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Two-photon near-resonance scattering of a time-dependent light beam
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Time-dependent spectra of light emitted after two-photon excitation with nonresonant intermediate state
are studied by the perturbation method. Two components are distinguished: a slow one I, connected with
the excited-state population, and a fast one If connected with the double-quantum optical coherence. For
large detuning of the two-photon frequency from the excited —ground-state energy separation, the
fluorescent light is found to be I, —~lf I and the Raman-scattered light is If. The influence of statistics of
light, laser finewidth, spectral bandwidth of the detector, and transfer of coherence from the ground to the
excited state are also taken into consideration.

I. INTRODUCTION

In the last few years there has been great inter-
est in the time-dependent phenomena induced by
the laser light beam due to the introduction of tun-
able dye lasers —strong, coherent, narrow-line-
width light sources that can also produce short
pulse s.

Time-resolved fluorescence and resonance Ra-
man scattering for one-photon excitation were
studied by Szoke and Courtens. ' They confirmed,
with the help of the adiabatic-following approxi-
mation, that the Raman scattering and two-photon
absorption are adiabatic processes, while fluores-
cence and stepwise two-photon absorption are non-
adiabatic ones. Qrischkowsky' has studied similar
problem in the terms of adiabatic states. He divid-
ed the excitation into coherent part which main-
tains a definite phase relationship with the driving
field and incoherent part induced by the relaxation
processes. However the interpretation of his ex-
periment seems to be more adequate in terms of
adiabacity and nonadiabacity rather than coherence
versus incoherence.

The problem of the stationary light-induced fluo-
rescence and resonance Raman scattering has
been studied by many authors in the one-photon ex-
citation case.' In this paper we give as a specific
case the spectrum after two-photon excitation.

Two-photon processes in the three-level system
for the transient and steady-state cases have been
studied by Brewer and Hahns in the Bloch-like
model. Their exact solutions were verified experi-
mentally by the radio-frequency transient NMR
method. '

The adiabatic-following model for two-photon
transitions was used by Qrischkowsky and Loy to
de scribe two-photon re sonant-enhanced parame-
tric-gener ation processes.

The present paper will deal with time-dependent
spectra of spontaneously emitted light after two-

photon time-dependent excitation with an off-reso-
nant intermediate state'; i.e., we study the time
evolution of the spectrum of fluorescence and Ra-
man-scattered light. These phenomena are stud-
ied by the perturbation method with respect to the
ratio of the electric field of exciting light q

(exactly the Rabi frequency) to the detuning of
the intermediate state from resonance: A,„and

First, we find the excited-state time-depen-
dent density matrix p„,(t). As a special case we
discuss here the experimental situation of Bass-
ini et al. ,

' in which the problem of transients pro-
duced by Doppler-free two-photon near-resonance
excitation was studied. '

Then using the quantum regression theorem, we
find the time-dependent spectrum of the emitted
light. Two components of the spectrum are dis-
tinguished: the first, connected with the popula-
tion of the excited state is called here. the slow
component I„and the second, connected with the
double-quantum optical coherence, called the fast
component I&. The fluorescence and Raman part
consist generally of both slow and fast compo-
nents. " As an example of the utilization of the
fourth-order formulas we discuss three special
cases:

(a) the spectrum of emitted light after a station-
ary excitation; the spectrum consists of two peaks:
the fluorescence component and the Raman compo-
nent;

(b) the time-dependent spectrum of light after
step excitation; we show the time development
of the spectrum from a nonstationary situation to
the stationary state of two peaks; and

(c) the time-dependent spectrum of light after
adiabatic excitation —the case of a relatively large
detuning b, of the two-photon frequency from reso-
nance.

The experimental work of Liran z«& "can be
interpreted with the help of our formulas for the
time-dependent spectrum.
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After the introduction given in this section, we
describe in Sec. II the physical basis of this work:
the atomic system and light. Then we define the
time-dependent spectrum of light in Sec. III. In
Sec. IV the total intensity of emitted light, by
means of the excited-state density matrix, is cal-
culated. To understand its properties, given in
Sec. VI, we discuss first the correlation function
of light in Sec. V. The time-dependent spectrum
of light and its properties are described in Secs.
VII and VIII.

II. ATOMIC SYSTEM AND LIGHT BEAMS

The atomic system (Fig. 1) consists of four
states: the ground g, the intermediate y, the ex-
cited e, and the final state f. States e, r, and g
can have a substructure (e', r', g') and interact with
two (or one} laser light beams, with frequencies
&, and w2. We assume for simplicity that the light
with the frequency &,(&,}directly influences opti-
cal coherences between e and r (r and g) states
only (Fig. 1). In special cases we will restrict
ourselves to one-beam excitation, putting ~y Q)2.

The two-photon frequency detuning from reso-
nance 4 is assumed to be much smaller than one-
photon detunings A,„and 5„; moreover, b, ,„and
4„, are larger than any frequency appearing in
this paper except the optical one. Therefore, we
assume that the light fields are adiabatic with re-
spect to b,„and 4„~, i.e., Isa/st!«eb, ,„and &„~.
The separation of the final state f and the excited
state e is taken to be off-resonant with respect to
~, and ~,. Therefore, we neglect stimulated tran-
sitions between e and f states. Hence the Raman
effect described here is so called the spontaneous
Raman effect in contrast to the stimulated one.

III. TIME-DEPENDENT SPECTRUM OF LIGHT

Spectral measurements' are made by inserting
a frequency-sensitive device, usually a linear fil-
ter, in front of the detector. The "spectrum" of
light is the record of the detected light signal as
a function of the frequency setting of the filter 0
with a certain finite filter bandwidth z. The simp-
lest possible filter is represented by the function

F (t) = exp[-(i&+ a)t] g(t),

where g(t) is the unit step function starting at t =0,
and ~ determines the width of the transfer function
with its center at Q. One can show" that this for-
mula describes a Fabry-Perot filter with ~
=c(1-r')/2d, where d is the distance between the
plates and z is the amplitude-reflection coeffi-
cient. The filtered, "observed" field is the con-
volution of the field E(t) and the filter's transfer
function F(t —t ):

(2)

Light intensity detected beyond the filter is given

I(t;0, n)=
I
V(t)I'=2o. ' I dt'e

~oo

xRe
40

The intensity I depends on time I; and the frequency
0, therefore formula (3) describes time-dependent
spectrum of light. ' We are interested in an electric
field E(t), which has been emitted by an atomic
system. Describing E by its source" (atomic di-
pole moment D), one obtains

I(t;0, ct)-2'' dt'e
4 oo

xRe dTe ""'""(D.(t )D (t -r)), (4)
40

where D and D, are the lowering (D =dI f)(e!}and
the raising (D.=d Ie)(f I) parts of the electric dipole
moment operator of the atom, d being equal to the
matrix element (e IDI f).

Thus to calculate the time-dependent spectrum,
it is necessary to know the two-time correlation
function of the atomic dipole moment (D, (t)D (t —i)).
Before studying this problem let us consider a sim-
pler case of the total time-dependent intensity of
light emitted by an atomic system.

FIG. 1. Situation considered in the present work: (a)
Haman scattering; and (b) fluorescence.

IV. TOTAL TIME-DEPENDENT LIGHT INTENSITY

In order to have the time-dependent signal not
perturbed by a filter it is necessary to have a



MACIE J KO 1, %AS 21

broadband filter with very large o.. The intensity
of the detected light is then frequency integrated
and can be entirely described by the density ma-
trix" of the excited state p„,(t):

i(t)-(D,(t)D(t)}= g p..(t)D, D,
e, e',f

Therefore we focus our attention on the equations
for the evaluation of the density-matrix elements
needed to calculate p„,. Under the rotating-wave
approximation (RWA} these equations have the
form

transformation to the rotating frame:

o =p e'~~' e -p e'~2t o -p e"~&' 2}t
er er & rg rg f eg eg

we. get

p„,= -(I',+ i(o„,)p„,

+' Der~m~~ ~er Dm~ ~

o„= (I-'„+in.„)o„
+ i Q (D „v„g6( —O' „D„p2) 1

(12)

p„;——(I',+ i(o„,}p„,

+i Q(D,„p„,.E, —P,~„,,E*,), (6)

o,„(t)=
e',g' gr'

pgg'Dg'g~(

(14)

p =-(I +i(0 )p

+ ~ Derprg+j pe rg+2 (7)

(T„g(t)= Q (D„(7 ge ) +D„gpggt g
I ge,g, r

p„„,D—„,~,)/t) „,.

p, „=—(I',„+i(u, „)p,„

er'pr'r~& pee'De'rEI, p g+grF 2
e', r gg'

Py g ( gg+ &~„g)p„g

+ i P (D„,p,gE *, +D,g,p&gEg —P„„D«E2). (9)
e,g', rg

I', is the natural width of the ith level, I',&=(I,+I'&)
2.
The light is described classically; so the effect

of spontaneous emission was taken into account by
adding proper terms to the density-matrix-ele-
ments evolution equations. " If any nonradiative
relaxation exists in the atomic system, it can be
described by a modification of T',. and T'„. Gener-
ally the strongest relaxation is due to phase-dis-
turbing (inelastic and quasielastic) collisions. In
this case I',.&& (I',.+I"&}/2. Modification of I", can
be caused by the inelastic collisions only. "

The electric field of the light g is put in the
fol m

In the fourth order, the excited-state density
matrix &"p„, is found to be

(4)
p (t)— (t7 e e i gg )(g w)1, (r')-

These equations can be solved now by the succes-
ive-approximation method with respect to e,D,„/t).,„
and egD„ /i), „, starting from the ground-state den-
sity matrix p, , (t) as a zero order. We assume
that p, can be also a function of time. This gen-
eral choice of the zero order allows one to de-
scribe the influence of the transfer of the coher-
ence" from the ground state to the observed light
emitted by atoms.

Vfe are interested in the second- and fourth-or-
der solutions. In the second order, the double-
quantum optical coherences are created. Let us
write them for future reference:

t
(')o„(t)= Q '

) dr exp[(r„+ it) „)(r- t)]
r, g' rg

)( D,„D„,.P~, (7 )e,(r)e, (~).

(16)

E,. =exp[-i(o,-t -i(t);(t)]e, , i =1, 2, (10)

where C,. is the slowly varying time-dependent en-
velope of the electric field of ith light beam inten-
sity; (t)(t} is the phase of the electric field of light,
being a stochastic function of time. The introduc-
tion of (t) (t) allows us to generate the spectral
width of light. In a general case we will construct
the correlation function of light from the complex
amplitudes" e;=e,.exp[- i(t),.(t)].

Because we have assumed that the intermediate
level r is off-resonant, one can transform Eqs. (7)
and (8) to nondifferential ones. Performing the

)([g(2) (y~ r) ( eg i +' 'g)(~''f

+g(2)()- y~)e( eg+(+eg)(v'-r))

where &„, is the energy separation within the ex-
cited state,

I ( }= Z Dg. .gpgg( }Dg'D.g/~~g. ~.g~.
gg'r

A special case of Eq. (17) was given in Ref. 20.
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V. CORRELATION FUNCTION OF LIGHT form

I'(t)=le &~ b~('~ (19)

where is the light frequency. The power spec-
trum y of the field is thus a Lorentzian function

y(0) = I (2b/[(&d -0)'+b']], (20)

i.e., 5 is the spectral width of light. The second-
order correlation function of the stationary light
is in this case given by

9"'(r,r')=I'e 'bt"~(. (21)

When the intensity of light is time dependent,
9"&(r,r') is not as simple as in Eq. (21). Assum-
ing that the process causing time variation of las-
er light intensity (e.g., pulsation or modulation)
is statistically independent of the stochastic fluc-
tuation of phase (generating the spectral width of
the light}, one obtains

g&2&(r r )-g& &(r rt)e-@bit-t''I (22)

g &,'&(r, r') =
v )(rQ+(r )C,(r')C, (r')

=[I,(r)I,(r)I,(r') f,(r')]'". (23)

This approximation seems to be good when the
light is modulated outside the laser cavity. In
other cases one ought to define the joint correla-
tion function of the phase fluctuation and the inten-
sity variation, putting, e.g.,

(24)

9~& ', (r, r'} can be assumed to have the exponential

Because of the assumption that each of the laser
beams influences only one optical coherence
(&d, —p,„,cu, —p„,), the correlation function of the
exciting light is given by

9&'&(r', r)=e,*(r'Q(r'Q, (r)e, (r)=g&'&+(r, r'). (18)

The over-bar describes the averaging over sto-
chastic phases y,

As a specific case we will consider now excita-
tion by one laser beam; therefore we put (d,=&,.
A number of authors (e.g., Refs. 21, 22) have de-
vised a model of laser light based on the assump-
tion of a fixed field amplitude with a small random-
ly varying frequency, leading to phase diffusion
(one-mode laser working well above threshold).
In that model the frequency modulation function
g(t) =y(t) is assumed to be governed by a real
stationary joint 'Gaussian random process with
the correlation time much smaller than any other
time we need to consider. The first-order corre-
lation function of the light calculated under those
assumptions is as follows":

In this case b does not define the spectral width of
the laser light.

When the laser is working in the multimode re-
gime (with free-runing modes) the second-order
correlation function by analogy to Eq. (22) is

9&'&(r, r')=29, (r, r')e "~' 'j. (25)

If one ought to take into consideration the motion
of atoms, the excited-state density matrix p„,
should be integrated over velocities with a proper
velocity distribution of atoms W(v), usually the
Maxwellian one:

p..(t) fp (t=tt) tp„(v. )d, 'v.
0

(28)

The density matrix p„, depends in this case on the
velocity v through the correlation function of the
light:

g&b&(r, r')=g&b&(r, r') exp[2i(k, +k,)%(r'-r)], (2V)

i.e., the electric field of the light F. in the frame
moving with the atom is

E& =a& exp[i ((u, +k,.%)t],

where kyar is the first-order Doppler shift. In the
case of Doppler-free experiment, ' k,+k,=0 and
gb(r, r'), as well as p„„are velocity independent.

(28)

VI. PROPERTIES OF THE TOTAL TIME-DEPENDENT
LIGHT

Equation (1V) describes the time dependence of
the coherence (e've } and population (e'= e) in the
excited state induced by the time-dependent light
beam. The time dependence of p„, can be induced
by:

(a) The time dependence of the ground-state
(zero order in our case) density matrix p &, e.g. ,
a double-quantum transfer of coherence from the
ground to the excited state. The efficiency of the
transfer is resonant and has a maximum for ~„,
=+

~

6+ m, ~~, where &u„, is the ground-state fre-
quency

i& t
pggt= Qgg@ (29)

(b) The time dependence of the correlation func-
tion of the light 9'(r, r'}. Of course to induce co-
herence in the excited state, the excited-state fre-
quency ~„, ought to be present in the Fourier spec-
trum of the correlation function of the light and/or
in the ground-state density-matrix time evolution.

Equation (1V) can be specialized for this case,
which has been investigated experimentally by
Bassini ei «5'; one only ought to put e =

&,
' (no ex-
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light intensity. It can be said that the oscillations
are due to the coherent excitation at t =0 and fre-
quency-unresolved observation of the Raman com-
ponent and the resonance fluorescence component.
To end this section let us remark that Eq. (17) al-
so describes:

(i) quantum beats" after two-photon excitation,
when the intensity of the laser light is changed
sufficiently quickly;

(ii) Dodd-Series-type' (here double-quantum)
experiment, i.e., the creation of excited-state co-
herence by modulated excitation;

(iii) the transfer of coherence from the ground
to the excited state and its influence on time-de-
pendent phenomena; and

(iv) the dependence of the emitted light intensity
on the fluctuations, statistical properties, as well
as a mode structure of the laser light.

VH. TIME-DEPENDENT SPECTRUM AFTER TYCHO-PHOTON

EXCITATION

To calculate the time-dependent Baman and fluo-
rescence components of emitted light, it is nec-
essary to know the two-time correlation function
of the atomic dipole moment (D, (t'}D (t'-w}) [see
Eq. (4)]. It follows from the quantum regression
theorem, that for ~&0 the two-time average
(D.(t')D (t'-r}) satisfies the same equation of
motion as the one-time average (D.(t')) = pf (t')D f
fully described by pf, (t'). Therefore we have to
find the time evolution of pf, . Equations for the

density-matrix elements, which are necessary to
find pf, , are

Pef = —(Fef+ ganef)Pef+i g D«P„fE» (31)

p„f= (I'„f+i(o„f)p„f+i Q (D„gpgfE&+D„,pfEme),

(32)

Pgf ( gf i+gf }Pgf
r

(33)

one can find the second-order correction to p,f..

rg er

x exp[- (I',f+i[e&,f) t] exp[(1'gf+i(d«)t']
t I

x '
dr exp[(1',f - I'gf+ i(u,g}7']E,(w)E, (7).

te

(36)

as found assuming very large ~ and re
membering that ~,f (Jo f (J02 + and Qp f+402
= -b, ,„+~,f. Now using the quantum regression
theorem" one obtains

It ought to be remarked that Eqs. (31)-(33) are
independent of Eqs. (6}-(9). Starting from zero-
order approximation

«&p„(t}=exp[-(I'„+t~„)(t—t'}]p„(t )8(t —t'), (34)

'"pgft=expf- (I'gf+i(dgf)(t —t')] pgf(t')e(t —t'), (36)

(D,(t')D (t -7'))=exp[-(I;f -i(1&,f)7'](D, D,)(t -~)+ ' . ' exp[-(I',f —i((&)t ]
gr

t
xexp[(re —(e,~)(t' —e)] f e( )ee( )eexp[(1".e -Pe -(e.,)e']dr (SV)

In Eq. (SV) we have one-time correlation functions only,

&def Dfe}(t -~)= Z "'Peg(' -')Dge .eDefDfe
gre'

(36)

(D,f Df,)(t'-~)= g "'p„.(t' ~)Def Dfe.
e

(39}

(2&p, and "'p, were found in Sec. III [Eqs. (16}and (17)]. We will call the component of emitted, light
connected with the double-quantum coherences the fast component If, and with the excited-state population,
the slow componentI, . It ought to be stressed that both components are of the same (fourth) order in the
electric field of light. Now for simplicity we assume that there is no excited-state structure (e = e). In
this case the slow component is given by

pt oo

I,(t;0, a)-4a'Re ] dt ex [ pS(ta-t')]ex-p(-I;t ) J dr exp([-a -I",f+I', -i(O-~,f))7$
~co 0

where

t'-7'
x Re d7' exp[(l; —I"„it&)[']-

«00

d~" exp[(r „+ia)&."]I.(v"}6"&(~',v"), (40)
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I.(t)= g a,„D„,,p, ,(t)D,„D„.D„D„/~ S,„~„,~.
rgb

tt +00

I~(t;Q, a)-2n'Re
J dt'exp[ 2&-y(t —t')]exp[-(F„+I',~-F~)t']

«00 "0
d7 exp/[-n —I" ~+F, -i(Q -v,z)]~]

t'"v'

x dr'exp[(r„- r„-i~)v']
J

dv" exp[(r„+ iA)~'] S.(~")9"&(T T ) .
t '-7' «OO

(41)

Vfe remind the reader that 0 is the center frequency and z the spectral bandwidth of the detecting filter
(e.g., a spectrometer). We will discuss these formulas later.

Two components similar to I, and Iz can also be found in the case of one-photon excitation. They were
described and observed for three-level free-induction decay" (a specific case of the so-called time-delay-
ed laser-saturation spectroscopy). A component similar to I, was named in" the population-driving term
and similar to I&, the Raman-type term.

For the case of stationary excitation, formulas (40) and (41) describe the spectrum of emitted light and
reduce to

(r.,+ub)(r„+&)

LI
[(r.,+yb)'+A'][(r„+&)'+(~„Q)'][(r-„I+b+~)'+(~„-A-Q)']

x[(I', k+b)(I',~ o+r)(I",~ k+b (y+) (+l,~ (y+)A((o,~-b, -Q)+(1'~+kb+(y)((u, ~-Q)A
—(r.,+nb)(~„-Q)(~„-~-Q)].

Fig. 6 shows I, and Iz vs the center frequency of
of the filter Q for a narrow-band filter (~=0). It
ought to be remarked that the fluorescence I~ (the
light emitted on the frequency ~ z) depends not
only on I„but is the difference of two terms: I~
=I, —

~ I&~. The second peak on Fig. 6, the light
emitted on the frequency (d,&

-6, depends, for
sufficiently large 6, on I~ only and corresponds
to the Raman-scattered light IR. For a monochro-
matic excitation (b=0) and no nonradiative relaxa-
tion in the atomic system (2I'„=I',; F,~ =0) the
fluorescence I~ decreases to zero proportionally
to the square of the filter bandwidth +. So, in the
absence of nonadiabatic processes, the fluores-
cence vanishes and only the Raman-scattering
partI~ remains. It can be said that the measured
fluorescence l„(ur,I) is connected with nonadiabatic
processes such as transverse relaxation, relaxa-
tion due to laser phase fluctuation, as well as the
detection process.

As an example we have calculated numerically
the time-dependent spectrum of light after a step
excitation starting at t =0 for the two-photon de-
tuning from resonance 4=10I", and for the filter
bandwidth ~=0.6I', (Fig. V). At first the Raman-
scattered light and the fluorescence are not spec-
trally resolved (they were coherently excited at
t =0). Two peaks of incoherent excitation appear
after time of the order of I', '. On Fig. 8 the in-
sity of the light emitted at Q=a&~ (the fluorescence)

(Arb.
~ll

un. J..

II

I IS
I

I
I

/
/

/
I
I
I

I
I

I I~f
I I
I
I
I I

I
IIIII
~l

'(a-~ j/r;

FIG. 6. I„ I&, and I,+I& vs center frequency 0 of the
filter, for the narrow-band filter (o.' = 0). I~+I& shows
bvo peaks corresponding to fluorescence (&=co,&) and
Baman-scattered light (0= w@ +~. Ieg= 0.5 ~e. ~ef
= 0.5 I'~, kb = 0.5 I'~, and 6= 5 F„ I'~ = 0 was assumed.
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to have the full spectrum of light emitted by "mov-
ing" atoms one ought to integrate I and I overS f
velocities with the proper velocity distribution.

VIII, SPECTRAL RESOLUTION OF RAMAN-SCATTERED
AND FLUORESCENCE LIGHT

I I 1 I & I I I

8 f2 18 (J2-+ )/7,

FIG. 7. Time-dependent spectrum of light after step
excitation at t = 0 for two-photon detuning from resonance
4=10 I'~ and the spectral bandwidth of the filter a
=0.6 I', I'&-0.7 Q, I' =0.51, kb=0.3 I', I'~-—0.2 I' .

In the case of large 4 and large bandwidth of the
filter ~, both much larger than natural widths, re-
laxation rates, and characteristic rates as well as
frequencies of light intensity changes, one can
spectrally resolve two components of the emitted
light: the fluorescence I~ and the Raman part I~,
as on Fig. 7. In this section we will study the time
dependence of these components. We concentrate
on the off-resonance (near-resonance) case, when
the emitted light can be well resolved into time-
dependent spectral components, and the exciting
light satisfies the adiabatic condition

& dI

and 0=&@,
&

—4(the Raman part) are drawnvstime t.
Oscillations are due to the coherent excitation of
I„and I~ at t =o, and their amplitude decreases in
time.

To end this section let us remark that in a gen-
eral case the atomic motions have to be taken into
consideration. To describe this motion as a mod-
ification of exciting light frequencies [Eq. (2V)],
the laboratory frame is changed to the one moving
with the atom. However the emitting atom can
have a nonvanishing velocity component in the di-
rection of emission. Therefore in Eqs. (40) and

(41) we must put "observed" frequency &0,~ depen-
dent on the atomic velocity v, which is equivalent
to the return to the laboratory frame:

&d ~(V) =&d ~+k% & (44)

where k is the wave vector of the field emitted in
the direction of the detector. Therefore in order

FIG. 8. Fluorescence Iz(~&) and Raman-scattered
light Iz(co- 4) vs time t. Oscillations are due to the
coherent excitation of I& and I& at t = 0.

with ~ & 4. First, we tune our spectrometer to the
fluorescence I~, putting 0=~,&. In this ease I~
=I, —(I~), with

pt
I,- 2 exp(- 1",t) Re dzexp[(I", —I", —in. )T]

x dr'exp[(r„+ iA)~']Z(7')6&" (~, 7.'); (46)
woo

(4V)

with I(t)=6&2'(t, I). [As we do not want to specialize
the correlation function of light 9&'&(I, t'), we can-
not take the limit of large 0, in Eq. (46). This can
be done only after the double integral. ]

The fluorescence is the difference of the slow
component and the fast one. Iz (as well asI ) de-

S
eays after a pulse excitation with rate I', . More-
over, we findI&=0.

The Raman component I„(Q=&d,z -A) for large A

depends on the fast component only I~=I&,. the resi-
dual slow component I, is 5' times smaller than I&.
So the Raman-scattered light I~ follows the tern-
poral behavior of the square of the exciting light
intensity. Thus the Raman scattering is an adia-
batic process (I„ follows adiabatically the corre-
lation function of the exciting light), and the fluo-
rescence is a nonadiabatic one, as in the one-pho-
ton case. '

Equations (46) and (4V) seem to be appropriate to
describe the results of Ref. 11 (see also Ref.
27):

(a) the Raman-scattered light I~ has the tempor-
al characteristics of the "square" of the exciting
pulse;

(b) the resonance fluorescence I~ decays with the
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atomic lifetime when the pulse is over;
(c) the ratio R of the time-integrated intensity of

the fluorescence I„ to the time-integrated Baman-
scattered light I~ depends linearly (through I'„) on
the buffer gas pressure;

(d) the relative contributions of i~ andi~ for
large 8 are independent of A.

From Eqs. (46) and (4V) one can also deduce
some new properties:

(i) The slow component I, depends on the second-
order correlation function of exciting light and on
its characteristic times. Therefore the contribu-
tion of I, to the fluorescent light I~ depends on the
shape of the light pulse, the exciting light statis-
tics, and bandwidth. The fluorescence decreases
with decreasing of transverse relaxation rates,
e.g. , the bandwidth of the laser light, while the
Raman-scattered light intensity is constant.

(ii) The fast components decreases with the in-
creasing bandwidth of the spectral filter ~. So
for the broad-band filter one can only observe the
slow component I„being just the fluorescence.

(iii) The time behavior of the emitted light de-
pends also on the time behavior of the ground-
state density matrix p„,. Therefore the existance
of the ground-state coherence'p„=a„, exp( i~-t)
can also induce oscillations of the fast, as well as
the slow, component. These oscillations could be
observed as a deformation of the laser light pulse
coming to the detector in the Raman scattering or
a modulation ("ringing") of the decaying fluores-
cence, when the light is turned off.
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