zeroth order in the interaction, is
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nip =p{fi—t,)/M=(v/c)X is generally very small
compared to the distance over which II changes
by a significant amount. Therefore we may re-
place the argument x- p[t, t,—]/M in (84}by x,
and the result remains accurate for many optical
periods. Using the latter form of (84), Eq. (83)
is readily integrated:

b „(f-}= 5„(0)el((d-rtr&)p

+gi x d'xd'pII x, p, t e '~'~

t
f(ado-fdic)(~ ' )dt

0
(85)

Now Eq. (85) and its Hermitian conjugate will
eventually be substituted into Eqs. (80}-(82), and
expectation values of the resulting equations will
be taken with the field in the vacuum state. Be-
cause Eqs. (80)-(82) are written in normal order,
the contributions to the final equations from the
first term in (85) clearly vanish, and therefore
this term may be discarded. For t much larger
than the optical period, we have for the time inte-

gral in (85)

r
t
e""o"~'" "dt'= v5({d- —(d }- '

(86}
0

o ~x-~o
Where 6' denotes principal value. " It is known
that the first term in (86) leads to radiative re-
laxation, while the second term leads to a diver-
gent frequency shift. "" A proper treatment of
the second term requires renormalization theory,
and, after renormalization, the effect of this term
is quite small and of little interest in the present
context. We therefore discard this term also,
and assume that the Lamb shift has already been
incorporated in the frequency (d,. Equation (85)
becomes, effectively,

p- = vd- rt(rp —v, ) ff d'vd'p e ' 'tI(x, p). (Sr)

Upon substituting (87) into Eqs. (80)-(82), using
Eqs. (26)-(29), (36), and ('l8) repeatedly, taking
expectation values in the result, and finally pass-
ing to the limit of infinite quantization volume (U-~) in the usual way, we obtain

—+—V f(x, p)=--,'d[f(x, i)+rr, (x, p)]r fd [C(p]pp')r(prr') p~ C"(p, p-p)rrr(p, p)]

x jtd'kZ(k)[f(x, p+hk)+II, (x, p+gk)], (88)

(
I
—~ —v(rr(p, p)=(rrt-!d)rr(pp)+! fd p [c (p p-p)f'(pp )-rr'(pp'-p)rr {x rv)],

(—~ —V Irr (*,i)=-*'d[f(*,p)+rt (*,i)I+ fd'p'[rr(*, i-p')rr(p p')+rr'(x, p-p')rtr(p i')]

(89)

where

d3kZ k x, p+Sk +II, x, p+Ik (90)

4 )
)2~3

A=(21[) UQ tPk Igi ~ I
«(r)i —(dt))= (91)

is the Einstein spontaneous emission coefficient, and

Z(k}= (4][if} (r)'((d) —(d.) 2 I ~ e-...I'= (4v&) '(r)i«(r)i —(d).) I ~ I'(1 —cos'8'),

where 8' is the angle between k and p.37 We note for later reference that

(92}

(93)

The transformations in Eqs. (50) and (51) convert Eqs. (88)-(90) to the form

—+—~ V X p =-—2'A X,p+W %3p + cPp'a„X, -p' U X,p'+a x p-p' V x p'

+ d AZ k x, p+Sk + W x, p+Sk (94)

~ ~
—, ~ —v

[ c(p i) =
I rt+ —v p [ v(*, i) —ldc(*, i)+f rpp'lo(*i —i' )f(*,i',) —,p,(*i—i')rv(*, i')i,

(95)
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I
—+—v Iv(x, p)= — &+—ve IU(*, p) --,Av(x, P)

&a P ) p ~ x

let M ~

' M ]

+ Jtd'p'[a, (x, p-p')f(x, p') -b,(x,P-P')W(x, P')], (96}

kg k x, p+jfk + W x, p+5'k (97)

where a„,a„b,and b, are given by Eqs. (56}
and (57). Equations (94}-(97)are the general
equations describing the time development of the
Wigner function f and the distributed Bloch vector
(U, V, W) including effects of spontaneous emis-
sion.

We now calculate the quasiclassical limit of
Eqs. (94)-(97). For the terms in (94}-(97)not in-
volving A or Z(k), the calculation proceeds ex-
actly as in the preceding section. We obtain from
these terms Eqs. (60}-(63}.To these equations
we must add the quasiclassical contributions from
the remaining terms in (94)-(97). The terms con-
taining A are unaffected by the quasiclassical
limit. A typical term involving Z(k) is of the
form

(98)

Recalling that in the quasiclassical approximation
f(%,p) must be smooth over a distance RA=if(o, /c
in momentum space, we expand f(%, $+ffk) in
powers of Sk'. Keeping terms through second or-
der in the expansion, using Eq. (93), and noting
that

(99)

Q'~ = ,', (i—f&u,/c}'Ad",

where d'~ is the diagonal matrix

(103)

100
d'~= 0 1 0

0 0 —'
2

(104}

,&
a (f+ W)'„~"apap

I
—+—v IU=I&+

I'a p -& ( p Ve)
(et M j ( M

—~}fVO' V~f,

(105)

(106)

I

—+—v Iv= —In+ IU--,'Avfa p -& I p Ve)
oaf M ) i M &

+Qw-~RAve v~f,

c
p—+—v iw= -ov-A(f+ w)

&t M

(107)

Other terms involving Z(k) ih Eqs. (94)-(97) are
evaluated in the same manner as (98). The full
set of quasiclassical equations read

—+ —'v If =-mg(WA'v U+Ave'v v)et

because Z(k) is an even function of k', we find
that (98) becomes

„a'(f+ w)-~~"
ap~ap

(108)

(100)

where

(101)

k' = k sine' cos43e) ',
k'= k sine' sinft)',

ks= k cose',
(102)

where 8', p' are polar angles in k space and k
= &o„./c, Eq. (101)yields

Let the dipole transition moment p be directed
along the x' axis. Then using Z(k) from (92) and

The general equations for atomic motion in reso-
nant radiation, Eqs. (94)-(97), and the quasiclas-
sical limit of these equations, Eqs. (105)-(108),
are the principal results of this paper. In the cal-
culations which follow we work exclusively with
the quasiclassical equations.

Next we establish the connection between the
Ehrenfest-Bloch equations of earlier work~ and
the more general quasiclassical equations of the
present theory. Let f, U, V, and Wbe localized
in phase space near the point (x, p}=(y,/T}. Then
in an integral over phase space of a product of a
smooth function of (x, P) and one of the functions
functions f, U, V, or W, the smooth function may
be evaluated at (r,p) and taken outside of the inte-
gral. In addition, integrals over phase space of
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terms such as p Vf/M, =,'IVQ V~f, and
gus'(f+ W)/bp'sp~ vanish, as can easily be shown
by integrating by parts and using the fact that f,
U, V, and Wvanish at Ixl =~ and lpl= . Using
these observations and Eqs. (58), we find that the
integrals of Eqs. (106)-(108) over phase space are
the optical Bloch equations"

u= (&+ 8)v ——'Au,

v = -(&+ 8)u+ 0W —~Av, (109)
c'v = -Qv —A(cv+ 1),

where 8=/7, V8(T)/M and 0=0(~). The Bloch vec-
tor (u, v, so) is driven by the field amplitude 0 and
phase derivative 0 at the position of the moving
atom. Next multiply Eq. (105}by x and integrate
over phase space. An integration by parts gives

d'xd'px p = — I, (110)

and the terms on the right in (105) all vanish on
integration. The result is

Finally, multiply Eq. (105}by p and integrate over
phase space to obtain the radiation force

F=p, =~=2t(u~Q+ v008). (112)

Equations (109) and (112) are the Ehrenfest-Bloch
equations describing the motion of the centroid of
the atomic wave packet. "

V. INDUCED MOMENTUM DIFFUSION

It is well known that the momentum of an atom in
resonant radiation undergoes a kind of diffusion
due to the randomly directed recoils accompanying
spontaneous emission. This spontaneous diffusion
is described by the last term in Eq. (105}. As
noted above, induced absorption and emission pro-
cesses can also give rise to diffusion of atomic
momentum. 28 In the present section we treat in-
duced momentum diffusion in the case where the
applied field is smooth or the atomic velocity is
small.

The goal is to obtain a single equation for the
Wigner function in place of the coupled quasiclas-
sical equations for f, U, V, and W. To accomplish
this, we solve Eqs. (106)-(108)approximately for
U, V, and W in terms of f, and insert the result
into Eq. (105). Here the approximate solution of
Eqs. (106)-(108) is based on the assumption that
the Rabi frequency 0 and the phase derivative 8
= p V8/M, at the moving atom, vary by only a
small amount during a natural lifetime r = 1/A.
This condition is satisfied when the field is suffi-
ciently smooth or when the atomic velocity is suf-

ficiently small. It is shown for this case in the
Appendix that the equation for f(x, p), accurate
through terms of order g', is the Fokker-Planck
equation

p& 8)
&sf M 8&&)f sp' f sp&sp&

(113)
where F,' is the effective radiation force, D'~ are
momentum diffusion coefficients, and we are using
the Einstein summation convention; i.e. , a re-
peated index in a term implies summation over
that index. The effective force E,'= E'+ E' consists
of the radiation force

(AQ ".Z'0'
44~+A2+ 20' E

&=&+p V8/M, (115}

which agrees with that obtained from the Ehren-
fest-Bloch equations in the steady-state approxi-
mation, plus a correction F' given in (A26),
which is of higher order in I than F'. It is easy
to show that the correction F' is generally quite
negligible compared to F', and in the following we
shall often set F,'= F' for simplicity. The diffusion
tensor D'~= D,'~+ Dl'~ consists of coefficients

g kg, 2y2d~&
Dkj

5(4' +A2+ 202)

associated with spontaneous emission (k = v, /c),
plus coefficients

(116)

80 80 2 88 88
sx' sx~ sx' Sx&

D"= 0. + PQ'

(892 88 88 8Q2
+p . +

g 8x' 8x 8x 8x~

associated with induced absorption and emission
processes, where

o.= & [(A + 20 }G —8h 0 (4& + 5A + 40 }1/2AG s

P=)f A[G' —20'(3A' —4&'}]/2G,

y= -2h'EQ (2A +0 )/G,

(118)
(119)

(120)

G- 4~~+ g~+ 2Q2

For atomic motion in one dimension, Eq. (11V}
agrees with the result of an earlier calculation"
in which induced momentum diffusion is attributed
to the interaction between the fluctuating atomic
dipole moment and the gradient of the applied
field.

In view of Eqs. (104) and (116), the contribution to
momentum diffusion from spontaneous emission is
not isotropic. The anisotropic distribution of di-
pole radiation leads to a diffusion coefficient D,'
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in the direction parallel to p, that is half as large
as the coefficients D,"and D,"in directions ortho-
gonal to p. In a strong field (20'»4ZP+A'), the
coefficients of spontaneous diffusion saturate to
Du qoS

Consider now two simple examples. In a plane
running wave [0=constant, e(x)= -k x], the ra
diation force, Eq. (114}becomes

A09ik'
4(& -k' p/M) + A~ + 20

and the spontaneous and induced diffusion tensors
Eqs. (116) and (117) are

(122)

g2Ag2y2d&&

5[4(h -k p/M}'+A + 20'] (122)

g2Ag'P~P~

2[4(n —k p/M)'+A'+ 20']
20 [SA -4(b -k p/M) ] ii

[4(b -k p/M)'+A'+ 20']'~

respectively. Note that in a strong field the coef-
ficients of induced. diffusion saturate to D~~

=-,'Ag'k'k~. The form of Eq. (124) indicates that
induced diffusion occurs only in directions W
and not orthogonal to these directions.

In a general standing wave (not necessarily a
plane standing wave} we have 8(X}= 0. The radia-
tion force, usually called the dipole force in this
case, is now

gr 80'/8»'
4k 2+A2+ 20~

and the diffusion tensors are

N AO k d'~
DU

5(4n, 2+A'+ 20') '

ea auDfj
2A(4n. +2A'+ 20'} s»~ s»&

8k'0'[4n'+ 5A'+ 40']~(
(4n ~+ A2+ 202}2

(125)

(126)

Here the coefficients of induced diffusion do not
saturate in a strong field, but continue to increase
as

N2 80 &0
I ~ 9+f (128)

as the field strength increases. Note that (128) is
an exact expression for D~~~ when b, = 0. In a stand-
ing wave induced diffusion proceeds in directions
y VQ.

A few words concerning the physical interpreta-
tion of the diffusion tensors are now in order. It
is easy to show that the coefficients of spontaneous

diffusion (116) are consistent with the idea that
the atom undergoes a random walk in momentum
space due to statistically independent recoils 4p
= Nk occurring at the rate of spontaneous emission
and distributed in direction according to the dipole
distribution of radiated power. The coefficients
of induced diffusion (117), on the other hand, are
not the result of statistically independent recoils
occurring at the rate 0 of induced absorption. and
emission events. To see this, recall that in a
random walk of step size L and step rate R the
diffusion constant is of order L'g. Thus for steps
of length }ik taken at the saturated rate (-A) of
spontaneous emission, the diffusion constant is D,- (}Ik)'A, in agreement as to order of magnitude
with the saturated spontaneous coefficients D,'&
= —'(Kk)'Ad'~ derived above. But if we apply the
same argument to induced processes, which occur
at the rate 0, we obtain Dz- (Kk)'0. Comparing
this with the on-resonance induced coefficients
(128) in a plane standing wave (0= 20, cosk», &0/
8»'- kQ}, namely D',~- (}Ik)'0'/A, we see that the
present theory leads to induced coefficients
larger by a.factor 0/A than can be accounted for
on the basis of statistically independent recoils,
and this factor can be very large. This is an im-
portant observation because a number of authors
have explicitly assumed that successive induced
processes are statistically independent, or else
have written rate equations for induced momentum
transfer that implicitly assume statistical inde-
pendence for the underlying induced processes.
Predications of such theories will differ greatly
from those of the present theory.

The much larger standing-wave induced coeffi-
cients predicted by our theory can be understood
from the point of view of the optical Stern-Gerlach
effect. For exact resonance (n= 0) an atom initially
in its ground state has equal probability to be in
one or the other of the distributions f, and f in
which it experiences forces F,= --,'SVA and F

2t'fQ, respectively (se-e Sec. III}. In time n.t
the atom takes, with equal probability, a step
4p, = F,4t or a step hp = F 4t in momentum space.
The coherent acceleration of the atom by one or
the other of these forces is terminated by spon-
taneous emission, which returns the atom to its
ground state and initiates a new step hp, or 4p
again with equal probability. Thus we again have
a random walk of atomic momentum, but now with
step size ~hp, (

= —', 5
~

VQ ~nt determined by the
mean time n t = 4r = 4/A between spontaneous events
from f, or f and step rate A/4 equal to the rate
of emission from f. or f (in each of these distri-
butions the atom has upper state probability P,
= —', and the probability that each of the distribu-
tions is occupied is also —,). The diffusion coeffi-
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D", = &(p' - & p'))(p' —& p')}&/2t

= g2k'k'&(b n)*&/2t. (131)

This argument shows that the coefficients of in-
duced diffusion in a plane running wave are deter-
mined by the statistics of spontaneous emission.
More precisely, the induced coefficients are de-
termined by &(n nP& in the limit t» r = 1/A, for it
is only in this limit that &(cLn) ) is proportional
to t (the momentum statistics are Markovian only
for time intervals much longer than r). Since Dz'~

is proportional to &(hn)*& our theory m~es a
definite prediction concerning the statistics of
spontaneous emission in resonance fluorescence.

cient along the direction of VA is, therefore, 2DI
=if'~V0~'/A, in agreement with the on-resonance
induced coefficients (128) for a general standing
wave.

The dif'fusion tensor in a plane running wave,
Eq. (124}, is also supported by a simple physical
argument. If the atom absorbs a photon of wave
vector k and is then induced ta emit a photon (nec-
essarily also of wave vector k), the net momentum
transferred to the atom is zero because the mo-
mentum Ik acquired by the atom in absorption is
canceled by the recoil momentum -Ik of induced
emission. In the process of absorption followed
by spontaneous emission, on the other hand, the
momentum acquired by the atom in absorption is
not canceled, on the average, by spontaneous
emission because the distribution of spontaneous
emission gives equal probability to recoils in op-
posite directions. Thus the atom gains the mo-
mentum of one incident photon for each spontan-
eous event, and if ~ spontaneous events occur in
time t, the momentum transferred in this time
interval is p= yak. We emphasize that this mo-
mentum transfer is due to absorption (an induced
processes), and we are ignoring th. momentum
transfer associated with spontaneous emission.
From the above argument we conclude that the
mean rate of momentum transfer, i.e. , the radia-
tion force, is (p)/t= F=I'k&n&/t, and using the
well-known expression

(n)/t =A0'/[4(b —k' p/M)'+ A'+ 20') (129)
for the steady-state rate of spontaneous emission,
we obtain the radiation force in Eq. (122). But
the number of spontaneous events in a time inter-
val t fluctuates, and the fluctuations of n give rise
to a spreading of momentum about the mean mo-
mentum,

&(P' - &P'&)(P —&P &)&= ((n*& —&n&'}tl'k'k&. (180)

When &(dn)'&= (n') —(n)' is proportional ta t, this
spreading of momentum is described by the diffu-
sion tensor

Equating (124) and (131) and dividing the resulting
equation by (129}, we obtain

&(kn)'&
1

20'[3A'-4(d -k $/M)']

[4(k -k p/M) +A +20']
For an atom at rest, this becomes

&(k n)'& —&n& 20'(8A'-4t *)

(n) (4&'+A'+ 20*)' (133)

Equation (133) indicates that the statistics of n
are not Poissonian, since &(dn)') v (n). This result
disagrees with-the conclusion of Picque that g fol-
lows a Poisson Law. ~ The disagreement appears
to result from Picqub's implicit assumption that
successive photon-scattering processes are sta-
tistically independent. Recently Mandel has stud-
ied the statistics of spontaneous emission in reso-
nance fluorescence, and has given explicit results
for the case of exact reso&a~ce." We note that
Mandel's rigorous on-resonance result for
[&(dn)2&-&n&]/&n&, in the limit t-~, is in exact
agreement with (133) at k = 0. We conclude that
induced momentum diffusion in a plane running
wave is a direct result of the dispersion of the
number of spontaneously emitted photons, and that
the quasiclassical equations correctly account for
the non-Poissonian statistics of spontaneous emis-
sion.

Finally, we derive some relations describing
the transfer of energy and momentum from the
field to the atom. First, multiplying Eq. (113) by
p", integrating over phase space, a~ evaluating
some integrals by parts (using f = 0 at ~x

~

= ~ and

pl=")

d(P &m &yA)
dt

(184)

where the ( ~ ~ ) indicates an average with re-
spect to the Wignerfunction, (A)„-=J fd'xdpAf.
Hence the average rate of momentum transfer
equals the average effective force.

Next we multiply Eq. (113}by the kinetic energy
K= p~p~/2M, integrate aver phase space, and
again evaluate various integrals by parts to get

(185)

This equation states, in particular, that the diffu-
sion term in the Fokker-Planck equation tends to
increase the kinetic energy of the atom at the
rate & D'~&„/M. If we are willing to ignore the
nonisotropic character of the velocity distribu-
tion, we can say that the atom is heated (or cooled)
at the rate dT/dt= 2(d&K),Jdt)/3ks, where ks is
Boltzmann's constant.

When the radiation force E,'= E„'+E~ consists of
a part F„'= sV/sx' de-rivable from a potential V



22 THEORY OF RESONANCE-RADIATION PRESSURE 1091

and a part F~ not derivable from a potential, say
a dissipative force, we have Ep«/M= -dV/dt, and

Eq. (135) yields the expression

(136)

for the rate of change of the total translational en-
ergy (E}„=&K}„+( V}„.For example, in a radia-
tion trap formed by the dipole force (125) tuned
below resonance (b. (0), which i.s derivable from
the potential V= -', if@ Ln [I+ 2A'/(4h«+ A*}], an
atom initially near the minimum of the potential
well gains energy at the rate (D «),gM and es-
capes from the trap in a time of order ht= M V,/
(D"«}„,where V, is the depth of the well. On the
other hand, if a dissipative force is present, the
atom gains or loses energy at the rate given by
(136) until the rate of dissipation &F~p«-/M)„
equals the rate &D «}„/Mof energy input due to
fluctuations. It is this condition that determines
the temperature achievable by radiation cooling.
Specific examples are discussed in the following.

VI. WEAK-FIELD THEORY

In the preceding section we considered the spe-
cial case in which the Rabi frequency 0 and the
phase derivative 8=p V8/M, at the moving atom,
vary by only a small amount during a natural
lifetime v=1/A. These conditions are often sat-
isfied in practice. For example, they are satis-
fied in a plane running wave and in the experiment
of Bjorkholm et al. ' in which an atomic beam co-
propagates with a Gaussian laser beam. The con-
ditions are not satisfied, however, when an atom
moves with typical thermal velocity v across the
nodes and antinodes of a plane standing wave (A
~ coskx) of visible light. Here A varies with fre-
quency kv, and usually this is not small compared
to A. So a different approach must be used in

Let

I
—+—v V= —6+—v8IU —-AVp

i.st M M

--NAV8 V«f -Af .
2

Z = ~ (U -i V)e '('«')
2

(136}

(139)

Then Eqs. (137}and (138}may be written together
as

—+—v+ -'A Iz=1',
&t M 2 j

where

I' = —«(«O' VA* ~ Vg -iA*f )e '«',

(140)

(141)

and, as before, A=Aes. The solution of Eq. (140)
1s

t
Z(x, p, t)= F(x-p(t —s}/M, p, s)e "(' "~ d «. s

(142)

Insertion of (139) and (141) into (142) and a change
of integration variables, t'= t -s, yields

this and related problems in which the field is not
smooth or the atom moves rapidly. In this section
we derive a Fokker-Planck equation for the Wig-
ner function without placing any constraint on the
smoothness of the field or the speed of the atom,
but we require that the field be weak.

In a weak field (A «A), the distributed inversion
W does not deviate much from the ground-state
value W -f. For this value of W, Eqs. (106}and
(10'I) read

)t8 p+ 'v IU='ld'+ 'V81v AU—- NvQ ~ v«f,
Eat M ] E M j

(137)

U-iV=e~ dt' iA*x —pt' M x- pt' M, p, t —t'
0

——jiVA+(X —pt'/M)' V«f(X —pt'/M, p, t —t') ]e"
2

(143)

Because of the exponential factor exp( At'l2) in-
(143), f(x, p, t —t') makes a significant contribution
to U(x, p, t) and V(x, p, t) only for t's 2/A= 27
During this short time interval, f(%,p, t) behaves
very nearly as if the atom were free,

U-iV= —-', e(«(NVJ'V«f —2iJ'f),
where

(145)

I

tities f and V«f can be taken outside of the inte-
gral,

8 p v If=0.~t M )
(144) (x5) = df dt() (x,—XtlM)e""

0
(146)

The solution of this equation is f(x, p, t)
=f(x-p(t —t,}/M, p, t,). So in Eq. (143) we have

f(x -pt'lM, p, t t') =f(x, p, t), and -hence the quan-

The identity

esVJ'= V(e «J') -iV8(e'«J') (14'I)
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converts (145) to the more convenient form

U t-V=--'[I(vj-tjve) v,f 2t-Jf], (148}

where

Eq. (105), we arrive at the Fokker-Planck equation

~e p& 8& e, a'
)If = —

HP, 'f +
sfi, sPi

"f

or.

J(x p)=s""' f dto"(x pal-M)e"
0

(149)

where

aDi~
Fi+ I

ex~ '

(156}

(15V)

U= —J~f —i F(Vjs+ JiVH) Vqf, (150)

V= -Jaf + i t (VJi -Jave) V~f, (151)

where J„andJI are the real and imaginary parts
of J, respectively. This completes the solution
for Uand V.

Next consider the function f+ W appearing in the
last term of Eq. (105). Adding Eqs. (105) and (108)
we get the equation

ai~= Di~+ ai~,

HA 88)

Dii Nqii

88 Ii eji 88 ~

8~i isa "8~» '

(158)

(159}

(160)

(161)

f + W=Nf,

where

(154)

N(%, p)= Jl dtA(X-gt/M)jz(X-pt/M, P)e "'.
0

(155)

FinaL&y, on substituting (150), (151), and (154) into
I

I
—+—v+AI(f+w)= Av
~a p
(st M j (152)

--', a(vA v,U+Ave. v, p)

for this function. Using V from (151) in (152), and
keeping only the term on the right of lowest order
in@, we have

p—+—v+A)(f+ W}=Aj„f. (153}

Equation (153) is solved in the same manner as
Eq. (140). We find

We now look at two examples. For a plane
running wave [A=constant, 8(x) =-k ~ x], the weak-

field theory gives
SAA2k»

Fi (162
4(g -k p/M)&+Am

~i/
g2Ag2k2d jg

5[4(h -k p/M)'+A']
g'Ag'k ik~

2[4(~ —k p/M}'+ A']

(163)

(164}

These results agree with the smooth-field results,
Eqs. (122)-(124), in the limit of small A, as they
should.

In a plane standing wave, we have A(x}
= 2AO cosk x and 8(x) = 0, where Ao is the Rabi fre-
quency in one of the two counterpropatating running
waves that comprise the standing wave. The
weak-field theory yields

F'=2A,'Ik'(AF sin'k x+2G, sink Xcosk X),

D,'i=g'Ap'ki(AF, sin'k x+ 2G sink x cosk x},
D'i= 'tt'AAp'd"(F +-(4~'+A') '{[(A'-4id')F.+4&id,F ] «s2k. x

+ 2A(2&daF, —&F ) sin2k x)),

(165)

(166}

(167)

where

1F =
4(~ (g )2+A~ 4(n+ (g )2pA&

6 —(dg) 6+ (Og)
G =

4(n - id )'+A' 4(4+&u )'+A' '

(168)

(169)

and id~= k p/M is the "Doppler shift. " It is easy
to show that F is equal to a positive quantity
times 4~~= 4k', where y is the component of ve-

I

locity in direction k. So, for 4 &0, the first term
in (165}is a dissipative force with a strong posi-
tion dependence due to the factor sin'k x. The
second term in (165} is the dipole force associated
with the amplitude gradient of the standing wave.

These results are a little cumbersome. Simpler
results are obtained for the time-averaged radia-
tion force and diffusion coefficients, on the as-
sumption that the atom moves nearly uniformly in
direction k,
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1(F')„=IAQP'
(4( ),

4(n+ ~~)'+A')'

jf 1 2 2 g(Di ) ff AQok k
1~4(

(170)

4(b + (()~}2+A2 )I'

gf j. 2 2 2 gf(~a~)av= g AQ() d
1~4(d & )2+A2

4(~+ ~~}'+A2&l.

(1V1)

(172}

The radiation force (170) agrees with an earlier
result based on the Ehrenfest-Bloch equations. '
The time-averaged radiation force and diffusion
coefficients are the sums, respectively, of the
radiation forces and diffusion coefficients of the
two counterpropagating running waves, as if those
waves acted independently.

We can now estimate the temperature achievable

by radiation cooling. For small (d~= k p/M, Eqs.
(170)-(172) reduce to

16RAQ+k'k~P~
M(4n'+ A'}'

(,q)
ff'AQ()k'k~

I Iv 4+2+ g2

2g'AQP'd'&' "'-= 5(4~,A)
.

(1V3}

(174)

(175)

When 4 &0 the radiation force Eq. (1VS) damps
the component of atomic velocity in direction k.
The maximum damping force

(F() = -3"'gQP''k'P~/2MA2 (176}

obtains for b = -A@12. In this case, (DJ&)„
= 31'QP''k~/4A and (D,'~)„=St'QP''d'~/10A The.
components of atomic motion transverse to k are
not cooled, but rather are heated by spontaneous
fluctuations. These components might also be
cooled by application of additional standing waves
with k's in these directions. Looking only at the

component of atomic motion parallel to k, we read
from the equation of motion p= -3'~ kQp''p/2MA',
the damping time yn = 2MA'/O'I 'IQP', and for k
in the x' direction (orthogonal to p) the rate of
dissipation -(F)„p/M equals the rate of energy
input (D"+ D"),/M when

P'/2M = ksT/2= 0 2tA. . (177}

Thus for typical atomic parameters A= 10' sec ',
M = 4 & 10 ~ g, 4 = 10' cm ', and 0,= 10' sec '
this component of the motion is cooled to temper-
ature T=3X10 K in time bf-7~=10 sec. Of

VII. ONE-DIMENSIONAL EXAMPLES

First let us estimate the heating rate in a strong

(0,»A) resonant (d = 0} plane standing wave 0(x)
= 20, coskx. The diffusion coefficient (128), av-
eraged over the wave, is D= (ffk}'QJA, and the

rate of change of kinetic energy (135), for small
atomic velocity, is K=ksT/2=D/M (F,= F=O for
4=0}. So for typical atomic parameters A=10'
sec ', k=2v/X=10' cm', M= 25 amu=4x10 "g,
and a moderately strong field 0,= 10' sec ', we

have T = 4 x 10' K sec '. Here induced diffusion
leads to a heating rate about 300 times larger than

in a plane running wave of the same intensity. Of

course, a heating rate of this magnitude persists
only until the atom is driven out of resonance with

the field. We should note in this connection that,
since the diffusion tensor (128) is valid also off
resonance in a sufficiently strong field, induced

diffusion in a styo~g standing wave tends to in-
hibit the cooling process considered in Sec. VI.

Consider next atomic trapping by the dipole
force (125) in a field of amplitude 0(x}
=Q, exp(-x'/N)02), e.g. , transverse trapping on a
diameter of a Gaussian laser beam. We shaQ
treat the case of large detuning (4n'»A'+ 20') be-
low resonance (d &0). In this case, the potential
energy V= -', gh In[1+ 20'/(4d'+ A')] simplifies to
V= lfQ'/4b, and the well depth is

V, = -gQ,'/4r . (178)

In the limit of large 6', the coefficients of spon-
taneous and induced diffusion, Eqs. (126) and

course, the initial velocity ())/M must be farily
small to be in resonance with the field. Roughly

speaking, an atom can be cooled, at the above
rate, from the resonance condition ~kp/M

~

s A to
the energy condition p'/2M-RA.

It should be noted that in both the smooth-field
and weak-field approximations we have tacitly as-
sumed that the interaction time is long compared
to the atomic natural lifetime in order to derive
the Fokker-Planck equations. Therefore the
Fokker-Planck equations derived here are not
valid for short interaction time, and, in fact, no
Fokker-Planck equation is valid for interaction
time ts ~= 1/A because the momentum statistics
are not Markovian on such a short time scale. For
example, a Fokker-Planck equation is incapable of
describing the optical Stern-Garlach effect. For
this reason all of the Fokker-Planck type de-
scriptions of atomic motion in monochromatic ra-
diation that have appeared in the literature are of
limited validity, and only the quasiclassical equa-
tions or Eqs. (94}-(97)provide a truly general de-
scription. of atomic motion in coherent radiation.
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(12V), reduce to

D = g'AQg&/20g2

e'A ~8~~ '
(1'I9)

(180)

&t=MV()/D, = —5M&/tAk . (181)

Since D=D, +Dr is proportional to I/' and V, is
proportional to 1/&, it is clear that the confine-
ment time &=MVo/(D)-" acanbe made arbitrarily
long by detuning far below resonance. However,
this conclusion is based on the assumption that the
initial kinetic energy of the atom is exactly zero.
In practice, the initial kinetic energy cannot be
made arbitrarily small. A reasonable lower bound
on the initial kinetic energy is the value p'/2M
-SA that might be achieved by radiation cooling.
For this kinetic energy the atom is strongly
trapped initially only if Vo» SA, and this yields
the constraint ~b,

~

«Q', /4A on the detuning. A
conservative estimate of the confinement time is
then obtained by replacing Q by Q, in (1V9) and
(aQ/Sx}2 by Q,'/wo' in (180). If ur, is much larger
than the wavelength ~ (k'» I/gvo2}, the induced co-
efficient D,=t'AQ,'/Sd'w', is negligible compared
to D, = g'AQP'/20k', and the confinement time
becomes

af p Sf 8 82

8t M 8x 8P
- —-=——[(F.—tp)~] D .8p2

(182)

in which p'o, p, and D are constants. Integration
of Eq. (182) over x yields the equation

85' 8 8 W'

8t 8p
= ——[(F()—PP) W) + D

8p2
(183}

for the momentum distribution W(p) = J /(», p)d
The solution of (183) for the initial condition
W(p, o}=5(p p, ) is

&we push ~d~ to theupper limit Q,'/4A of the con-
straint on ~n~, we obtain, for k=10'cm', M=4
x 10 g, A= 10' sec ', and 0,= 10"sec ', the
value ~t=5MQ,'/4@A'k'=5 sec. This value is in
accord with the estimate of Gordon and Ashkin for
the achievable confinement time in the potential
well at the focus of a Gaussian laser beam in the
absence of damping. " For a beam of radius QJO

= 10 p.m the power required in the present example
is 50 mW. It remains to be seen whether applica-
tion of additional damping fields will lead to stable
radiation trapping.

We look now at some problems for which the
atomic motion is described by the Fokker-Planck
equation

p )&/2 t p[p pe&& F(1 e&r)/p]2)
( (184)

and hence the general solution of (183) is

IV(d, t) fdic G(ddt t)IV(P=, )., O (185)

Let the initial distribution of p be a Gaussian of
variance g,' centered at p= 0,

I

tion (18V} is T= v'/Mka.
In a strong [2Q'»A'+(kp/M}'] resonant (4, =0}

running wave, the radiation force, Eq. (122), and
total diffusion coefficient, Eq. (123) plus Eq. (124),
saturate to values F,=-', Akk and D= ,', A(tk}'—
which are independent of p, i.e. , P=0. Thus, in
this case

W(p, 0) =(2vo,'} 'r'exp(-p'/2o, '}.
Then (185) yields the solution

(186)
p= -'Akkt, (192)

W(p, t}=(2ve'} ' 'exp[-(p p)'/2(r']-, (18V) o'=o,'+ —,', A( k)a't. (193).

where

p(t) = F (1 e")/P ~— (188}

p(t) =Fot,

s (t) = s~+ 2Dt.

(190)

(191)

The one-dimensional temperature of the distribu-

v'(t) = s,'e ~'+ D(1-e 'a')/t'. (189)
The mean momentum acquires the value p= F,/p
in time t= 1/P, and the variance of momentum de-
cays from (r,' to o'=D/P in time t~ I/2P. In the
limit P-O,

AA~A
4(b -kp/M)2+ 2Q2

(194)

If the radiation is applied transversely to an atom-
ic beam, (192) is the transverse momentum ac-
quired by the beam, and (193) indicates that the
transverse temperature of the beam increases at
the rate T= —,', A(jrk)'/Mka. Note that because of
induced diffusion T is 3.5 times larger than if only
spontaneous recoils had been considered.

Suppose the running wave is tuned to ~= -Q/v 2.
Then, for o,'s (MQlk)'/2, the strong-field radia-
tion force
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may be expanded to first order in p as F=F,—pp,
where

Fo- -~k 2

P =Affk'/2'~2MA

(195)

(196)

VIII. CONCLUSION

Although the general equations of motion for a
two-level atom in a monochromatic applied field
were written down in Eqs. (94)-(9V), only the
quasiclassical equations Eqs. (105)-(108) were
used in the analysis of specific problems. It is
important, therefore, to understand the principle
limitation of the quasiclassical equations.

The quasiclassical equations describe a contin-
uous Qow of momentum from the field to the atom,
while the "exact" equations, Eqs. (94)-(97), de-
scribe momentum transfer in discrete units of
magnitude )Ik (the convolutions over momentum

space in these equations give rise to displacements
of atomic momentum of magnitude ffk= g~,/c).
Thus the q~~~eiclassical approximation replaces
the true discontinuous momentum-transfer pro-
cess by a smoothed continuous transfer of momen-

tum, and hence the quasiclassical equations are
valid only when the fine-grain quantum-mechanical

aspect of momentum transfer is unimportant. It is
clear from the derivation of the quasiclassical
equations that the discontinuous character of mo-
mentum transfer is not important when f, U, V,
and W are smooth functions of p over a distance
Sk in momentum space. Discrete momentum
transfer is also unimportant in experiments in
which the resolution of momentum measurement
is larger than ilk." In addition, if f, U, V, and W

are not initially smooth but interact with the ra-

and the total diffusion coefficient, at p= 0, is

D= —,', A(Kk)'. (libel)

According to Eq. (189), the transverse tempera-
ture of an atomic beam crossing the wave is now

cooled from an initial value as large as T,= MA'/
2ksk' to a final value T~= D/pMks = fIA/2ks in time
&t= -', P= 2'~'M A/Aflak', and the deflection of the
beam during this time interval, hP = F+t= 0.3MA/

k, does not violate the approximation. The frac-
tional decrease of transverse temperature Tr/T,
=5k'/MA for k=10' cm' M=4x10 "g and A
= i0' sec ', is =, and the divergence angle of
the beam is correspondingly decreased by the fac-
tor —', . The required thickness of interaction re-
gion is L= 2.5 cm for typical beam velocity v
=5x10' cm/sec and&=10' sec '. A related cal-
culation was carried out by Krasnov and Shaparev
neglecting radiative diffusion. '

diation for a time that is long compared to the na-
tural atomic lifetime, then it appears likely that
after a few spontaneous events these functions
are smoothed sufficiently by spontaneous diffusion
to again permit application of the quasiclassical
equations. 4' These cases cover a wide range of
experimental conditions. However, if the distri-
butions f, U, V, and W are initially well localized
in momentum space, as in a well collimated
atomic beam, if the atom-field interaction time
is less than or comparable to the time between
spontaneous events, and if the resolution of mo-
mentum measurement is better than jgk, then the
quasiclassical equations fail and the more cumber-
some Eqs. (94)-(97) must be used.

It was shown in Secs. V and VI that in the
smooth-field and weak-field limits the distri-
buted Bioch vector (U, V, W) can be eliminated
from the coupled quasiclassical equations, and a
single equation of motion can be written for the
Wigner function. In the case where the field is
strong (A 2 A) and the Rabi frequency A or phase
derivative 0, at the moving atom, is not a slowly
varying function of time, we have not yet found a
simple reduction of the quasiclassical equations to
a Faker-planck equation for f Anum. ber of
problems of current experimental interest fall
into this category, and have not yet received com-
pletely satisfactory theoretical treatments. The
problem of cooling an atomic vapor by a strong
standing wave4' and the question whether addition-
al weak damping fields lead to stable trapping in a
deep potential well of the dipole force are of this
type. We hope to address these and related prob-
lems in a future publication.
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APPENDIX: DERIVATION OF THE FOKKER-PLANCK
EQUATION IN THE SMOOTH-FIELD

APPROXIMATION

Here we show how the coupled quasiclassical
equations for f, U, V, and W lead to a single
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Fokker-pianck equation for fwhen the applied
field is sufficiently smooth or when the atom
moves sufficiently slowly. The Fokker-Planck
equation for f, accurate through terms of order
}I', is obtained by first solving Eqs. (106)-(108)
for U, V, and W in terms of f, to first order in

K, and then using the result in Eq. (105).
Since Q'f = (8'a&0/c}'d'f/10 is of second order in

ii, the last term in Eq. (108) makes no first-order
contribution to U, V, or W and may therefore be
discarded. Equations (106}-(108)become

Z'= —-'SVQ'V f,
Z'= ' }IIIVH V,f,
Z =-Af,

1--A
2

n 01
--A 0

2

-A

n=n+p vH/M,

(A2)

(AS)

(A4)

~

—+—'V B'=M'fBi+Z',(s
(et M

where (B', B',B'.) = (U, V, W),

(Al)
and we are using the summation convention in (Al).
Apart from transients, which depend on initial
conditions and which decay to zero in a time of
order i = 1/A, the solution of (Al} is

Z&(x, i, t) Jdt=v "(x 'P(t -I )/Mi-'t I, )Z, '( '-P(tx—t )/MP't'), , , (A5)

where v'f(x, p, t) is a solution of

»f (W
= M "(x+pt/M, p)v" (x, p, t) (A6)

satisfying the initial condition v'f(x, p, 0) = 6'f. Be-
cause of the relaxation terms in (A6), v'f(t) de-
cays with time constant of order i.= 1/A, and so
the integrand in (AS} is exponentially small except
for t-&'+v.

Now the matrix M'f(xp p) depends on x through
the functions VH(x} and Q(x). We are interested in
the case in which the phase gradient and the Rabi
frequency, at the moving atom, are nearly con-
stant during the relation time, i.e., we assume
that ~nx

~

=
~p ~~/M is small compared to the dis-

tance over which M'f changes by a significant
amount for all momenta entering the problem. In
this case, it is easy to show that the second term
of the first argument of M'f in (A6) and the sec-
ond term of the first argument of v'f in (A5) may
be set to zero with negligible loss of accuracy.
We shall call this the smooth-field approximation.
A change of integration variable then gives (A5)
the form

Z (xi, t)= J ds'v'&, (x, i, s)Z&(x-is/M, p, t —s)
0

I

When Eqs. (A2) are inserted in (A7) and the result
is used in (A9), we obtain a single integrodiffer-
ential equation for f(x, p).

Let us first evaluate this equation to order 5.
To do so we need B' and B' to order 5' [note that
the last term in (A9} does not contribute because
Q'f is of order }I']. From (A2) we see that to or-
der h', Z' = Z'= 0 and Z'= -Af. So (A7} yields

p—+—V if=0
&t M )

which implies f(x- ps/M, p, t -s}=f(x, p, t).
Hence (A10) becomes B'= -AI"f, where

Iv(x p)= J dsv &(x, p s).
0

(All)

(A12)

It follows that the equation for f to first order in
a is

—~ —V)f = —'ZA[VQ V (I"f)+IIVII V&(l"f)]

Z'(i, p, t\=-A f dsv"(x, p, s)f(x —is/M, p, t-s)
0

(A 10)

to this order in L But to order ti (A9} is

and (A6) reads

»f (W
=M'i(x )g'f(x s)8s

In terms of B', Eq. (105) becomes

—+—V = —i lI(VA V B +OVH'Vg )~ ~

et M

„a*(f+ Bz)
~p»e~

(A7}

(A8)

(A9)

or

-O»~=M»' ds v'~ s
0

Idf (M-1) df (A14)

and the inverse of M»& is readily shown to be

(A1S)

Using v'f(0) = 6'f and u'f(~) = 0, the integral of (A8)
from s=0 to s= becomes
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(M-')'~ =
A(4&'+ A'+ 2A')

2(A + 2G~) 4d4n 4ZQ

-2AO A'+4&
(A16)

Thus (A18) assumes the form

(8 ps

Ht M H ')f H
'(~f) (A16)

I

where

d ' (x, }i)= f ds sv 'i(x, }i,s) .
0

(A22)

where the radiation force F' is

~„„,HH,— ~
I

4d, 2+A2+2Q2 k
(Alv)

We also obtain from this calculation the result dsvs(s}=M" f dssv "(s},
0 0

(A28)

We now multiply (A8) by s and integrate from s
= 0 to s = . An integration by parts on the left-
hand side yields

ss (d4'+ 4n'}f
4n'+ A'+ 2fl'

(A18) and using (A12) and (A14) we find

f(x —ps/M, p, t —s) =f(x, p, t)

8 p-s —+—V [f(x p t)+ '
8t M

(A19)

Expressions for B' and B' in terms of f to order
I are then obtained by substituting, in turn, (A16}
into (A19), (A19) into (A2), and (A2) into (Av).
Discarding higher-order terms, the result is

B = AI'~f AJ -V~ (Ff}-

g(I VQ+ I -AV8}'Vpf,

B = AI f -AJ -V~'(Ff}

(I VA+ I 'GV8) Vqf,

(A20}

(A 21)

to zeroth order in L
Next we evaluate the integrodifferential equation

for f to second order in L This leads to the de-
sired Fokker-Planck equation for f. The quanti-
ties Z~(x —ps/M, p, t —s) in (A t) are calculated
using Eqs. (A2). We first note that, in the smooth-
field approximation, the factors %0 and QVH in
(A2} may be evaluated at X instead of X —pslM.
Secondly, the distribution f(x —pslM, p, t —s) in
(A2) may be expanded in powers of s,

82
[(DIM+ Dil)f J8p~8p~

(A26)

where D,'~ and DI~ are diffusion coefficients asso-
ciated with spontaneous and induced processes,
respectively [D,'~ and Dz'~ are given explicitly in
Eqs. (116) and (11'I)], and F,'=F'+F' is an ef-
fective radiation force consisting of the force F'
of Eq. (A17} plus the correction

jg 8Q 8J jg & 80 81ii 88 8IF' =
2 Hx~

"F'
Hp

+
2 I,H.~ Hp

+"
s~~ Hp~

88 8J" 5 80 8I" 88 8I"
AF~

(A26)

which is of higher order in 5 than F'. The correc-
tion F' is generally quite small compared to F'
and may be ignored in most applications.

J' d& = (M ~) &~ I ~& = (M ~) I(&(M ~) ~& . (A24)

Finally, upon substituting (A18), (A20), and (A21)
into (A9) and making use of (A14), (A15), (All),
and (A24), we obtain, after some straightforward
manipulations, the Fokker-Planck equation

(
8 P 8i 8
Bt M Bx') Hp'
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