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NMR line shape in the regime where the chemical exchange time f; approaches the motional
correlation time r,
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A theory for the nuclear-magnetic-resonance (NMR) absorption of chemically interacting species is derived which
is valid when the correlation time r, for the molecular motion —which gives rise to NMR relaxation —is less than
7„the chemical exchange time. The previous theory is valid only if r. were much less than r, . This latter theory
assumed that the relaxation was defined using the usual Fermi Golden Rule form where the time integration is
from zero to infinity. When r, begins to approach r„ it becomes necessary to replace the 0-00 time integration
by a ~ time integration where t is the time of the next exchange collision. This modification of the previous theory
leads to a correction to the previous theory for which the lowest-order term goes as 7; /7;.
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where H,~ is the spin-bath interaction with I a
spin variable and Ba a bath variable. Ia is defined
to satisfy the relation

&icuar Ia &-4t&sar &44sa Ia

The relaxation operator RA is given as

(6)

In the calculation of nuclear-magnetic-resonance
line shapes in liquids, two sorts of relaxation
processes must be considered. One arises as the
result of translation and rotation of the molecule
with a time scale T, and the other results from
chemical exchange process which occur in a time
scale T,. Relaxation arising from w, processes
form the basis of the Bloch equations' and were
first theoretically evaluated by Wangsness and
Bloch' and by Bloembergen, Purcell, and Pound. '
The relaxation arising from exchange processes
was first introduced by Gutowsky, McCall, and
Schlicter. ' They assumed that the chemical
exchange collisions were separated, random
events between which the molecule's nuclear-spin
behavior was determined by the Bloch equation.

As shown by Wangsness and Bloch' and later
generalized by Bloch' and Redfield' the 7', process-
es can be represented by the density-matrix
equation

p» = t(ffs» p»-)+B»p»

written in the coordinate system R rotating at the
frequency ~ of the applied rf field. Here

where p„' is the density-matrix operator at equil-
ibrium and C (r) are correlation functions of the
bath variables B and have the approximate form

C (r)=C (0)e '"I' (8)

The effect of exchange is introduced by noting
that if the average lifetime of molecule A is T,A
then the exchange averaged value of p„ is given
~6s 7
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where

p„(t, t,}=e"'0&&»'»»& p„,(t,)
is the solution of Eq. (1), where

(9)
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and p„(t,) is the value of p„at time t =t, as
the result of an exchange collision.

Differentiating Eq. (9) with respect to t one ob-
tains

p(t) = —i[If„»,p„(t)]+R»p»(t)

—

(llew.

)[P (t) —P (t)] ~ (12)

In Ref. 7 it is shown how for a wide variety of
exchange processes, pA is defined in terms of

col
the density-matrix elements of the other mole-
cules involved in the exchange collision. Equa-
tion (12) represents7 the general theory for chem-
ical-exchange-modified NMR for the regime where

B~p~= —,g f dec'" 'C (r)
a

&& [I e '"»»'P p —p„']e'"s»']

22 1022 1980The American Physical Society



22 NMR LINE SHAPE IN THE REGIME WHERE. . . 1023

If one requires only that

then the limits on the time integration given in Eq.
(6) (a ~), which follows from the assumption that
T,«r„must be replaced by

+t
I

RAPA g dT
t

(15)

where t is the elapsed time after the last exchange
collision. For the case of extreme narrowing
(r,&u,„«1},Eq. (15) canbe evaluated as

Rwpw=(1 —e ')R p (16)

The result where T AcoQA«1 is not valid is ex-
hibited in the Appendix. Replacing RApA by RApA
in Eq. (1) one obtains the replacement for Eq.
(10) as

p„(t, t,) = exp[(t —t,)(L„+R„)

(to}
col.

and Eq. (12) becomes

p~(t)=-i[Ha~ p~]+R~p~-(1/r, ~)(P~ p~ )
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Recognizing that p„(t, t,) varies slowly relative
to r,„and r„Eq. (18) can be approximated as

p~= i[Hm-p~]+R~p~ (1-/v, ~)(p~- p~ }
+ (~,g/v, „)R„ (19)

The effect of the last term in Eq. (19}can be
made clear by investigating the exchange of two

j.
spin- a species with resonant frequencies so~
and urQs and chemical exchange rates TeA and Tes.
The well-known low-power-coupled density-
matrix equations for this problem derived from
Eq. (12) are
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where C, -H, /kT. The coupled density-matrix equations for the same problem derived from Eq. (19) are
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A more interpretive comparison can be made by defining
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which permits Eq. (21) to be written in form comparable to Eq. (20} as
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as obtained from Eq. (20) and

dao
COLLAPSED

DOUBLET

WIDTH
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T, T, r, 2 ' v/v&1 (30)

as obtained from Eq. (23).
A curious result of Eq. (30} is that if we were

able to keep (T„&,) fixed and only vary &„ the
collapsed doublet width as a function of x= 1/&,
would schematically appear as shown in Fig. 1.

FIG. 1. Q(dcollayad dolet A+ B/x+ Cx, where x= e

+2(BC)~~2, xm&=qB)C.

or

1/T, = (5+)(5&@v,),

v, /T, = (5+v,)' .

(25)

(26)

This shows that within the relaxation operator
theory, v, /T «1 and thus in the renormalization
of T,'„and, „given in Eq. (22) the "fast exchange"
correction can be removed in Y„but must be
kept in T,'„.

Using Eq. (21) or Eq. (23) one can easily derive
the linewidth of the collapsed doublet, which for
equal spin concentrations (&,„=.&,s}, equal values
for T2, and

Given a spin perturbation of strength 5(o a relax-
ation operator cea only be defined when

(24}

for which 1/T, will be approximately given' as

CONCLUSION

A theory is derived which enables the NMR line
shapes of exchanging species in the liquid state
to be analyzed under conditions where the previous
theory which assumed 7;«7', is no longer valid.
The theory is completely general and makes no
assumption as to the form of the relaxation pro-
cess. The evaluated expression given in Eq. (19)
does however, make use of the assumption that
the correlation function for molecular motion is
exponential.

A number of authors' have previously considered
line shapes under conditions where &,«&, is no
longer valid but hive limited themselves to des-
cribing a totally collapsed line; i.e., the two coup-
led equations given in Eqs. (21) and (23) would be
replaced by a single equation with a redefined T,.
A more important limitation of the previous the-
ories is that they obscure the meaning of the
condition &, &&, which is encompassed in the time-
dependent limits on the definition of 8 [see Eq.
(15)]. This type of relaxation coupling may have
application in other types of problems.
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