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Kinetics of nucleation in near-critical Anions
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A simple set of rate equations is proposed to describe nucleation and growth of droplets in metastable,
near-critical fluids. These equations are used in conjunction with steady-state nucleation theory to compute
completion times for phase separation in binary mixtures. Reexamination of available ex'perimental data
provides little if any evidence for the major failure of conventional nucleation theory that has been
postulated on the basis of these data.

I. INTRODUCTION

Near-critical fluids, either pure substances or
simple binary mixtures, should be ideal systems
for study of the kinetics of first-order phase
transformations. Fluids can be highly purified,
and they support no internal strains or similar de-
fects. By working near a critical point, one can
deal with phenomena which occur over large
lengths and long times and which therefore can be
described by universal laws of diffusion and flow
without reference to specific molecular proper-
ties. Thus it should be possible to test some of
the most fundamental concepts of nonequilibrium
statistical mechanics by observing, say, the se-
paration of phases in a super saturated solution
near its critical concentration or the condensa-
tion of a supercooled vapor near its critical den-
sity. A number of experiments of this kind have
been performed in recent years. ' ' Essentially
without exception, nucleation measurements per-
formed in the critical region have indicated dram-
atic differences between theory and experiment.
The purpose of the present investigation is to de-
vise a more detailed theoretical description of the
actual experimental situation and thus to see which
aspects of the theory, if any, are really in dis-
agreement with the observa, tions.

Theories of nucleation' ordinarily predict the
rate of formation of stable embryos, i.e., drop-
lets, of an emerging phase as a function of the de-
gree of supersaturation in an initially homogene-
ous metastable system. This function usually
turns out to vary extremely rapidly and to pass
through observable rates in a narrow range of
supersaturations, thus effectively defining a limit
of metastability. It is this limit which has been
measured and found to exceed the predicted value
by factors of 2 or more in the critical region.
That is, critical systems seem to possess an
anomalously high degree of stability, the conven-
tional nucleation mechanism seems somehow to
be suppressed in a situation where one would have

thought the theory would be most accurate.
A basically very simple possibility for the reso-

lution of this paradox has been suggested by Bind-
er and Stauffer' in a short note toward the end of
one of their recent papers about droplet kinetics.
These authors argue that the experimentally mean-
ingful quantity is not the nucleation rate itself but
the time required for the reaction to go to com-
pletion. To estimate a completion time, one must
consider droplet growth as well as formation. Be-
cause the growth of droplets is controlled by dif-
fusion —the experiments of interest have been per-
forrned in systems where the relevant order pa-
rarneter is a locally conserved quantity —and dif-
fusive processes over critical length scales be-
come very slow near the critical point, the over-
all reaction rates may be appreciably different
from estimates based on nucleation alone. Binder
and Stauffer show that a relatively simple calcula-
tion along these lines indicates at least a possibil-
ity of reconciling theory with experiment. tA
specific statement of the Binder-Stauffer theory
will be found in Eqs. (4.2)-(4.5).]

The calculation which we describe is an attempt
to carry out the Binder-Stauffer program, that is,
to predict in some detail the complete sequence of
states of a phase-separating fluid starting from
the quench into a supersaturated state and ending
with completion of the reaction. This is an intrin-
sically difficult problem because the stochastic
aspects of a first-principles nucleation theory
seem to require a mathematical formulation which
is not convenient for the description of late-stage
growth processes. Our policy will be to keep the
calculation as simple and intuitive as possible,
which means that we use a. droplet model through-
out. To do this, however, we must introduce several
inelegant assumptions regarding statistical prop-
erties of the system. As a result, our predictions
are not as compelling as we would like; but at
least they should serve as a guide to further ex-
perimentation.

Our theory most nearly corresponds to that of
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Binder and Stauffer in the limit of small super-
saturation, where droplet activation energies are
of the order of 20kT or larger. Here the nuclea-
tion rate is slow, and completion of the reaction
occurs only when a relatively small number of
embryos have grown to macroscopic size. The
one novel point that emerges from our time-de-
pendent calculation is that the reaction may not
appear to start until some time after the quench.
This regime of small supersaturation is the one in
which experimentalists report seeing no reaction
at all. In view of the new calculations, it seems
possible that they have not looked closely enough
or waited long enough.

At larger supersaturations, where activation en-
ergies are of the order of 10k' or smaller, our
theory predicts a qualitatively different behavior.
Here nucleation is occurring rapidly, and droplet
growth is relatively slow. When we account for
the fact that the smaller droplets tend to dissipate
rather than grow —the Lifshitz-Slyozov effect'—
we find an overall reaction rate which is very
much smaller than what one might have estimated
on the basis of nucleation alone. The system
creeps toward completion in a state in which drop-
lets of about the critical size are appearing and
disappearing at nearly identical rates. In a crude
sense the process we are describing here is the
extreme nonlinear version of spinodal decomposi-
tion. '

II. BASIC INGREDIENTS

In this section we summarize the various
thermodynamic and kinetic formulas which mill
be the basic ingredients of our theory.

For simplicity, we consider only the case of
phase separation in a simple two-component fluid.
(It is not difficult to substitute heat content for
chemical composition in order to use the same
analysis for pure substances. ) A schematic phase
diagram is shown in Fig. 1, Here C denotes the
concentration of one of the components which we
caQ the "solute. " The initial metastable system
is assumed to be prepared at temperature T and
uniform concentration C, by quenching through a
temperature gg. Because all processes will be
assumed to occur isothermally at 7.', it will be
more convenient to use the temperature variable
e =1 —T/T, associated with the quenched state
rather than the quantity 8, shown in Fig. 1, which
is more common in the experimental literature.
The relation between the two quantities is simply

(2.1)

In the limit of very shallow quenches, pT/eT, «1,
the two q's are almost identical. Recent experi-

(2.4)

The appropriate scaling variable for measuring
supersaturation is gy, /ea, where g is the usual
exponent associated with the critical isotherm and
gp, is the chemical potential per solute molecule
measured from its two-phase equilibrium value.
In the absence of a detailed equation of state in
the metastable region, we use the approximation

5C,
8 ALL

A
(2 5)

where s p, /ag„ is independent of C ~ (Perhaps it
would be better to use a Ginzburg-Landau "Q"' ap-
proximation of the form

but it seems to us that the accuracy of the present
theory does not warrant this extra complication. )
Note that the symbols gp. and gC, without sub-
scripts, denote arbitrary supersaturations in the
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FIG. 1., Schematic phase diagram showing coexistence
curve and relevant quantities defined in the text.

ments4 explore the region where gT/e T, is of the
order of unity, however, so we must be careful.

As shown in Fig. 1, C„and C~ are the equilibri-
um values of C for two-phase coexistence at T,
hC=C~-C„ is the miscibility gap, and QCy=Cy Cg
is the initial supersaturation. We use square
brackets to denote critical amplitudes, and con-
ventional notation and scaling laws for critical
exponents. ' Thus,

(2.2)

If we assume that the coexistence curve is given
by

(2.8)

then the relation between initial supersaturation
and quench depth is
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A phase and are not necessarily related to the in-
itial quench depth via Eq. (2.4). It is convenient
to define the dimensionless variable

5p, 2 5C
P(8 p/B, C„)(&C) e P &C

(2.6)

Experimental data usually are reported in terms
of

x, =- 6r/eT„
so that the initial value of x is

,=(1/S)[1 —1/(I+-, )'1,

(2.7)

(2.8)

and g, -=x, for sma, ll
Consider now a unit volume of our system at

some time after the quench, such that the reaction
has gone part of the way toward completion. We
assume that the system consists of droplets of g
phase immersed in anAphase whose supersatura-
tion has been reduced from gC, to gC. The num-
ber of solute molecules is conserved; therefore,
by use of the lever rule, the volume fraction
occupied by B-phase droplets must be

(2.9}

(2.10}

where N is the number of droplets per unit volume
and P is their average radius.

A spherical droplet of radius g and uniform con-
centration C~, immersed inA phase with a small
supersaturation gC, will grow at the rate

ceased. The essential ingredient of our own the-
ory, of course, is the nucleation rate. We base
our analysis on the field-theoretic version of nu-
cleation theory, '~" which starts from the rela-
tion"

Z=(y/vkT) imf(c, 6i/, ). (2.14)

Here g is the nucleation rate per unit volume, Imf
is the imaginary part of the analytic continuation
of the free-energy density to metastable values of
the chemical potential, and g is a kinetic factor
given, for our purposes, by

2Ddp 1 Dx3
/i= —In(ft -It *}

dt „„*(ft*)' 24 /.
" (2.15)

Equation (2.14) has been derived systematically
only in the limit of small 6LL(; but we presume —in
the absence of a better theory —that it continuesto
make sense at moderately large values of the
super satur ation.

The evaluation of Imf has been discussed in
widely differing contexts throughout the litera-
ture. In the limit of small gp. it is believed to
have the form"

A xp&'~'—imp= —,—'~ exp — —'~ ',
kT &' x& i x&

(2.16)

where x is proportional to 5p/e according to
(2.6), t' is the e -dependent correlation length, and

A and x, are dimensionless constants. The quan-
tity (xgx)' is the activation energy bE* in the con-
ventional droplet model; that is,

where D is the diffusion constant and dp is a capil-
lary length proportional to the surface tension o,

~Z* 4maB*' 64rrodp
Syyg2x2

so that

(2.1V}

d,=v (~C)'2 ~V

8C~

In a "p"' theory we have simply

(2.11) I/2" d2 g 1/2 g(2q 1/2
p

p
O 3 k7.', jkT, ,

(2.18)

2do(AC) 4do 2(
5C gx x

(2.13)

We have used (2.12) and N3
= —', in the final approxi-

mate form of (2.13).
Equations (2.9), (2.10), and (2.13) are the basis

of the Lifshitz-Slyozov' theory, which describes
droplet growth during the late stages of phase se-
paration after nucleati:on of new droplets has

(2.12)

where ] is the correlation length in the/1 phase.
Equation (2.12) is a convenient and apparently
fairly accurate first approximation and we use it
frequently in what follows. Note that the right-
hand side of (2.10) changes sign at tlie critical
radius g*:

The parameter xp is known to be of the order of
unity for the substances of interest here. We
shall say more about specific values of x, in Sec.
V. It is possible to estimate only the order of
magnitude of the constant A in (2.16). An approxi-
mation based on Eq. (4..13}in Ref. 14 yields

I o, (2+ 3/2 2 4 x3

3V3 gkr, 3P 12~' (2.19)

where we have evaluated the capillary term so as
to be consistent with (2.18), but this estimate
omits unknown logarithmic corrections to the ac-
tivation energy. The factor (xJx)'/' arises in part
from such corrections. For details see Gunther
et Ql.

Equation (2.16} is qualitatively incorrect for
large values of x because it disagrees with the
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scaling form off:
f =e'"( x)-"'", x»1. (2.20)

Analytic continuation of (2.20) to large positive
(metastable} values of x requires that Imf be pro-
portional to x"' ~. Ne incorporate this fact into
our expression for Imf by writing

Imf —= ~(~} (1+—
~

exp -(~)
where

/= 10/3+1/5=3. 55.

(2.21)

(2.22}

A'=I/288'~. (2.24)

The g-dependent prefactor that we have obtained
in (2.23) is different from that derived by Binder
and Stauffer', and the discrepancy possibly re-
flects an inherent limitation of the droplet model
for the description of critical phenomena. As far
as we can see, however, this part of the prefactor
plays little or no role in nucleation kinetics; the
results which we shall describe would remain
qualitatively unchanged if we were to omit entire-
ly the y. -dependent part of the prefactor.

III. KINETIC EQUATIONS

Combining (2.14), (2.15), (2.19), and (2.21), we

find the following expression for the nucleation
rate:

, Dx', x '"& x l~ fx "IZ~A', ' — Il+ —
~

exp -~ -a, (2.23)
xo I, xo ] (x

where

Our first major simplifying approximation —an
important departure from Lifshitz and Slyozov —is
to assume that only droplets with R &R* are to be
counted as part of the B phase. We imagine v(R)
to look qualitatively as shown in Fig. 2. The shad-
ed area to the right of R* is N;

N= v(R)dR, (3.3)

dN
( ~)

dR*
dt dt

and if we take the time derivative of

(3.4)

and droplets to the left of R* are in the process of
disappearing into the supersaturated 4 phase.
Lifshitz and Slyozov interpret the entire area
under the v(R) curve as belonging to the B phase,
and their interpretation is probably the more sen-
sible one, especially for describing the late stages
of a coarsening process. Our main reason for do-
ing otherwise is that we simplify our mathematics;
the cutoff at R* allows us to deal only with the low-
order moments of the sharply peaked shaded dis-
tribution rather than having to solve the complete
partial differential equation (3.1). As hopeful justi-
ficationfor our device, we pointout that we proba-
bly are not missing many droplets by neglecting the
left-hand tail of the distribution, and that it is not
clear in any case whether subcritical droplets are
to be considered part of the emerging B phase or
simply fluctuations in the parents phase —especi-
ally during a stage of the process in which nuclea-
tion is still important.

Our equations of motion are obtained as follows.
The time derivative of (3.3) produces

Let the quantity v(R) denote the distribution of
8-phase droplets as a function of radius R. This
distribution satisfies an equation of motion of the
form

R =-- Jl v(R)RdR,
1
N

we find

(3.5)

—= ——I'v(R) v(R)]+j(R),
Bv 8

Bt BR
(3.1)

dR 1
GM

— =(v(R})+— (R-R)j(R)dR

where v(R) is the radial velocity, dR/dt is given
by the right-hand side of (2.10), and j(R) is the
distributed nucleation rate. That is, j(R}is a
distributed source of droplets such that

~) v(R*) dR*
N dt

(3.6)

J = j(R)dR ~

"z* (3.2)

In the absence of j(R), (3.1}is precisely the equa-
tion studied by Lifshitz and Slyozov. In principle,
we should introduce a specific function j(R} and
solve (3.1}directly. We have found it more inter-
esting, at least as a first investigation, to develop
an approximate procedure which allows us to ob-
tain a great deal of information with a minimum,
amount of numerical analysis.

V(R')

FIG. 2. Schematic distribution of droplets as a func-
tion of radius R.



952 J. S. LA%GER AND A. J. SCHWARTZ

(J/—N)(R* -R+ 2 6R*),dR I
nucleation

(3 8)

where gR* is the width of the source distribution
j(R). Here we see an intrinsically stochastic
question arising within a deterministic picture:
at what point do dropletlike fluctuations become
stable constituents of the 8 phase? Vfe guess that
the width 5R~ corresponds to an uncertainty in
the activation energy of the order of kT. That
is~

The angular brackets in (3.6} denote an average
with respect to v(R)/N, and we assume immediate-
ly that we can use (2.10) to write

(v(R))=-v(R)-=(lit/3RR*)(1-R*/R). (S.7)

The second term on the right-hand side of (3.6)
can be written in the form

7 =- Dx 0 t/24 &'.

If we write

n =-(64m t,"/x', )N,

(3.15)

(3.16)

then the conservation condition (2.9) becomes

ory match the Lifshitz-Slyozov result. Before
showing how this works, it will be useful to sum-
marize what we have done so far by writing down

a complete and properly scaled version of our
equations of motion.

The natural length scale for this problem is the
correlation length &. For reasons which will be-
come clear later, we define

x Rxo A+xo + 1

x, ' 2$ ' 2$ x y
(3.14)

The correspondingly scaled time variable is

&E (R) = &Z* —4mv6R'; (3.9)
&, -&=&p,3 (3.17)

thus

6R*=(kr/are)—'"=4a~/x„- (3.10)
and by virtue of (3.8) and (3;12), the equations of
motion (3.4).and (3.6) become respectively

where

a = 4xo(kT/8m—v& )' = I/(8w)' '= 0.2. (3.11)

A final approximation is needed in order to
evaluate v(R*). In situations where v(R) is sharp-
ly peaked in the neighborhood of R*, it seems rea-
sonable to assume that the width of the shaded re-
gion in Fig. 2 is some constant multiple, say b

of R, -R*; thus we write

t (R*}—=Nb/(R-R*). (3.12)

This assumption makes no sense, however, in a
situation where the droplets have grown much big-
ger than R*, that is, where appreciable growth
has occurred but the supersaturation remains
large enough that R ~ is sti11 small. In this case,
we can say very little about the distribution near
R* except to guess that the terms containing v(R*)
in (3.4) and (3.6) should be relatively unimportant
because the main action is occurring elsewhere.
We simply cut these terms off by writing

b for R -R*~—R ~,
0 for R-R*&2R* (3.13)

The factor —', on the right-hand side of (3.13) is
completely arbitrary. In fact, none of the more
interesting results which we shall describe de-
pends at all on the use of this cutoff. Without it,
however, the unreasonably large coefficient of
dR*/dt in (3.6) causes dR*/dt to diverge as the
reaction goes to completion for small initial super-
saturations g, . To evaluate b„we shall insist
that the long-ti. me coarsening behavior of our the-

dn - nb dp*
d~ (p —p*) d~ '

dp 1 p Z(y) dp ofc—-1 + (g —p-p*)+b
dj p p 'vE

(3.18)

(3.19}

dp p 1 b dy pg(y)
dv 3 y, -y y(yp —1) d~ sx,(y, -y)'

—+—. =—2(yp -1}+ (~- p+1/y»dp b d~ p9(y)
d7' g dT p x,(y, -y)

(3.21)

(3.22)

where y, =x,/x, . These are the basic equations of
our theory.

Consider now what happens if the nucleation
terms are absent in (3.21) and (3.22), that is,
when y becomes small enough that Z(y) is negligi-
ble and b=b,. Equation (3.21}reduces to

sdp 1 b,
ybp-1) (3.23)

A simple analysis of (3.23) indicates that all tra-
jectories in the p, y (or p, p*) plane starting in the
physical region y & y „p& 1/y = p*, approach the

where

&(y) ~Ay'"(I+y)"" exp(- 1/y'), A -=16/3&a=- S.

(3.20)

Note that all temperature-dependent quantities
have disappeared in (3.17), (3.18), and (3.19);
that is, we should be able to map the behavior ob-
served at one temperature onto that at another
simply by rescaling lengths and times according
to (3.14) and (3.15). Eliminating n via (3.17), we

find
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P= (1+be/3)P (3.24)

3P'~= b,(3+b,)/(3 -2b,).
dT

(3.25)

Note that the familiar "7' "' law is recovered for
any value of 5, less than —', . The Lifshitz-Slyozov
value for the right-hand side of (3.25) is &e, and
we can reproduce this in our approximation by
setting

as y decreases (or p* increases). (See Fig. I and
the related discussion in Sec. IV.} Inserting (3.24)
into (3.22), again with J=O, we find

X
O
I-

I
P-I

Vl
K
LU
CL

Ch

Lal

IOI-

LLJ

K

IoI o

-~o.ie

IO* I Os IO IO

TIME T

IO'

0 5 03
~0.24

mo. 2

IO' IO'

b =0.317014. (3.26)

To complete the theory, we must specify the in-
itial conditions. Let us restrict our attention to
shallow quenches from an equilibrated single-
phase state, so that large critical fluctuations are
already present in the system before the quench,
and we do not have to be concerned about an incu-
bation time for the nucleation rate. Then at v =0,
we have y=y, and & —-0. The only possible choice
for p is

p(~=0}=a+ 1/y„. (3.27)

otherwise there is a nonintegrable singularity in
the second term on the right-hand side of (3.22).
This is physically reasonable; the first droplets
emerge withe at the center of the distribution
j(R).

The theory summarized by Eqs. (3.21) and (3.22)
contains a number of artificial features whose
significance is hard to evaluate. We have checked
that the numerical results to be described in
Sec. IV are not strongly sensitive to the values
chosen for a, b0, or the cutoff defined in (3.13).
On the other hand, we do not know whether the
general form of, for example, Eq. (3.12) might
be so seriously incorrect that it causes qualita-
tive errors in our predictions. Nor do we know
whether effects that we are ignoring altogether,
such as coagulation of droplets when their density
is high at large supersaturations, might turn out
to be crucial. All we can say is that the effects
we are considering —. nucleation, growth, deple-
tion, etc.—are real, and that we have made what
seems to us to be a reasonable attempt to model
them.

IV. NUMERICAL RESULTS

Numerical solutions of Eqs. (3.21) and (3.22) for
various values of the initial supersaturation y,
are shown in Figs. 3-7. These results have been
obtained using standard forward-integration tech-

FIG. 3. Computed relative supersaturation y as a
function of scaled time 7'. Initial values y& are indicated
for each curve.

niques. All calculations have been performed with
a=0.2, x,=1.0, and b as given in Eqs. (3.13}and

(3.26).
Figure 3 is a log-log plot of the relative super-

saturation y as a function of the scaled time z,
For initial supersaturations y, of the order 0.22
or smaller, that is, initial activation energies
AT/y', of the order 20kT or greater, y remains un-
changed during the early stage of droplet formation
and growth. The reaction goes nearly to comple-
tion after a fairly well-defined y, -dependent time
delay, at which point y drops below its asymptotic
v"' ' limit. The Lifshitz-Slyozov regime is not
reached until very late in the process. In con-
trast, when y, is of the order of 0.3 or larger-
the activation energy is 10kT or smaller —the y ' '
regime sets in almost immediately. This is the
behavior that was described in the Introduction;
nucleation is rapid but growth is slow, and drop-
lets never become much larger than their capil-
larity-limited critical size.

When the initial supersaturation is larger than

Ozp5
I-
%04
I-
COa0.3-
LLI
CL

cho 2
hJ0
~~0. I—

ILi
K

4
TIME v'

FIG. 4. Computed relative super'saturation y for small
times v. arid large initial y&.
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lo

0. I8

lo

r
go. I 8

~ lo

O

R

&IO

g. I 0

K

Io

0.5

IO Io IO IO IO

TIME r
IO lo IQ Io lo

CR I T I C AL S I Z E p+

IO'

FIG. 5. Computed values of the scaled mean radius p
as a function of time for various initial values of y& as
indicated. The curve for y&=0.24 is shown as a dashed
line.

FIG. 7. Scaled mean radius p as a function of scaled
critical size p* for various initial values of y& as indi-
cated. The dashed line indicates the Mullins-Sekerka
stability limit at p= 7p*.

approximately 0.3, our calculations indicate that

y undergoes a downward transient which is com-
pleted within a time 7 of the order of unity. This
effect is shown in Fig. 4. The average droplet
size remains essentially unchanged during this
period, and the new phase emerges in the form of
a large number of only marginally supercritical
droplets. After this transient, the behavior of
y(~} is almost independent of the initial y „ the
main difference being that the density of droplets
is larger for deeper quenches.

Figures 5 and 6 are log-log plots of dimension. -
less radius p and density n as functions of time 7.
Here we see the characteristic features of shallow
quenches (y, s0.22); isolated, i.e., rare, droplets
grow to be much larger than their critical size
before the reaction goes any appreciable part of
the way to completion. This behavior is illustrat-

ed more clearly in Fig. 7, where p is shown as a
function of p*= 1/y. [We may interpret the curves
in Fig. 7 as the trajectories described following
Eq. (3.23), except that bere we have included the
nucleation terms and have considered various val-
ues of y, . Note the way that all trajectories ap-
proach the line p = 1.106p*.] For values of y,
less than about 0.21., p temporarily exceeds the
Mullins-Sekerka limit" of 7p* before the reaction
slows. This means that the droplets may undergo
a shape instability, possibly leading to faster and
more intricate growth modes, before reverting to
spheres under the influence of capillary forces
during the final coarsening phase of the reaction.
Figure 7 also can be used to deduce something
about the width of the distribution v(R). When p
is close to p*, that is, when we are in the~'' re-
gime, this distribution should have a width 4R giv-
en by

I.O &R/R = 2(R R*)/R—= 0.2-. (4.1)

lo

I-
Co
Z
LLJ

lo
Lal

0
O
K
O

IO4

/o. ie
L&

Io'
I IO Io

TIME T
IO IO'

FIG. 6. Computed values of the scaled density of drop-
lets, n, as a function of time v for various initial values
of y~ as indicated.

As we mentioned in the discussion following (3.12),
we can say very little about 4R for the case p
»p*. It seems safe to guess, however, that this
width must exceed tbe estimate (4.1}.

Returning to Fig. 5, we note that the case of the
intermediate quench, y, =0.24, exhibits some fea-
tures which are potentially important for experi-
mental interpretation. Except during the extreme
late stage, no simple power-law behavior is ap-
parent. The period of free growth at constant y,
which should produce a ~'~' law [see Eq. (4.3)],
occurs somewhere in the neighborhood of v. =10',
but lasts for less than a decade. There follow's,
for a decade or more, a period of slow growth
which might look as if it were characterized by a
power law v', with a'&» but which is better under-
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stood as a transition period with no special alge-
braic signature. The lesson here is that power-
law analysis can be quite misleading, even in
what may appear to be the late stages of a coar-
sening process.

In order to make comparisons with previous
analyses, we have drawn in Fig. 8 a semilog plot
of the time v, at which the reaction is halfway to
completion, y(7, )=-,'y„as a function of y, . (We
refer to 7., simply as the "completion time. ")
Note the shoulder in this curve in the neighborhood
of y y

0 24 which marks the transition between the
two types of behavior described above.

The dashed curve in Fig. 8 is the completion
time obtained by making the Binder-Stauffer ap-
proximation but retaining the same nucleation and
scaling formulas that we have used elsewhere in
the present paper. Specifically, we assume that y
remains fixed at y, for purposes of estimating
rates of nucleation and growth, and that the capil-
lary correction to the growth rate is negligible be-
cause droplets become very large as the reaction
goes to completion. That is,

latively small. In this approximation new drop-
lets are formed at a constant rate throughout the
process; thus

At

y, -y(v) —= ~'
t (2y,~')'"d7'

+0 0

(2/5/ )J'(y )(2y )slag 5/a

Setting y(v, )= —,'y„we find

[2—5xg128y, J'2(y, )]'~',

(4.4)

(4.5)

which with pp 1.0 is the relation shown in Fig. 8.
As expected, the Binder-Stauffer theory agrees
reasonably well with ours for y, less than approxi-
mately 0.2.

The quantity which ordinarily has been computed
in nucleation theory is not the completion time but
a nucleation time, the latter being defined typical-
ly as the time required for a droplet to form in
one cubic centimeter of supercooled fluid. This
time t„ is simply equal to 1/J, where J' is the nu-
cleation rate in (2.23). Unfortunately there is no
simple scaled version of t„In a.c.cord with (3.15),
we write that

——=&(y )
ds (4.2) T„=Dxot„/24$ = 64m( /J(y, ). (4.6)

d1
~=—y~/p~ p(~') =—(2yp')'", (4.3)

where v' denotes time after formation, and the
formation radius, p(0) = p~, is assumed to be re-

1,

I

I
l'

I . I

0, I 0.2 0.5 0.4 0.5
INI T I AL REL AT I VE SUPERSATURATION y,

FIG. 8. Half-completion time 7, as a function of initial
relative supersaturation y~. The solid line is the present
theory. The dashed curve has been computed using the
Binder-Stauffer approximation, and the dash-dot curve is
the conventional nucleation time.

~, (y,)=Dr', t,/24('= ([D]x', t,/24[~]')~'" (4.7)

becomes a relation between the relative super-
saturation y, and temperature e. Rescaling of E

according to

~.-=(IIl]4'24l &)')'"" (4

leads to the law

The dash-dot curve in Fig. 8 is obtained from
(4.6) with (=10 6 cm, a value which is typical of
correlation lengths in fluids at e —- 10 '. The al-
most vertical slope of this curve is the basis for
the assertion that nucleation theory predicts a
limit of supersaturation at about gy 0o13 which is
very nearly temperature independent and is not
even sensitive to most other parameters in the
theory. For example, if we were to change the
definition of t„so as to require 10' nuclei per
cubic centimeter instead of just one, we would
shift the nucleation curve in Fig. 8 to the right by
only Ay, =0.01. The crucial point is that the nu-
cleation curve lies markedly to the left of the corn-

.pletion curve for physically accessible values of
7c ~

The scaling properties of the completion curve
suggest that we modify the usual scheme for pres-
entation of experimental results so as to be able
to superimpose data from a variety of different
substances. If we choose a fixed completion time
t„say 10 or 100 sec, which characterizes our
observational technique, then the scaling law
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e ,'"=~,(y,)/t, . (4.9)

It now should be clear why the factors of xp were
included in the scale transformations (3.14)—(3.16).
The only possibly system-dependent parameter in
(4.9) is xo, which enters v, (y, ) because it appears
explicitly in the equations of motion (3.21) and

(3.22). In those equations, however, x, occurs
only in conjunction with t, whose amplitude might
contain other xp-dependent factors and which, in
any case, is uncertain to at least one order of
magnitude. Furthermore, a quantity like log, p~,
will be insensitive to small variations in the am-
plitude of J. Thus even if gp is not a universal con-
stant, it should be accurate to delete the explicit
x, in (3.21) and (3.22), and to regard the resulting
v, as a universal function of the relative super-
saturation y, =x,/xo. To summarize: If a certain
class of measurements is characterized by a fixed
observation time t, and if all of our scaling as-
sumptions are correct, then all such measure-
ments of, say, maximum relative supersaturation
y, should lie on a single curve y, (e,), as given im-
plicitly by (4.9).

V. COMPARISON WITH EXPERIMENT

The present experimental situation is, to say
the least, unsettled. Relevant data exist for three
systems, each of which is reputed to exhibit a nu-
cleation-rate anomaly near its critical point. Of
these systems, . two are binary fluid mixtures:
C,H„-C,F,4 (Refs. 1 and 2) and 2, 6-lutidine-water4;
and one is a pure substance: CO2 (Ref. 3). The
observations are all cloud-point measurements
which, in principle, determine maximum attain-
able supersaturation g, as a function of tempera-
ture &. The data are shown in Fig. 9 in the
form of the y, vs &, plot described in the final
paragraph of Sec. IV. Also shown in this fig-
ure are the completion curves for t, =1, 10 and
100 sec.

It is important to understand the different as-
sumptions and uncertainties associated with each
of the three sets of data points shown in Fig. 9.
We discuss these cases separately.

a. g, 6-$utidine-ma ter (solid circles) The mo.st
recent of the three experiments, this is the only
one which really penetrates the near-critical re-
gion where we expect the transition to be shifted
to larger values of the supersaturation. The data
do indicate such a shift, but a number of experi-
mental points remain to be clarified. The luti-
dine-. water system has a lower critical solution
point, and "quenches" were performed by pulsed
heating via microwave radiation. The cloud point
was identified as the quench depth at which there
occurred a sharp increase in the attenuation of a
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FIG. 9. Experimental cloud-point data. The points in-
dicate values of initial relative supersaturation y~ vs
scaled temperature e~ as defined in Eq. (4.8). Solid cir-
cles denote 2, 6-lutidine-water (Ref. 4), open triangles
denote C&8&4-C&F&4 (Ref. 2), and open circles denote
C02 (Ref. 3). Also shown are completion curves for t~
= 1,10, and 100 secs.

laser beam passing through a thin section of the
sample. Total quench times are reported to have
been of the order of tens of seconds, but the de-
tailed thermal history of each quench was signifi-
cantly different from the simple single-step model
that we have used in our calculations. Moreover,
there is not necessarily any simple, temperature-
independent relation between the half-completion
times that we have calculated and the onset of ob-
servable attenuation of a laser beam.

None of the thermodynamic quantities necessary
for calculating activation energies are known for
this system; thus we have no independent estimate
of Qp and have simply set xp= 1.0. If xp is larger
than unity, as seems to be the case for other sys-
tems, then the solid circles in Fig. 9 should be
shifted downward. The quantities relevant to the
kinetic factor [Eq. (4.8)] have been measured"
to be [D]=—2x10 ' cm~/sec, [$]-=2x10 ' cm, and
v'=0. 62. Thus .

logype, =—logypE+ 4.48. (5.1)

8 p.

&C
=(1.03+0.1)x10 ~3 erg cm~,

[c]=—21.9 erg cm ',

(5.2)

(5.3)

[aC]= 3.12x10" cm-'. (5.4)

b C~H, ~-.C~F,~: (ojen triangles). This is the
system for which the nucleation-rate anomaly was
first detected. ' Heady and Cahn have provided
us with a wealth of thermodynamic information
about this system, including an indirect evaluation
of s p, /BC. We have reanalyzed their data using
modern scaling notation and find
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Critical indices are y'=—1.25, v'=—0.62, and p
—= 0.31. We also need to know that 2, is 319 K.
Then using Eqs. (2.11) and (2.18) we find

gp= 1.30+ 0.1. (5.5}

[v]=—95.1+10 erg cm ' (5.6}

Bp,
=—1.33x10 '4 erg cm', (5.7)

mhich is deduced from data published by Swinney
and Henry. " The symbol n denotes the number
density in (5.V}. Other parameters are the same,
as shown in Ref. 14. The resulting gp is

g p=—1.24 +0.1, (5.8)

which is about 50/p larger than our earlier esti-
mate. '4

According to Eq. (6.34) in Ref. 14, the quantity
that plays the role of the diffusion constant D for
the pure substance is"

xr, (hn)' s p,
i2 2

g
7 (5 8)

where & is the thermal conductivity, ) the latent
heat per molecule, and n, the critical number den-
sity. From Table IIB in Ref. 19 we deduce that

Unfortunately me have no information at all about
the diffusion constant. We have simply used (5.1)
to locate the data along the ~, axis; but because
we are dealing with relatively large and slowly
diffusing molecules, it is possible that the experi-
mental points in Fig. 9 should be displaced ap-
preciably to the left. Cloud points mere observed
visually, and the cooling rate is reported to have
been adjusted so that total quench times were al-
w'ays of the order of several minutes.

c. CO& (open circles). Data are shown here for
only the tmo most nearly critical CQ, samples test-
ed by Huang gt af, . Other points lie off the right-
hand edge of the graph, well below the completion
curves. We have reevaluated xp using the value of
Herpin and Meunier" for the surface tension:

Finally, using" []]=O.V14x10 ' cm and v'=0. 63,
we find

(5.12)logyp6 = logyp& + 6.80.

Cloud points were observed in these samples by
a calorimetric technique in which it was possible
to check that the tota1 latent heat released was
thermodynamically consistent with the directly
measured undercooling. Total quench times were
of the order of minutes or longer. In Fig. 9, X
indicates a point (e = 3.15x10 ', ~,=0.16) where
the sainple was held for more than four hours
without appreciable loss of latent heat.

The overall picture which emerges in Fig. 9 is
not one of dramatic, systematic disagreement be-
tween theory and experiment. The lutidine data,
while scattered, lie on or belom the 10-sec com-
pletion curve which should be the appropriate time
scale for that particular experiment. Some of the
Heady=Cahn results lie a bit higher in y, than ex-
pected, but these discrepancies are well within
the uncertainties in xp and e,. It seems to us that
the only remaining evidence for a nucleation-rate
anomaly, that is, for excess stability, resides in
the single CQ2 cloud point at e = 1.13x10, y,
=0.202. This is not to say that apart from this
point we have achieved credible agreement between
theory and experiment, but we hope that we may
have discovered some clues about where to look for
such agreement. In this regard, it should be em-
phasized that data obtained for v. &z, with relative
supersaturations y, less than about 0.24 will fall
within the region where our theory is consistent
with the Binder-Stauffer approximation and thus
where our predicted values of n(7'), p(~), etc. are
not very sensitive to the special assumptions in-
troduced in Sec. III. This region includes almost
all of the data shown in Fig. 9 except for the luti-
dine-water results. Direct measurements of num-
bers and sizes of droplets ought to be feasible in
this region and information at this level of detail
ought to tell us, finally, whether there really is
something strange and interesting happening in
these systems.

g=—6.5x10'e"' &' ergcm 'sec 'K '

and thus

g)= 5.2x10 '&"' cma sec '.

(5.10)

(5.11)
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n& in Eq. (6.34) and elsewhere. This correction makes
very little difference in the numerical results, but
without it the theory does not scale properly in e.


