
PHYSICAL REVIEW A VOLUME 22, NUMBER 3 SEPTEMBER 1980

Effects of intense magnetic and motional Stark fields on state mixing and transition line

shapes

R. Panock ~t M. Rosenbluh, and B.Lax
Francis Bitter National Magnet Laboratory, MIT, Cambridge, Massachusetts 02139

Terry A. Milled
Sell Laboratories, Murray Hill, New Jersey 07974

(Received 29 February 1980)

The theoretical treatment of the combined effects of strong magnetic and motional electric fields on a simple atom,

such as 'He, is developed. It is shown that normal selection rules are relaxed by the external 6elds and that many

previously forbidden transitions become allowed. The transition moment is shown to be velocity dependent,

resulting in new and unique line shapes for these transitions. The theory is presented in a form directly applicable to
the experiments reported in the accompanying paper.

I. INTRODUCTION

In a previous work' we had reported our initial
observations of normally "forbidden transitions
in ~He. In this article we wish to give a detailed
descriytion of the breakdown of normal dipole
selection rules due to the influence of an intense
external magnetic field and the associated motional
Stark field seen by the atom in its rest frame. We

derive line shapes for such forbidden transitions
for those conditions where the atomic velocity dis-
tribution is Maxwellian. In the following paper'
experimental observations are presented which
make full use of the theoretical treatment derived
here. Since the object of this derivation is its ap-
ylicability to our experimental results on 4He, we

will tend to present the theory in terms of the He

Rydberg states. A generalization of the treatment
to other systems is easily obtained from our re-
sults.

We will be concerned with three basically dif-
ferent situations. In one case the magnetic field
is solely responsible for destroying normal selec-
tion rules by mixing states with the same parity
(&L=+2), and m~ quantum number, via the dia-
magnetic term on the Zeeman Hamiltonian. This
can lead, for example, to He transitions, such as
7'S-9'L (L=3,5, 'l), (m~=+I). The second case
involves the action of a motional Stark field which
mixes states with 4L =+1, and &m~ =+1. This
leads to transitions such as 7'S-9'D (m~ = +2).
Finally we consider the case where both fields
act together which leads to additional transitions
such as 7'S-9'L (L=4, 6, 8), (m~=+2).

For those cases where the selection rules are
broken down by the motional Stark effect (MSE),
which is velocity dependent, the atomic transition
moments and saturation intensity will acquire a
strong velocity dependence. A line-shape deriva-

tion for such transitions therefore has to include
both the MSE shift of the atomic energies and the
MSE-dependent transition moment and saturation
intensity prior to the integration over the velocity
distribution. For the case where the magnetic
field is solely responsible for breaking downthe
selection rules, the line shape is the same as that
derived previously"4 which includes only the MSE-
dependent shift of the atomic energies.

II. ATOMIC EIGENVALUES AND VECTORS IN AN

INTENSE MAGNETIC FIELD

For the purposes of the present study the effect
of an intense external magnetic field on an atomic
system is threefold. (1) It directly alters the en-
ergies of the atomic levels via the well known lin-
ear and diamagnetic Zeeman effects. "6 This per-
mits, for example, the tuning of atomic energy
levels into resonance with the fixed frequency of
a laser. (2}The magnetic field, via the diamag-
netic term, mixes various states, in turn modify-
ing the normal spectroscopic selection rules.
(3}The magnetic field engenders a motional elec-
tric field which is proportional to the magnetic
field and the component of atomic motion perpen-
dicular to the magnetic field. This motional
Stark field further alters the atomic energies and

the spectroscopic selection rules.
Fortunately the variation of the atomic energies

due to the MSE is small compared to the terms of
the Zeeman Hamiltonian. Thus, we can solve the
problem in two stages. First we obtain the eigen-
values and eigenvectors, neglecting the motional
Stark field. We then take the MSE into account
using perturbation theory.

We make several approximations in our choice
of a basis set. For moderately high Rydberg
states, the seyaration between levels differing in
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the principle quantum number n, is still very large
compared to the Hamiltonian terms involving the
external fields, which connect them. Thus we
consider only an isolated n manifold and neglect
coupling between n states.

The states in a specific n manifold can again be
subdivided according to whether they are singlet
or triplet states. For states with large angular
momentum L it is known that the electron spin S
is not well conserved. However, at the large mag-
netic fields we are concerned with L and S are
completely decoupled and the states mixed by the
spin-orbit coupling are now tuned far apart. '
Therefore we can consider singlet and triplet
states separately. A slight difficulty is encoun-
tered in such a treatment when extrapolating to
the zero-field energies, but this is easily dealt
with for any given set of states. The corrections
needed for the He spectra, for example, are out-
lined in Sec. AD of the following payer.

In general, the matrix elements needed to con-
struct the relevant Hamiltonian are well approxi-
mated using hydrogenic wave functions. However,
for the accuracy required in the present studies,
n must always be replaced by n~ (using the gen-
erally known quantum defect), and the off-diagonal
Zeeman matrix elements actually used were com-
puted by numerical integration using a computer
program written by M. Zimmerman.

A. The complete Zeeman Hamiltonian

The Hamiltonian for a stationary atom in an ex-
ternal magnetic field, 5, is given by

e'
R=XO+Qagl, B 'L+ Q ~ B rl sin 8l q (1}Smc

where the symbols have their usual significance. '
The indicated coordinates are summed over all
electrons, but by far the dominant contribution and
the only one that changes in transition8, such as
those described in the following payer, comes
from the Rydberg electron. The g~ is the orbital
g factor; it is well approximated by g~ = 1 —m/M,
which for 4He gives g~ =0.99986. $CO is the zero-
field Hamiltonian which reproduces -the actual (non-
hydrogenic) energy levels of the s, L states of the
atom.

The second term of X is completely diagonal in
the spherically symmetric basis set of the eigen-
functions of Xo, and gives rise to the normal lin-
ear Zeeman effect, g~ uo Bm&. The last term of
3' represents the diamagnetic Zeeman interac-
tion. It has diagonal matrix elements in the ei-
genfunction basis, but it also has elements con-
necting states with 4L=+2, 4m~ =0. If we in-
clude only the Rydberg electron, the matrix ele-

ments for the last term are

e2
+ (s, L, m~ Ir'sin~8In, L, m~)Smc'

e'B' (L(L+1)+m~ —1)
4mc' ((2L+3)(2L —1) )
x(~2' 'HJSs'+1-3L(L+1)]) (2a)

Scca (s,L,m~ lr sin 8ls, L -2, ms)

FP ((L -M )[(L -1}-M*]i i
Smc &(2L+1}(2L-1}(2L -3))

I
L0, m l, n) =Q c(LO, m~, L ) I L,mi, s) . (3)

B. The effects of the motional electric field

In Sec. IIA we wrote down the complete Zeeman
Hamiltonian for a stationary atom in the magnetic
field. In practice, however, the atoms are mov-
ing in a static magnetic field and the interaction
of this motion and the magnetic field produces an
effective electron field, E, at the atom given bye

F=(vx B)/c=Bv, / , c (4)

where v, is the component of the atom's velocity

x f %Pal(s' —(L —1})(s' —L')]'~'), (2b)

with the matrix elements for L'=L+2 being tri-
vially obtained from the above. In both equations
the portion in curly brackets represents the inte-
gral of ra over hydrogenic wave functions. While
this is a good approximation (especially if we sub-
stitute s* for s in the diagonal element), a more
precise result is obtained by numerically evaluat-
ing r' using, for example, the computer code of
Zimmerman' and using this calculated value in
place of the expression in curly brackets.

The matrix elements of the Hamiltonian, Eq.
(1), are seen not to connect even L states with
odd L states as required by parity conservation.
Similarly the matrix is diagonal in the mag-
netic quantum number m~ as required by the
cylindrical symmetry of the problem. Thus to
solve the Zeeman problem we have to diagonalize
a matrix consisting of either all odd, or all even,
parity states of a given n and m~. Besides eigen-
values we also obtain eigenvectors describing the
"perturbed" states, particularly their angular
composition. While these states can actually be
quite mixed we will identify them by their angular
momentum quantum number in zero field, Lo, ob-
tained in the adiabatic limit, and their "good"
quantum numbers, n and m~, i.e.,
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Es =E(Le) —s st~ F~ & (5)

where o~ is the polarizability associated with the
state ILc, m~, tt& A.lthough not explicitly shown,

o~ is a function of the magnetic field. In a simi-
lar way we obtain a corrected wave function,

m„n, 3&,

ILO& mf & n& 3&

perpendicular to the magnetic field. The effect of
this motional Stark field, I', is twofold. It changes
the energies of the new states, ILc, m~, n& and per-
turbs their wave functions by mixing even- and
odd-parity states. Fortunately these effects are
generally small enough to be adequately treated by
perturbation theory. The corrected energy E, is
related to the eigenvalue associated with IL», mt„n)
by

ments governing the perturbed wave functions we
expand Eq. (7}using Eq. (3),

Hts Q—Q Ce(Lc&m~&Lt)C(Lc&m~&L )
J, &,r~ ~q

x (L', mt, tt IHt& IL' mt, tt& ~ (6)

The matrix elements of H~ in the above equation
are to a very good approximation just those of the
vector r (times a constant) for hydrogenic wave
functions. These are obtained from london and
Shortleye and given in Table I for reference.
From these matrix elements it is clear that H, ~ is '

nonzero only if m~=m~+1 and L~=L'+1. In a
similar way we can find an explicit expression for
o~ in terms of the matrix elements H„, given in
Eq. (6),

-3 g tH„}'
F i s&e&t Et(L»} -+a(Ls} '

Lc&ml &tt&+ ~ Q tlsLo &mI%1 &&t&t

where

(6) R may be noted that this expression reduces to that
given for the definition of n' in Eq. (13) of Ref. 4
if C(L„ms, L)=5&,, ~& a sufficiently accurate ap-
proximation for the observations reported there.

H&s (L~~, mt„n——leF'r ILc, m~, n& (7)

is the matrix element of the motional Stark per-
turbation, H~, between the eigenfunction states,
IL„m„n&.

Equations (5}and (6}give compact expressions
for the effect of the motional electric field on the
energies and eigenfunctions. Unfortunately, they
contain polarizabilities and other matrix elements
evaluated for the states ILc, m~, n&, whereas it is
convenient to calculate these quantities using the
basis states IL, m~, tt). To obtain the matrix ele-

III. LINE- SHAPE ANALYSIS

There are two fundamentally different contribu-
tions to an atomic transition line shape: velocity
independent and velocity dependent. In Ref. 4 we
outlined a general method of obtaining atomic
resonance line shapes. The derivation starts with
the Lorentzian response function for a single
velocity group of atoms. Provided that one is con-
cerned with a thermal distribution of atoms the
next step is to average the Lorentzian over a

~4

TABLE I. Matrix elements of electric field Hamiltonian, X~, evaluated for hydrogenic basis
functions, g mt„»).

~L ni&z~ ~r, n&=~a, ',r,+i~ltg, m~+f 4 ++p&I

(n —(L+1) ](L+mg+1)(L+mg+2)
X (n. +1)(n +3)

(Ltml &&~ E+ mI ~ &&) 0', l-t m', m +1 g tta&&e

x(F —g )
(n -L )(L-mz, )(L —m1., -1)

(2Z, +1)(2Z, +3)

(L&ml »~"t"E &Ltml ~ &&) I', 1+& mf, ,mg-t k&&ate
Ir &

x(F + ln .-(L+1) j(L —ms+1)(L-my+2)
(RL + 1)(2L +3)

(Ltmt„&&13&&IX',mt„»)=Sr, 'c team~ t, $-»a»e,

( '-L')(L+m&)(L+mi-1) ' '
+i
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Maxwell-Boltzmann distribution of velocities. In
the absence of external fieldy, this procedure
yields the well known Voigt profile. In the pre-
sence of an intense external magnetic field, how-
ever, the atomic resonance frequency is not only
Doppler shifted but can also undergo a shift due to
the presence of the motional Stark field seen by
the atom in its rest frame. This motional Stark
field-induced frequency shift is velocity dependent,
and to obtain the correct line shape it has to be
included into the Lorentzian response function
prior to the integration over the velocity distribu-
tion.

Such a derivation was performed in Ref. 4, and
resulted in our ability to understand and fit the
asymmetric line shape observed in the 7'S-9'P
transitions. The line shape derived there, [Eq.
(11)]is also applicable in the case of the forbidden
transitions where the mixing of states th'at leads
to their nonzero oscillator strength takes place
solely through the diamagnetic term in the Hamil-
tonian. R is, therefore, velocity independent and
does not enter into the line-shape analysis. Such
transitions, from the 7'S state to n = 9 odd-parity
states in He are described in the following paper.

For those forbidden transitions in which the
mixing of states occurs via the MSE however, the
transition moment (oscillator strength) is also
velocity dependent. ' Examples of such transitions
will be seen in the following paper between the
7'S and 9'D (m~ =+2) states, for example. Since
slowly moving atoms will have transition moments
much smaller than those with large speeds per-
pendicular to the magnetic field, the laser inten-
sity required to saturate the transition (saturation
intensity) will also be velocity dependent. In fact
some atoms (those moving with extremely high
speeds) will be saturated even at very low laser
intensities. Furthermore, we shall see that the
velocity-dependent transition moment and satura-
tion intensity can be very significant even in cases
where the motional Stark shift of the resonance
frequency is negligible. Thus the line shape de-
rivation also has to take these effects into account
prior to the integration over the velocity distribu-
tion.

The mathematical manipulations used in arriving
at such a transition line shape are tedious and
somewhat similar to the methods used in Ref. 4.
We present the derivation in the appendix. In
the following discussion we will highlight the re-
sults of the derivation and concentrate on their
physical interpretation.

I"-"0- + a&

where y is the direction of laser propagation, v,
is the velocity in the xy plane perpendicular to the
magnetic field B defining the z axis, and a~ is the
previously defined polarizability of the atom. The
modification consists of redefining I, in Eq. (11)
so as to make it a velocity-dependent quantity.
Therefore we replace I, by I ovo/v,

' where I o is
given by

I,o = fi'c/8vM~O V,*,„T,r, (12)

v, is the thermal velocity, p, is the dipole mo-
ment for the normally allowed tr'ansition from the
lower state l to some state m, and M~' is the
square of the mixing coefficient between the upper
state u and the lower state m for an atom with v,
=vo, as defined by Eq. (6), i.e.,

M =~q„.~*.

With these additions and changes, and including
the integration over a Maxwell-Boltzmann velocity
distribution, we obtain for our line-shape function:

A. Line shape with velocity dependent transition moment

1. The line-shape f'unction

We start with the Lorentzian response function
for an atom at rest with a transition resonance
frequency at vo. If we let f(v) represent the frac-
tional decrease in the population of atoms in some
lower state, when a laser with intensity I and fre-
quency v is incident on them, we find" "

I AND (r/2P
I N T +7' (v —v P+(r/2P(1+I/I, )'

(10)

where the saturation intensity, I„ is given by

I,= If*c/4v VI~T, (r, + r,),
and &N, is the difference in initial population den-
sities in the lower and upper states, &, and &, are
the characteristic lifetimes of the lower and upper
states, respectively, p~ is the dipole moment for
the transition. The phase coherence time or the
decay constant of the induced. dipole is T~ (given

is the full width at half maximum for the unsat-
urated line shape.

For an atom in motion in a magnetic field, Eqs.
(10) and (11)have to be modified. First the reso-
nance term, (v —v,P in Eq. (10) is replaced by

1 I v, ~N, (I-'- 3 (v,*/v 0)exp(-v,*/v*,)
wv' I T, + r, N, & 2 [& v -v„v,/c+-', (a v*,/h c')B'p+ (r/2)~[1+ (I/I )(v,*/v, )]
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which has recently been given in Ref. 1.
The general line shape represented by the above

equation is not an exact integral and in its present
form is not easy to physically interpret. By ex-
amining some limiting cases however, we can get
a physically meaningful picture of the line shape.
We will consider Eq. (i4} under three conditions:
(a) no saturation —large MSE, (b) no saturation—
small MSE, and (c) saturation —large MSE. The
case of saturation with small MSE will not be ex-
amined since it is experimentally hard to achieve
saturation in those cases where the MSE and thus
the mixing is small.

O

7

FIG. 1. Illustration of the line shape, +ye~, which is
applicable when the MSE dominates over both the Doppler
effect md homogeneous broade~~~ mechanisms.

2. No saturation —large MSE

Using the results of the Appendix [see Eq. (A9)]
and the definitions of y, yz, and yz, we obtain that
when y~-0 and

i+ (f/f„)(H/v', ) —i
and y~«1~

0] y&0

f(v) = I 7, ~0 ye—ye", y &0.
0 1 I 10

(is}

(y„y» and y~ physically are the frequency offset
from line center in units of the MSE shift for an
atom with perpendicular speed vo; the ratio of the
homogeneous width to the MSE shift for a vo atom;
the ratio of the Doppler shift to the MSE shift for
a v, atom, respectively). We again observe the
same type of cutoff behavior as we did in Ref. '3

for the allowed transitions. There is, however,
one important difference, i.e., here at the
cutoff the value of the line shape is zero. The
reason for this is quite simple: The only atoms
able to undergo a transition at line center (y= 0)
are those atoms with zero perpendicular velocity.
These atoms, however, have no transition moment
and are thus unable to make the transition. As one
moves away from line center the signal strength
increases due to the concurrent increase in the
perpendicular speeds of the atoms, which results
in larger oscillator strengths. The signal does
not increase continuously of course. At some
point the number of atoms with large perpendicu-
lar speeds begins to drastically decrease and this
decreasing population dominates over the increas-
ing transition moment. The function -ye~ (y(0)
actually reaches a maximum when y= -1 which
implies that the line shape has a maximum value
at a frequency offset from line center, ~ v, equal
to the MSE-induced shift in the atomic resonance
frequency for a v~ = vo atom. An example of this
type of line shape is shown in Fig. 1.

f(v) =~w ' ' q(-,'+ 6')e ',
Is o ~g+ ~2 ~p

where

5 = n ve/vovo ~

(16)

This line shape is illustrated in Fig. 2.
The most obvious feature of this line shape is

the dip at line center. This is again due to the
fact that at line center, atoms are generally mov-

I0

I I I I I I I I

—4 -3 -2 - I 0 I 2 3 4
8

FIG. 2. Illustration of the line shape, (&+~ )e
which is applicable when the MSE is negligible and the
homogeneous width is small compared to the Doppler
widfh.

3. No saturation —sntall MSE

Although a small MSE also implies very small
mixing coefficients and thus oscillator strengths,
forbidden transitions with almost negligible MSE
are still observable, provided enough laser power
is available to drive the transition. In fact many
of the observed transitions to the He even-parity
states fall into this category. ' To arrive at a
line shape for this case we define the quantity q to
be the ratio of the homogeneous half width at half
maximum to the Doppler half width at —,'max, and

assume that q «1 and that e~ —0. We then get
[see Eq. (Ai5)]
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ing slower and therefore have a reduced transition
moment. The reason that the signal does not go
to zero at line center is that the atoms contribut-
ing signal must have v„=0 (no Doppler shift) but
they can have an arbitrary v„which provides them
with some oscillator strength. As one moves off
line center to nonsero v„values (and still arbitrary
v, ) the transition moment and therefore the signal
increase. Of course, as v„(and therefore hv)
gets larger there are fewer atoms and the decrease
in the number of atoms again overcomes the in-
creasing transition moment resulting in an overall
decrease in signal. It turns out that the full width
half maximum (FWHM) for this line shape corre-
sponds to a 45=3, which is almost a factor of 2
larger than for a normal, Doppler-broadened,
line.

Magnetic Fietd

FIG. 3. The effect of saturation on a spectral line for
which the MSE dominates the Doppler effect. In this fig-
ure the Doppler shift is assumed to be zero, and the ra-
tio of the homogeneous width (FWHM) to the motional
Stark shift (for a e = so atom) is assumed to be 0.029.

4. Saturation —targe MSE

When saturation effects are included into the
line shape, the clearly resonant behavior in the
denominator of the integrand in Eq. (14) is lost as
the width for each perpendicular velocity group
becomes different. We are in fact able to trans-
form this rather complicated looking two-dimen-
sional integral into a one-dimensional integral [as
given by Eqs. (A19) and (A20)]. This transforma-
tion does not aid greatly in the physical interpreta-
tion of the line-shape equation, but it is useful in
the numerical analysis of data.

The most noticeable effect of saturation occurs
when the MSE is very large in comparison to the
Doppler effect. In this limit the frequency (or
field) at which an atom absorbs or emits a photon
is directly determined by the atom's perpendicular
velocity. As already pointed out, atoms contribut-
ing to the signal near line center are moving very
slowly (v, &v,) while atoms contributing to signal
on the "tail' are moving very fast (v, & vo). Thus
at a given laser intensity slow atoms are not near
saturation while there are always some fast atoms
for which the transition is saturated. When one
increases the laser intensity, slow-moving atoms
can have a proportional increase in signal strength
while fast atoms, because they are nearly satu-
rated, cannot. This has the effect then of a nar-
rowing of the spectral linewidth. This is. quite
unusual in that saturation is usually associated
with spectral line broadening. This behavior is
shown in Fig. 3, which for illustrative purposes
was made by assuming a rather large value for q,
the ratio of the power-broadened homogeneous
width to the Doppler width. Saturation effects do
tend to narrow the observed lines and must be in-
cluded in the line-shape analysis of the data pre-
sented in the following paper.

The effect of saturation is comparatively small
when the MSE is very small. For reasonable
laser intensities and lifetimes of states the effect
of saturation is to "wash out' the structure in the
spectral line. For large laser intensities, the
line can become narrower near the peak and wider
at the base of the line.

IV. CONCLUSION

In this paper we have presented a general meth-
od for dealing with the full Zeeman Hamiltonian.
The method is applicable to all cases and its only
eventual limitation is the size of the matrix that
one needs to diagonalize. In addition we have
shown how through the use of perturbation theory,
one can include the effects of motional Stark fields.
Line shapes were derived for transitions to mag-
netically and electrically (MSE) mixed states.
These line shapes are unique in that they have in-
cluded in them a velocity-dependent transition mo-
ment, saturation intensity and energy resonance
term. The theory is developed in a form directly
applicable to our experimental observations re-
ported in the following paper.
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APPENDIX: LINE-SHAPE CALCULATIONS

In this appendix, we evaluate the integral in Eq.
(14) both in simplifying circumstances and with no
approximation. Although the integral can be
reduced in general to a one-dimensional integral,
the value of treating it under simplifying
assumptions is that we obtain a clear understanding
of the line-shape function.
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A. Ignore saturation effects

We first neglect the effect of saturation. Making the substitutions,

Q~ = v~/vp q sp = vp/vp )

&v (vp/c)vp

z (a/pg)(v'/c )II' ' z(&/pg}(v'/c')E ' " ' (rz/g)(v'/c')Ep '

and setting I/I, o = 0 in the denominator, we obtain

z S«,+r, „2~ „' " (y y, s.-+s.'+ sp+( y, /2p
'

Substituting
1

W =QE —Pyg) 2

we obtain

(w +s +4yn+ynw)e
f(v) =——

i

—
i dw ds

z Ipor, +r, (2& „, (a'+s*+w*p+(ye/2p

where a =y ——,yv.1 a

Converting to polar coordinates:

u=z sin8, w=z cos8,

I I rq &Np /y»
'

„p14 d& d
(z + 4yv+yvz cos8)e ' e " '"'

(V) =- D d8 Zdz
z 4o ri+r Nplp (2 p p ( P~ P)P~( /2)P

Using the identify

It Ig

I (x)=— doe"'"P =— dee *'"P
2m 27T

Q

and the additional identity

(Al)

(A2)

(As)

4)

I,(x)= I,'(x) = —— cos & e ' ""d8,
211 Q

we get

( )
I rg &Np / jgl~ rp (4 (z + &yv}Ip(y&z) —y&zIi(y&z} p

s)

6)

and with

2 2 1 QX Z 2 XQ 8 gyp

we obtain

&Np yel~ ~ pvl p d (y+x, + 4yv}ip[y, (y+xJ"'] yv(y+xJ'I -pI, [yv(y -xp'*]
80 rl +rp lp 2 J -pp g + (y&/2)

From the above formula it is still rather difficult to discern easily the properties of the line shape,
therefore we consider two limiting cases: (I) large MSE, (2) no MSE.

L Velocity-dependent transition moment: Large NSE

We examine Eg. (AV) in the limit yv -0. In this limit Itlyv (y +xp)~ p]- 0, thus we obtain

I r& hN y P (y —y)e"
Ipo r~+rp N~p 2 „y*+(y„/2)*

Furthermore, for very large MSE y~«1, and we obtain

6)
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f(v) =
0, yo0

I T1 &Np yg
I + N 2SO 1 2 10

2. Velocity-dependent transition moment: No MSE

(A9)

To calculate the line shape when the MSE goes to zero we start with Eq. (14) and set tw (and I/Iwo in the
denominator) equal to zero. [We could have started with Eq. (A7} and calculated the Bessel function in the
limit of very large argument but it is simpler to start from the beginning. ] Thus when a-0 the line-
shape function becomes

~N, &r-~' (V2/V2)e-& 21 ) /22
f(v) = ' 'I —

I dv.dc,
1/ I r, +r N„ i2 /

' " [A v —(v„/c)v, ] +(I'/2}

Defining

u = v„/v2, w = 1/, /v2, 6 = A vc/v2v2, q = (c/v2v2)I'/2,

we obtain

1 I T1 AN2 2 (u2+1c*)e '" '" &

n Isp T1+Tl N1p (5 -u/)2+q2

using the relations

l
e

e "du=Ww,
a 2S

l Ww
u e" du=—

2

we obtain

(A10)

(A11)

(A12)

(A13)

(A14)
1 I r1 hN» (~2+ u/ )e "

~q Iwo 11+1'2 N12 (5-uI} +q
/

If q (the ratio of the homogeneous half width at half maximum to the Doppler half width at (1/e) max) is
«1, then we get

f(v)=~~I '
N

'q(2+&')e' .
sp T1+Tm 10

B. Inclusion of saturation

(A15)

We now evaluate the integral in Eq. (14}with no simplifying approximations. We make the substitutions

Vg QV0 Cos 82 V2f =QVp Sin 82

nvc I' c 1 n 2P2/2 nv„2sq

Eq. (14) becomes

1

wI w, +r, N„, , [(6+su u')-ucos8] +q*[1+(I/g )u*]
'

Defining 6I= 6+5u22u2, q'=q[1+ (I/Io)u2]1/2I we get

1 I-- T1 ~Pf(v)=- — . q' dhu'e" d8
w I,o v, +r2 N„, , (6' -u cos8}*+(q'}' '

The above polar integral is calculable (Ref. 10) and we can write

f(v) =~P,—I T1 dÃ0'
q du u'e I'(u),

80 1 8 10 0

where

([(6I2 ql2 u2)2 + 4ql26I2]1/2 (6I2 ql2 u2)) 1/2

(6- q- .)+~-6- )

(A16}

(A17)

(A18}

(A19)

(A20)



EFFECTS OF INTENSE MAGNETIC AND MOTIONAL STARK. . . . 1049

~Present address: Bell Laboratories, Holmdel, New

Jersey 07733.
)Also, Physics Dept. , MT.
f.Guest at the Francis Bitter National Magnet Lab.
R. Panock, M. Rosenbluh, B. Lax, and T. A. Miller,
Phys. Rev. Lett. 42, 172 (1979).

R. Panock, M. Rosenbluh, B. Lax, and T. A. Miller,
Phys. Rev. A 22, 1050 (1980).

M. Rosenbluh, T. A. Miller, D. M. Larson, and

B. Lax, Phys. Rev. Lett. 39, 874 (1977).
M. Rosenbluh, R. Panock, B. Lax, and T. A. Miller,
Phys. Rev. A 18, 1103 (1978).

SF. A. Je~~~ and E. Segre, Phys. Rev. 55, 52 (1939).
6L. I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939).

States with all quantum numbers the same except for S
tune together, but explicit calculation for the He ex.-
ample show that the effect of singlet triplet perturba-
tions should be less than 10 MHz for L~ 4.

M. L. Zimmerman, M. G. Littman, M. Kash, and

D. Kleppner, Phys. Rev. A 20, 2251 (1979).
E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, London,
1967).
R. Panook, Ph. D. thesis, M1T, 1979 (unpublished).
A. Corney, Atomic and Laser Spectroscopy (Clarendon,
Oxford, 1977).
A. Yariv, Quantum Electronics (Wiley, New York,
1975).


