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Stability criteria for high-intensity lasers
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The output characteristics of a high-intensity laser oscillator are examined by means of a semiclassical
density-matrix approach. Unlike previous investigations the time derivatives of the field and material
quantities are retained, and a basic instability in the semiclassical laser equations is revealed. This instability
accounts for the recently reported spontaneous pulsations in xenon laser oscillators. The pulsations can be
interpreted as a consequence of spectral holeburning in inhomogeneously broadened lasers, and stability
criteria are derived for both standing-wave and traveling-wave oscillators. In simplest terms the pulsations
should occur in any inhomogeneously broadened laser where the product of the homogeneous linewidth and
the cavity lifetime is less than unity.

I. INTRODUCTION

The starting point for most rigorous treatments
of laser oscillation involves the semiclassical
formalism introduced by Lamb. ' ' The results
of Lamb's analysis provide at least a qualitative
explanation of iqost laser phenomena that have
been reported. Since the calculations in Ref. 1
were only carried through to third order in the
electric field, the results tend to be inaccurate at
high levels of intensity. This limitation can be
remedied by retaining higher-order terms in the
calculations, ' 4 but much more useful methods
have been developed by Stenholm and Lamb' and

by Feldman and Feld' for treating the properties
of high-intensity lasers. In fact, it might be in-
ferred from these and more recent works that all
of the characteristics of at least one-dimensional
single-mode lasers can now be predicted in de-
tail.

Based on the semiclassical equations (or the
simpler rate equation concepts) one would nor-
mally expect that a laser with continuous-wave
(cw) pumping should produce its output in the
form of a cw beam of light. The only exceptions
would be lasers which incorporate inside the res-
onator either active or passive modulation media.
Recently, however, an instability has been re-
ported in which an ordinary cw laser yields a
pulsed output. ' This instability has been observed
experimentally in xenon lasers and has also been
reproduced in numerical solutions of the under-
lying semiclassical equations. The pulsations
had not been noted in previous semiclassical
studies of high-intensity lasers because of the'
assumption that with cw excitation the polariza-
tion should be an instantaneous function of the
field and population inversion. The general nu-
merical solutions of the time-dependent laser
equations have proven to be costly, and it is

worthwhile also to study analytically the condi-
tions under which this instabQity might manifest
itself. In the present work the appropriate sta-
bility criteria are derived for a high-intensity
laser, and using these criteria one can readily
determine whether or not a given laser will pulse
without actually calculating the output waveforms.

The basic stability criteria for ordinary stand-
ing-wave lasers are derived in Sec. II. In nu-
merical and laboratory experiments it has been
found that the instability causes periodic fluctua-
tions of all of the field, polarization, and inver-
sion parameters. Consequently the analysis be-
gins in Sec. IIA with the expansion of these par-
ameters in a harmonic series. The procedure
that we have adopted to test for the pulsation in-
stability is to assume first of all that only a single
intense field component is present. The amplitude
and frequency of this component are derived in
Sec. II B. We then test in Sec. IIC whether any
other frequency components can exist in the res-
onator having the same wavelength as the satura-
ting component and experiencing net gain. The
single-mode solution found initially is unstable
against pulsations if and only if such additional
sidebands exist. The resulting stability criteria
are put into a simpler form in Sec. IID and graph-
ical solutions are suggested. The important re-
sult here is that spontaneous pulsations can occur
in many practical laser systems. Physically, it
is the severe distortion, of the dispersion curve
caused by the saturating field which makes pos-
sible the existence of sideband frequencies having
the same wavelength as the saturating field. The
results are illustrated with reference to the 3.51-
p, m xenon laser systems where the pulsations have
been observed experimentally. In Sec. IIE it is
proved that homogeneously broadened lasers can
not exhibit this instability. A similar treatment
for one-directional ring lasers is developed in
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Sec. III. In most respects the results for ring
lasers are qualitatively identical to the standing-
wave laser behavior.
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II. STANDING-WAVE LASER

The most convenient approach for studying the
high-frequency behavior of laser oscillators in-
volves the familiar density-matrix equations cou-
pled with Maxwell's wave equation. This is the
approach that has been used in Ref. 1 and in most
subsequent rigorous treatments of lasers. Mathe-
matically it is helpful to solve directly the differ-
ential equations of motion governing the ensemble-
averaged density matrix rather than starting from
the response of a single atom. Thus the elements
of the matrix are governed by the equations

c
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In these equations y, and y, represent the decay
rates of the diagonal matrix elements, y =-,'(y,
+y~)+y~„ is the decay rate for the off-diagonal
elements, X, and X, are the pumping terms, and
~, is the center frequency of the laser transition.

In reducing Eqs. .(1)-(4) it is useful to first
factor out the rapid time variations of the electric
field and the off-diagonal matrix elements. For a
single longitudinal mode this factorization can be
accomplished with the substitutions
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The amplitudes Z'(t) and P'(v, z, t) are generally
complex to account for the time varying phases
of the field and polarization. With these substi-
tutions and the standard rotating-wave approxima-
tion, Eqs. (1)-(4) reduce to

I

~ ~—+v —~P'(v, z, t) =i (&u —v,)P'(v, z, t) -yP'(v, z, t) —
@

sin(kz)Z (t)D(v, z, t),8z )

—+v —
~

D(v, z, t) =A., (v) —A.„(v) — ' D(v, z, t) — ' ' M(v, z, t)+ [iZ'(t)P'*(v, z, t)+c.c.j,c
y. + yg y. -y, sin(kz)

8Z )

where the density difference
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I
put is periodic in time, it is reasonable to intro-
duce the Fourier expansions

D(v, z, t ) = p „(v,z, t ) —p„(v, z, t )
Z'(t) = Q Z„exp(-in'(ot), (10)

M(v, z, t) = p„(v, z, t)+ p» (v, z, t)
have also been introduced.

P'(v, z, t ) = P P„(v,z ) exp(- in', &ut ),
A. Harmonic analysis of the laser equations

Equations equivalent to Eqs. (V)-(9), together
with the wave equation have been solved numeri-
cally to obtain the transient characteristics of a
quite general single-mode laser oscillator. '
In that study it was found that under some condi-
tions the laser is unstable, and the output con-
sists of periodic bursts of energy. Since the out-

D(v, z, t) = g D„(v,z) exp(-indebt),

M(v, z, t) = Q M„(v, z) exp(-inn(ut), (13)

where b, ao is the fundamental pulsation frequency.
Using these substitutions in Eqs. (1)-(9) and
equating the coefficients of the nth frequency
harmonics, one obtains



21 STABILITY CRITERIA FOR HIGH-IN TEN SIT Y I.ASKRS

— =i (&u+nQ&o —&u,)P„(v,z) -yP„(v, z) — sin(kz) g E„JD&(v, z),BP„(v,z)
BZ

(14)

v " ' =[A., (v) —X~(v)]5„,+inhuD„(v, z) — ' ' D„(v,z) — '
2 M„(v, z)

~ [EJ,„P,*(v,z) E*;-„P~(v,z)],i sin(kz) ~
(15)

v " ' = [A., (v)+ A., (v)] 5„,+ inks'„(v, z) — ' ' M„(v, z)- '2 D„(v,z) .

With the same substitutions in the wave equation,
use of the rotating-wave approximation, isolation
of the nth harmonic, multiplication by sin(kz),
and integration over z, one obtains
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In this equation the frequency factor ~+nb, ~ on
the right-hand side has been replaced by the ap-
proximate value e„and to be specific the ampli-
fying medium is assumed to extend from z =0 to
z =l in a cavity of length I,.

Equations (14)-(17) completely characterize
the harmonic components of the limit cycles
corresponding to the spontaneous coherent pulsa-
tions. The first-order differential equations can
be converted to a large set of algebraic equations
by means of a second Fourier expansion in the
spatial coordinate z. The solutions of this set
would be equivalent to the limit cycles obtained
by numerical integration of the differential equa-
tions. For the present stability analysis, how-
ever, the general solutions of this set are not re-
quired. Instead we assume initially that only a
single frequency component is oscillating strong-
ly. We then examine the situations in which a
sideband of infinitesimal amplitude and frequency
displacement h~ can also satisfy the laser oscil-
lation conditions. These conditions require in ef-
fect that the round-trip phase delay of the side-
band must also be a multiple of 2m and. the round-
trip gain must be greater than the loss. If any
sideband satisfies these conditions, the assump-
tion of cw single-frequency oscillation is incor-
rect. Instead the laser mode is unstable and the
output consists of undamped intensity pulsations
with more than one frequency component. On
the other hand, if all possible sidebands of infin-
itesimal amplitude have more loss than gain, then
the assumed single-mode solution is stame and
provides a correct description of the laser os-
cillation.

B. Single-frequency oscillation

In line with the preceding comments, we con-
sider first that the laser is oscillating strongly at
a single frequency, and components at other fre-
quencies if present at all have amplitudes which
are too small to affect the population sum or
difference. From Eqs. (14)-(17) this fundamental
frequency component must be described by the
equations
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8M (v, z)
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It is perhaps worth noting that the pulsation
phenomena of interest here require a more care-
ful definition of the concept of a laser mode. Or-
dinarily one considers that a particular longitudi-
nal mode of a laser can be characterized by either
its frequency or by the number of wavelengthS be
tween the mirrors. Now, however, one finds that
for a given number of wavelengths between the
mirrors several frequency components can exist
simultaneously. Thus it would not be inappro-
priate to regard each of the frequency compo-
nents of the periodically pulsing output as one of
a set of phase-locked modes specified by both its
frequency and wavelength. In any case, the pres-
ent study is aimed solely at lasers having a single
fixed number of wavelengths between the mirrors.
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If the phase of the electric field is set equal to
zero, Eqs. (18)-(21) can be replaced by a set of
real equations by means of the substitution

+oo j
sin(kz)S, (v, z) dz dv,

C 0 v' ~OO 0

(27)

CV0
((v Q)-E, = — ' sin(kz)C, (v, z) dz dv.0 . g L

(28)

P,(v, z) =C,(v, z)+ iS,(v, z) .

The results are

v ' ' = (&o —&s),)C,(v, z) —yS, (v, z)
sS,(v, z)

(22)

(28)

Next, it is helpful to eliminate the s derivatives
by expanding the polarization and population ele-
ments in series of spatial harmonics according to

S,(v, z) = Q S„,. „(v)exp[(2j+1)ikz],

——sin(kz)E, D,(v, z),p.
(23)

Co(v, z) = Q Co, », (v) exp[(2j + 1)i'],
~oo
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M, (v, z) = g M„» (v) exp[(2j)i'],

(31)
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subject to the constraints

S, „(v)=Sg (v), C, (v) =C*, (v),

etc. With these substitutions Eqs. (23)-(28) can be
written

0=-[(2j + 1)ikv+y] S, »„(v)+(&u —&s),)C, »„(v)+ ~ "[D, »(v)-D, »+,(v)],
&P E0
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S
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S
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E, e,l
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C0J
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~
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Equations (33)-(38) may be combined to obtain
trvo coupled equations for the oscillation amplitude
E0 and frequency e, and similar calculations have
been performed previously for steady-state las-
ers. ' ' First, Eqs. (33) and (34) are combined,

l

yielding

(39)
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where 0, is defined by

n (v)= y/2
(2j + l)ikv+i((u —a),)+ y

(2j+ 1)ikv —i (u& —&v,)+y

Similarly Eqs. (35) and (36) may be combined,
yielding

&0, )) (v) =— ' N(v)sI
y, +v,

~ Re
"

Y i 2w, (u)si )
Equations (37) and (46) may be combined to

yield the unsaturated intensity gain coefficient.
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4S y, y,

2m 0
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So () (v) dv
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y yg

(41) Iil(v)n~(v) dv . (49)

where P, (v) is defined by

P (v)= ' ( . . +
y, +y, ~(2j)ihay, (Rj)iiu yi )

Now Eqs. (39) and (41) produce

S, ,(v) = ' ' D, ,(v)W(v)si,0 1 g y +y p, p

where W(v) is the continued fraction

(42)

(43)

In terms of this gain coefficient, Eq. (37) can be
written

1 gc 1 l"" Iil (v )W„(v) dv

t, I. .i „1+2W„(v)sI

(50)

Similarly Eqs. (38), (48), and (49) may be com-
bined to obtain

y OQ

(u -O = li X(v) He
2L, ikv + y 1+ 2W„(v) sI

( )
n, (v)

n, (v)P, (v)sI
n, (v) P, (v) sI

n, (v)P, (v)sI
(44)

x
i

X(v)a (v) dv)

Equations (50) and (51) are a coupled set which
may be solved to obtain the frequency co and the
intensity sI of the cw oscillating mode.

In this result sI is a normalized intensity given
by

p'E,' y +y,
sa (45)

With Eq. (41) for D, ,(v) and the condition S, ,(v)

,(v), the imaginary part of S, ,(v) is

C. Sideband stability

The stability of the single-mode laser oscilla-
tion is assessed by determining whether any fre-
quency component in addition to & can also satisfy
the oscillation conditions. Thus we now examine
the polarization P,. From Eq. (14) this polariza-
tion component is governed by

4k y, y, N(v) sIW„(v)
E, y, +y, 1+2W„(v)sI ' (46) sP, (v, z)

v ' ' =i ((u+ b, (u —(u,)P,(v, z) yP, (v, z—)

where N(v) is the unsaturated population differ-
ence

Zp. sin(kz)g E, , D, . (52)

Z. (v) A,, (v)
ya yb

(47)
By definition all frequency and polarization side-
bands are infinitesimal in comparison to Ep andI p Therefore, the only population difference is
D, and Eq. (52) is

and the subscripts i and r denote, respectively,
the imaginary and real parts of a quantity. With

Eq. (34) it follows that the imaginary part of

Co i(v) ls —'" sin(kz)Z, D, . (53)

v ' ' =i ((o+b, (u —u),)P,(v, z) —yP, (v, z)sP, (v, z)
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——sin(kz)E, L)0(v, z), (54)

((v+g(0 (0JS,(v, z) -yc, (v, z) . (55)
SC1(v, z)

Using substitutions analogous «Eqs. (29)-(31),
the spatial harmonics of S, and C, must satisfy

0= —[(2j+ 1)ikv+y]S, „„(v)
+ ((cP+b, (() —(()0)C( 2g+1(v)

&P E1+ ' [&0 „(V)-&0„g+2( )] (

As long as we are considering only a single fre-
quency sideband, there is no reason for not as-
suming that at some time in the past this frequen-
cy component was exactly in phase with the funda-
mental frequency. Thus the amplitude E, may be
taken to be a real number. It is then convenient
to separate Eq. (53) into its real and imaginary
parts using the substitution

P, (v, z) =C,(v, z)+iS,(v, z) .
The results are

v ' ' = ((u+ a(0 —(()0)C,(v, z) -yS,(v, z)
sS,(v, z)

z

y/2
(2( 1)iku —i(~ a~ —&e,) y)

f 0 2g (") 0. 2/+2(")] ~ (58)

This equation resembles Eq. (39), and one obtains
finally

S, 2~„,(v)

[(2j+1)ikv+y]'+(a& —&,)2 E,S, „„(v)
[(2j +1)ikv+y]'+((i)+i(, (() —(0 )' E

(59)
In a»milar manner one finds that the first-side-
band frequency components of C& are related to
the fundamental components by

C(, 2&+({V)

(0+« —QP0 [(2j+1)ikv+ y] + ((() ~0)
[(2j+ 1)ikv+ y]'+ ((0 + « —(00)

)( E1C0.29+ 1(v) (60)

Based on Eq. (17) the oscillation conditions for the
the first sideband may be written

E) (dc/
S, „.(v) dv,

c &c (61)0= -[(2j+1)ikv+y]C, „.„(v)

(00+g(0-(()0)S, 2&„(v) .

Combining these formulas yields

(57)
cE((0+« —Q)E, =—' — C, „.(v) dv,'1 ~L . i ii (62)

and these formulas are similar to Eqs. (37) and
(38). With Eqs. (59) and (60) and our previous
results for Sc, and Cc &, these condxt~ons become

i@'E, & yl2
2Ny I (2j+ 1)ikv + i ((o+ h. (() —4&0)+ y

(63)

l

1 gcl t" (ikv+ 'y) ~ ((d —~o) +&v}W(")
d pq ) ( ) dv(ikv+y) + ((0+ Q(0 —(00) 1+2W„(v)si

&u n, (d (ikv+ y) + ((d —(00) N(v) W(v)
d

"
N( ) (v) dv

J ikv+ y (ikv+ y) + ((d+ b, (d —(d0) 1+2W„(v)si
(64)

The procedure now is to first solve Eq. (64) for
Ae using the values of {d and sI already obtained
from Eqs. (50) and (51). The result is substi-
tuted into Eq. (63) and the equality is tested. If
the right-hand side of Eq. (63) is larger than the
left-hand side, one concludes that in the presence
of the saturating cw mode characterized by fre-
quency e and intensity sI there is sti1.1 net gain
for the infinitesimal sideband at frequency offset

In other words, the mode is unstable. How-
ever, if the right-hand side is smaller than the
left-hand side, the sideband decays away and the
cw mode is stable. In short then, the question of
mode stability is answered by solving four equa-
tions —(50), (51), (63), and (64). While these

I
equations may appear to be a bit complicated, the
stability analysis described here requires much
less computer time than actual numerical solu-
tions of the intensity waveforms described pre-
viously. ' Also, for many practical lasers these
equations may be greatly simplified, and analytic
stability tests are sometimes possible.

D. Simplified stability criteria

The first approximation that one should consi-
der concerns the continued fraction W(v). From
Eq. (42) it follows that the peak value of the func-
tion P, (v) at velocity v =0 is always unity. The
width of this function, however, is characterized
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1 ""N{v}o!„,(v) dv
„„1+2o.,„(v)si (65)

by the smaller of y /2k and y&/2k. The function
o(0(v), on the other hand, has one or two peaks
(depending on the value of e —+0) which are char-
acterized by the width y/k. It then follows from
the form of W(v) in Eq. (44) that in any velocity
integration P, (v) may simply be replaced by zero
as long as y, or y~ or both are much smaller than
y. The same result applies if the laser is tuned
away from line center such that & —~0 is greater
than the smaller of y, and y~. But these cases
include the vast majority of practical lasers. In
the xenon system considered previously, for ex-
ample, the spontaneous decay rates are about y,
= 0.741 & 106 sec ' and y~ = 22.7 ~ 106 sec '. Thus
y, is smaller than y~ by a factor of 31, and the ap-
proximation described here is valid even when the
laser is tuned to line center. The only time that
the full continued-fraction form of W(v) would be
necessary would be in a laser tuned near line cen-
ter with y, - y~ and negligible pressure broadening
(y» y»). Such a system would not often by en-
countered, and one is quite safe in replacing W(v)
by no(v). Thus the basic stability equations (50),
(51), (63), and (64) may be replaced by the set

1—=Rer
(ikv + y) '+ (~ —~,)' N(v) o.„(v}

„-„(ikv+y}'+ ((u+ &(u —(o,)' I+ 2o(,„(v)sI
00 "1

x N(v) ao„(v}dv
j»oO

(67)

((((+ be& —Q)t,

"
(uo —(o —b, (o (ikv+ y)'+ ((u —(oo) 2

J „2(ikv+ y) (ikv+ y)'+ ((o+ b~ —(oo)'

N(v) o(,(v)x 1+2, dv N(v)o.'0,(v) dv1 + 2&0 (g) SI

where the threshold parameter r=t.ct,l/I. has
been introduced.

Equations (65)—(68) are still quite complex and
contain too many variables for specific solutions
to have general utility. Accordingly we now spe-
cialize to the case of a laser in which the cavity
resonance is tuned to the atomic center frequency
(Q:Q(p), It follows immediately from Eq. (66)
that the laser frequency is also at the atomic re-
sonance (v = &uo), and from Eq. (40) that

((u —0)t„"(uo —(o N(v) o.o(v} dv

„2(ikv+y) I+2a,„(v)si
=Re

no(v) = [I+i(kv/y)] '. (69)

+ OO ~ f

x N(vl vv, (v) dv)
4» 00

(66)
Thus the stability equations (65), (67), and (68) re-
duce to

N(v) dv N(v) dv
1+ (kv/y) + 2sI „1+(kv/y)

2 '

""1+ (kv/y)' 1 1 N(v) dv "
N(v) dv

1+ [(»+ t(~)jy]' 1+ [(kv —«u)/y]' 1+ (kv/y}'+ 2si „1+(kv/y)' '

&&t, &(u
"

1 —[kv(kv+ «o}/y'] 1 —[kv(kv —t(,~)/y'] N(v) dv "
N(v) dv

4y 1+ [(kv+ t(~)/y]' 1+ [(kv —t(.&u)/y]' 1+ (kv/y)'+ 2si „1+(kv/y}'
'

(70)

(72)

One would now first solve Eq. (70) for sI. This
result would be substituted into Eq. (72) to obtain

Finally the values of sI and Aco would be
used to test the equality in Eq. (71) to see whether
the sideband would experience a net gain.

In the xenon laser considered previously and in
many other gas lasers the Doppler width b, va is
much greater than the homogeneous linewidth
Av„= y/m. In this case N(v) may be replaced by
its line center value and Eqs. (70)—(72) simplify
further. The integrals in Eq. (70) can be per-
formed exactly, and one obtains the usual expres-
sion for the intensity in an inhomogeneously
broadened laser:

si = 2(r' —1) . - (73)

With this result Eqs. (71) and (72) can be written

1 "1+V' 1 1 dV
r „2m 1+(V+ U) 1+(V—U)' r + V

(74)yUt
y

U " 1- V —VU 1 —V'+VU dV
4(( „1+(V+U)' 1+{V-U) r + V

(75)
where U= b, &u/y and V= kv/y. A useful formula
for performing the integrations is
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(g + hx+ ix ) dx
(a+ bx+cx')(d+ ex+fx')

r' -I —(r+1)'&&'l'
y

=U=
) (83)

with

2v(A- bB/2c) 2w(C —eD/2f)
(4ac b )2& I ~ (4df e2) &I2 (76) where 5=—2yt, . If 5 is much less than unity, Eq.

(83) is

(cd —af ) (ai —cg) —(ce —bf ) (ah —bg)
(cd- af)(qf- cd) —(ce —bf)(ae —bd)

' (77)
[(y2 I)6 1]l/2 (84)

c (ae —bd)(ai —cg) —(af —cd)(ah —bg)
a (ae —bd)(ce —bf) —(af —cd)(cd- af) '

(78)

(af —cd) (di —fg) —(bf —ce) (dh —eg)
(af —cd)(cd- af) —(bf —ce)(bd ae) -' (79)

f (bd - ae) (di fg)——(cd - af ) (dh —eg)
(bd- ae)(bf- ce) —(cd- af)(af- cd)

'

(80)

Thus, Eqs. (74) and (75) reduce to

b'-1)'+ (~' ~' -+3~+1)U'+~U4
(y' —].) +2(r +1)U y U4 (81)

(r' I)[(r —-1)'+ U']
(~' —1)'+ 2(r'+ 1)U'+ U' {82)

10

Equation (82) is simply a quadratic equation in
U", and the physically interesting solution simpli-
fies to

In the 3.51-p, xenon lasers, for example, we have
typically y=12.8 ~ 10' sec ' and t, =1.0x 10-' sec.'
Thus 6=0.026«1 so that Eq. (84) should be ap-
proximately valid. In a 0.6328- p, helium-neon
laser, on the other hand, one might expect the
values y=10' sec ' and f, =10 ' sec.' 'Thus 5=100
and the last approximation would certainly not be
usable.

Equation (83) is plotted in Fig. 1 as a family of
curves of U6' '= &u&(2t, /y)'l' vs the threshold
parameter x. The fact that real solutions of Eq.
(83) exist means that there do exist sidebands of
the dominant oscillation mode which also satisfier

the oscillation phase condition. 'The frequency
displacement of these sidebands evidently in-
creases rapidly with pumping (threshold para-
meter), in agreement with the reported xenon

laser data. It should be emphasized, however,
that these frequencies are calculated under the
assumption that the sidebands have infinitesimal
amplitude. When strong pulsing occurs, the fre-
quencies determined in this manner are inaccurate.

It is also important to inquire as to the overall
conditions under which Eq. {83)has real solutions.
From Fig. 1 it is clear that as 5 increases, real
solutions require very large values of the thres-
hold parameter r In the. limit of large r, Eq. (83)
reduces to

U =~[(1-6)/0]". (85)

0
0 10

FIG. 1. Normalized frequency shift U6 l'2= ~(2k~/
p) of small-amplitude sidebands having the same
number of wavelengths between the mirrors as the
dominant saturating mode. For small values of the
parameter 6= 2yt~ the pulsations occur with excitation
levels close to threshoM (~=1).

Thus no sideband can satisfy the phase condition
unless the para, meter 5 = 2yt, is less than unity.
This condition sharply restricts the number of
lasers that might be candidates for the spontaneous
pulsation effect. 'The 6328-A helium-neon laser
mentioned previously, for example, is certainly
ineligible. The high- gain 3.39-p, helium-neon
laser, on the other hand, can be operated with
a very short cavity lifetime and might be a good
candidate for the pulsation effect. ' This helium-
neon laser is also predominantly inhomogeneously
broa, dened, "which is essential for the pulsation
effect. Similarly, low-pressure chemical lasers
are also Doppler broadened and may have short
cavity lif ctime s.

It only remains to be determined whether the
sidebands that have been derived can exhibit a
gain in excess of the cavity losses. For this pur-



21 STABILITY CRITERIA FOR HIGH-INTENSITY LASERS 919

2.0

t.5

z'
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0.5

0-2

FIG. p. Gain profiles [right-hand side of Eq. {89)]
seen by a small-amplitude sideband propagating in a
monoisotopic xenon laser medium which is saturated

by a line center signal of intensity sI. As the excitation
level is increased the intensity increases and a hole

is burned in the gain spectrum.

pose we now examine Eq. (81). The condition that
the right-hand side be greater than unity leads
immediately to

(r —1)U'+ (r —1)'U' & 0. (86)

Above threshold (r &1) this condition is satisfied
for any real value of U, i.e. , whenever Eq. (83)
has a real root. Thus when a sideband satisfies
the phase condition one can conclude immediatel. y
that the dominant oscillation mode is unstable.
This instability is always possible for sufficiently

1.2

0.8

0.4
Z,'

O
(0
F%
Q
(0
Ci

"0.8

-i.2-4 -3 -2 0
X

FIG. 3. Dispersion profiles [right-hand side of Eq.
(90)] seen by a small-amplitude sideband propagating
in a xenon laser which is saturated by a line center sig-
nal of intensity sI. The possible sideband frequencies
having the same number of wavelengths as the saturating
mode are found as the intersections of the dispersion
curves and a straight line of slope —6/e .

1 + V' 1 1 N(V) dV
2 1+ (V+U) 1+ (V- U) 1+ V2+2sI

N(V) dV
„1+V +2sI) (87)

U " 1 —V(V+U) 1 —V(V —U)'li N(V)dV
2 „„1+(V+ U)' 1+ (V- U)' ) 1+ V'+ 2sI

x I

N(V)dV ')-'
1+V'+2sI) (88)

In most gas lasers the atoms have a Maxwell dis-
tribution of velocities and in the limit of inhomo-
geneous broadening the gain profile is a Gaussian.
Therefore, it is appropriate to employ the more
conventional notation in which the frequency dif-
ference is normalized to the full Doppler width
at half maximum &vn by the relation x = 2(v —vo)

(ln2)' '/&v~ and the natural damping ratio is
e = &vz(ln2)'~'/&vD. ' With these definitions Eqs.
(87) and (88) can be written in the forms

""1+ V' 1 1
2 (+ (V+x/e)' (+ (V-x/e)')

exp(-e'V')dV '-exp(-e'V')dV)'
1+ V'+ 2sI „1+V'+ 2sI (89)

x5 x "" 1 —V(V+x/). ) 1 —V(V —~/e)
e 2e J „1+(V+x/e)' 1+ (V-x/e)'

exp( —&'V') dV "exp(-e'V') dV'( '
1+ V'+2sI „1+V +2sI j

The right-hand side of Eq. (89) is plotted in
Fig. 2 as a function of x for the intensity values
sI=0 and sI=1 using the natural damping ratio
& = 0.031 which is appropriate for a xenon laser
with a Doppler width of 110 MHz. 'These curves
show the ratio of net gain to loss that would be
observed by an infinitesimal standing-wave field
with a frequency detuning of x. The value of a is
so small for xenon that the unsaturated (sI = 0)

, curve in the figure is indistinguishable from the
inhomogeneous limit exp(-x'). With higher levels
of gain and intensity a deep hole is burned in the
gain curve. The bottom of this hole always occurs
at unity since the gain must equal the loss for the
oscillating mode.

large x if 5 is less than unity.
The pulsation instability can be understood physi-

cally as a consequence of spectral holeburning.
'To show this, we first present some solutions of
Eqs. (71) and (72). It is convenient numerically to
regard the normalized intensity sI as an adjustable
parameter rather than the threshold coefficient r.
The two quantities are related by Eq. (70), and
with this substitution Eqs. (71) and (72) can be
written
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The right-hand side of Eq. (90) is plotted as a
function of x in Fig. 3 using the same conditions
as employed in Fig. 2. 'The unsaturated sI =0 curve
is indistinguishable from the inhomogeneous limit
2m '~'E(x), where E(x) is Dawson's integral. " Also
plotted in Fig. 3 is a negatively sloping straight
line corresponding to the left-hand side of Eq. (90)
with values appropriate to a xenon laser (6 = 0.026).
The points at which such a straight line intersects
one of the curves yields in a graphical way all
possible sidebands having the same number of
wavelengths between the mirrors as the funda-
mental cw mode. This same graphical solution
technique has also been employed previously in a
discussion of the longitudinal-mode splitting as-
sociated with high-gain lasers. " It is clear from
the figure that with a moderate level of saturation
two symmetrically spaced sidebands may satisfy
this oscillation phase condition. A glance back at
Fig. 2 shows that these sidebands are certain to
have gain because they are situated at frequencies
away from the minimum in the gain dip. 'Thus the
spontaneous pulsations are a direct consequence
of the perturbations in gain and dispersion as-
sociated with spectral holeburning. Besides pro-
viding this insight the graphical solutions are
especially useful for understanding those cases in
whi. ch the Doppler linewidth is not much greater
than the homogeneous linewidth. If the Doppler
width is actually less than the homogeneous width,
it will be shown in Sec. IIE that pulsing can not
occur.

E. Homogeneous line broadening

Not all lasers have inhomogeneous linewidths
greatly in excess of the homogeneous width, so
the approximation which reduces Eqs. (70)-(72)
to Eqs. (73)-(75) may not always apply. Thus it is
worthwhile to consider the behavior of a laser in
the opposite limit where the homogeneous width is
much greater than the inhomogeneous width. This
limit is obtained by setting the velocity v equal to
its line center value of zero in Eqs. (70)-(72) ex-
cept within the unsaturated population difference
N(v) The integra. ls are then trivial and these
equations reduce, respectively, to

sI = ,' (r —1), - (91)

r ' = [1+ (&ur/y)'] '(1+ 2sI) ', (92)

&art, /r = -(«u/2y)[1+(&~/y)'] '(1+ 2sI) '. (93)

Equation (91) is the standard formula for the in-
tensity in a homogeneously broadened laser. As
in the previous stability discussions, this result
is to be substituted into Eq. (93) to obtain the side-
band frequency offset &~. The offset &co is then
inserted into Eq. (92) to test whether the sideband

III. ONE-DIRECTIONAL RING LASERS

Many lasers are built in a one-directional ring
resonator configuration, and for completeness we
consider briefly the stability characteristics of
such resonators. 'The starting point for these
calculations is again the density-matrix equations
(l)-(4) but now the rapid time and space variations
are factored out using the traveling-wave forms

&(z, t) = 2E'(t) exp(ikz —i(ot)+ c.c. ,

p, ~(v, z, t) = P'(v, t) exp(ikz —i&et)/2p, . (96)

With these substitutions Eqs. (1)-(4) reduce to

= i(&u —&u, —kv)P'(v, t) -yP'(v, t) —
@

E '(t)D(v, t),

(97)

=X (v) —X (v) — ' 'D(v t) — ' 'M(v, t)et ' ' 2 ' 2

+—@[i&'(t)P'*(v, t) + c.e.], (96)

SM(v, t) = X, (v)+ X, (v)

y'M(v t) y y'D(v t).) (99)

Together with the wave equation, Eqs. (97)-(99)
characterize the transient phenomena that can
occur in a ring laser.

If the laser is capable of periodic spontaneous
pulsations, a useful set of substitutions analogous
to those used in the study of standing-wave os-
cillators include

&'(t) =Q &„exp( in&(ut), — (100)

P'(v, t) =g P„(v) exp( in«ut), - (101)

D(v, t) =Q D„(v) exp( —in&(ut), (102)

has net gain.
Substituting Eq. (91) into (93) and using the pre

vious definitions, one obtains

(94)

Since U' is always negative, the frequency offset
is apparently imaginary. Thus a homogeneously
broadened laser can never support sidebands of
the saturating mode, and the mode is always stable
with respect to coherent pulsations. This same
conclusion follows from numerical and graphical
solutions for mixed broadening situa, tions in which
the homogeneous linewidth is dominant.
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M(v, t}=Q M„(v) exp(-in&(ot).
n

With these substitutions the nth frequency side-
bands of Eqs. (97)-(99) must satisfy the equations

0 =i ((u+ na(u —(o, —kv)P„(v) —yP„(v)

( )
(&u

—&u, -kv iJ.'E, N(v)/yg
1+ [(tu —ur, —k v)/y]' +si '

where the normalized intensity is now defined by

(118)
'" g E„,D, (v), (104) Equations (112) and (116) may be combined to

yield the unsaturated intensity gain coefficient
0= [X,(v) -Z, (v)]6„,+in&roD„(v)- ' ' D„(v)

N(v)dv
ce,yK „1+[((u —&o, —kv)/y]' ' (119)

Y ~ ( )
Y y D ( )n (106)

In a similar manner the wave equation reduces to
00

+ (~+n&cu —0) ~E„=— ' P„(v)dv, (107)
2fc

where we have integrated over the length of the
cavity L with an active medium of length l.

To test the stability of the laser oscillation, we
assume as before that the zero-order frequency
component is dominant. Then Eqs. (104)-(107) for
this component are

2

0 = (ur - &o, - kv)C, (v) - yS, (v ) —
@

EQ, (v),

0 = —((o —(u, —kv)S, (v) —yC, (v),

(108)

(109)

O=x (v)-X,(v)- '+ 'D, (v) — ' 'M, (v)+

(110)

'iaaf. «}+—Q [E~.PP( ) -E~-P~(v}1
(105)

0 = [X,(v}+X,(v)]6„,+ in«oM„(v)

which is the same as Eq. (49). In terms of this
gain coefficient Eq. (112) can be written

1 gcl "
N(v) dv

t, I „1+[(&o—e, —kv)/y]'+si

( ~ „1+[((o —&u, —kv)/y]'t

Similarly, Eqs. (113), (117), and (119) maybe
combined to obtain

gcl ""
(u —~, —kv N(v)dv

2I, .„y 1+[((o- (u, -kv)/y]'+si

xi
N(v}dv

( „„1+[(&u —~, —kv)/y]' (121)

These equations govern the fundamental saturating
mode.

Next it is necessary to determine whether the
first-order sideband can satisfy the oscillation
conditions. From Eq. (104) the infinitesimal first-
order polarization must satisfy

2

0=i((u+ 4(o —(u, kv)P, (v) ——yP, (v) — E,D, (v) .
(122)

o=z, (v)+X,(v)- ' 'M, (v)- ' 'D, (v),

S,(v) dv,
2t,

(112)

If Ey is assumed to be real, this can be separated
into the two equations

p
2

0= ((o+ &(o- (o, -kv)C, (v) —yS, (v) ——E,D, (v),
(123)

(dol
(&o- A)E0=- ' Co(v) dv,

2&,L. „ (113) 0 = (&o+ «u &u, —kv)S, (v) —yC, (v) . (124)

where E, is real and P, (v) = C, (v)+iS, (v). Equa-
tions (108)-(111)may be solved for S,(v) and D, (v),
and the results are

These combine to yield

-t 'E,D.(v)/y@
1+ [(~+ &~ —~, —kv)/y]' (125)

p. 'E,D, (v)/ya
1+ [((o —(u, —kv)/y]' ' (114)

D, (v) = ' ' E,S,(v)+N(v) .
~a@

(115)

Combining these equations, the polarization com-
ponents may be related explicitly to the unsaturated
population inversion and the intensity according to

This equation resembles Eq. (114), and one obtains

( )
1+ [((o—(u, —kv)/y]' E~S ( ) (126)1+ [(&u+ &|u —&u, —kv }/y]' E,

Similarly, the first sideband of C, is related to the
fundamental component by

&+ +&a& —(o, —kv 1+ [(u& —&uo —kv)/y]'
~ —~o —kv 1+ [(to+ &ar —&u, —kv)/y]'

g2E~ Ã (v )/yk
1+ [((o—(o, —kv )/y]'+ sI ' (116) „E,C, (v)

(127)
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Using Eq. (107) the oscillation conditions for the
sideband may now be written (129)

S,(v) dv,
2&,L-- (128)

I

&tth Eqs. (116), (117), (119), (125), and (127),
these conditions become

1 get 1+[(&- ~o —kv)/y] N(v) dv "
N(v)dv

t, I, „1+[(co+ &u& —a&, —kv)/y]' 1+[(~—&, —kv)/y] +sI 1+[(~—~o-kv)/y]

, k 1.[( —,-k )/y]' N(v) dv

1+ [(~+ &~ —~, —»)/y]' 1+ [(~—~.—»)/yl'+"

(130)

N (v)dv
„1+[((o —cu, -kv)/y]')

In principle the stability analysis of ring lasers is
now complete. Equations (120) and (121) are a
coupled set which yield the intensity and frequency
of the dominant- frequency component. Equations
(130) and (131) show whether in the presence of
this component a sideband at frequency offset &v
can simultaneously satisfy the oscillation phase
condition and exhibit net gain.

In practice the equations just listed are tedious
to solve, but some simplifications are usually
possible. If the laser is tuned to line center,
Eq. (121) is satisfied trivially provided that N (v)
is an even function of v. Then Eqs. (120), (130),
and (131) reduce to

1 " N(v) dv
"

N(v) dv

„1+(kv/y)'+ sI „1+(kv/y)' ' (132)

1 " 1+ (kv/y)' N(v) dv

r 1+ [(A&u —kv)/yl' 1+ (kv/y)'+sI

N(v) dv

1„1+(kv/y)')
(133)

If the Doppler width is much greater than the
homogeneous linewidth, N(v) may be replaced by
its line center value. In this limit the integrals in
Eq. (132) can be performed analytically, and the
result is

&(ut, ""&(u —kv 1+ (kv/y)' N(v) dv

r .= 2y 1+[(t~-kv)/yl' 1+(kv/y)'+»

N(v) dv.„1+(kvly)'

l l "" 1+V' dV
1+ (V —U)' r'+ V' '

yUt, 1 f" (V- U)(1+ V') dV
r 2m ~ „1+(V —U)' r'+ V' ' (137)

These equations may be shown to be identical to
Eqs. (74) and (75). Thus the stability criteria for
one-directional ring 1.asers are identical in form
to the stability criteria for standing-wave lasers,
and all of the previous considerations are sti1.1
valid.

IV. CONCLUSIONS

A rigorous solution of the time-dependent den-
sity-matrix equations and Maxwell's equations
shows that some lasers which one might expect
would produce a cw output are in fact unstable and
produce a periodic train of short pulses. In this
work we have derived the conditions that a laser
must satisfy in order to exhibit the pulsation in-
stability. The resulting stability criteria in their
most general form consist of a set of four coupled
integral equations. For most purposes, however,
it is sufficient to simply examine Fig. 1 to deter-
mine whether there is any possibility of instability.
Basically, the laser medium must be inhomoge-
neously broadened and the product of the homoge-
neous linewidth and the cavity lifetime must be
less than unity. The xenon laser at 3.51 p, m has
been. our archetypical unstable system, but the
unstable regime is broad so that similar behavior
should be found with many other laser types.
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