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Large-amplitude oscillations are predicted in the free-induction decay (FID) of atomic or spin two-level

quantum systems that are coherently prepared by a resonant electromagnetic field in the form of a square

amplitude pulse of duration T. The effect should be detectable in nuclear magnetic resonance (NMR) or in

optical resonance experiments when the transition line shape is inhomogeneously broadened (T,gT,) and

the applied field is intense enough that the pulse area yT &2m, where y is the Rabi frequency. Physically,

the effect is due to Rabi oscillations which are generated in the preparative stage and are then reproduced

because of atomic memory in the radiative period which follows. The atomic polarization derived from the

Bloch equations assumes the form of an integral over the inhomogeneous line shape, and can be evaluated

numerically for arbitrary linewidth cr or analytically when o.~~. The characteristics of the oscillation are

unusual since the oscillation frequency, which is of order y, increases with time while the oscillation

envelope vanishes identically for times t &2T. Coherent emission is therefore confined to one pulse width T
immediately following the pulse. Previous NMR and infrared FID experiments with small-area pulses

(yT(4m), interpreted erroneously in terms of an edge echo effect, support the oscillatory FIB behavior

described here. For the case gT &4m, an experimental test would be even more decisive, as the oscillations

are more pronounced.

I. INTRODUCTION

In this paper we predict a novel oscillatory be-
havior which appears in the free-induction-decay
(FID) effect and should be observable in inhomo-
geneously broadened transitions, either in nuclear-
magnetic-resonance (NMR) or in optical-reson-
ance experiments. We assume a set of two-level
quantum systems which are coherently prepared
by a resonant driving field in the form of a square
amplitude pulse of duration T. (See Fig. 1.) The
transition line shape is dominated by inhomogen-
eous broadening so that the inhomogeneous de-
phasing time T, and the dipole dephasing time T,
satisfy the inequality

T && T sic

Following the pulse, FID occurs where the decay
is smoothly varying for low field amplitudes.
However, as the field intensity increases, we

find that the decay exhibits a continuous train of
large-amplitude oscillations (Figs. 2 and 2) which
have not been discussed heretofore. Oscillations
appear when the pulse area satisfies

from previous observations' ' of FID in the optical
region. In the earlier optical studies, the sample
is prepared under steady-state conditions by a cw
laser beam, rather than by a pulse, and FID re-
sults when the transition frequency or the laser
frequency is suddenly switched. The initial trans-
ient is dominated by the first-order FID."which
is a Gaussian exp[-(t/T, *)'] that decays rapidly in
a time T,*. The nonlinear FID survives the first-
order component by displaying a long-lived ex-
ponential signal 5 which, apart from unimportant
factors, is of the form"

S - (1/(X'T, T, +1)'"-1)

x exp(-t/T, [1+(X TsT +1)'"]j.
In this case, an increase in laser intensity only
produces power broadening through the y' term in
the exponent, but no frequency shift and thus no
oscillations. Of course, in the low-power limit
(y'TtT, «1), the dephasing time is —,'T„corres-
ponding to preparation of a single homogeneous
packet.

Oscillatory FID of this kind is not observed
normally in NMH either. Because spin transitions

gT~ 2g, (1.2)

and in first approximation, the oscillation fre-
quency is the Habi frequency y. We also show that
the FID signal is exactly zero for times I;» 2T,
as in Figs. 2 and 3. These and other characteris-
tics are considered further in the theoretical
analysis which follows.

Oscillatory FID, therefore, differs significantly

Laser Field

Time t

FIG. 1. Laser field vs time. The field is nonzero only
in the interval 0 &t &T.
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rl. THEORETICAL MODEL

A. Basic equations

We shall adopt a model and the mathematical
language commonly used in quantum optics, ""
namely, an atomic two-level quantum system
which interacts for the period T with a resonant
laser field
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E„(z,t) =E, cos(nt- kz). (2.1)

The polarization and propagation directions are x
and z, respectively. The upper quantum state is
~2) and the lower ~l). We assume that the field is
turned on at t =0 and off at t =T. Equivalently,
we could have also assumed a laser frequency-
switching" pulse as the solutions are virtually
identical.

For times t& T following the pulse, the FID field

0.40

0.20 XT = 27r

E„(e,t) =E (z, t)e' "' "'+c.c. (2.2)
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FIG. 2. Computer plots of free-induction-decay amp-

litude vs time as a function of laser pulse area y T.
Solid curves: direct numerical integration of Eq. (2.15)
for a Doppler-broadened line shape of finite width 0. The
following parameters were assumed: 0 = 50m psec
T =1 psec, and p= 0. Dashed curves: Bessel-function
sum Eq. (3.37) where 0-~.

often are homogeneously broadened, on-resonance
pulse preparation can only yield FID signals which
decay monotonically as exp(-t/T, ), while off-
resonance preparation produces oscillations but
they have a different origin. ' Furthermore, the
oscillations described here have nothing to do
with quantum" or Raman beats" in coupled multi-
level quantum systems or with NMR interferences
in the FID of two or more independent two-level
transitions.

However, Bl'oom" reported observations of NMR
interference effects in FID for the case when the
static magnetic field is highly inhomogeneous
and the pulse area y&=4m is relatively small.
We believe that these interferences, which Bloom
gave the name "edge echoes, " are not an echo
phenomenon, but rather are an example of oscil-
latory FID. This paper clarifies the subject by
providing the first detailed theoretical treatment
of oscillatory FID.
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FIG. 3. Computer plots of free-induction-decay amp-
litude vs time as a function of laser pulse area X T.
Solid curves: direct numerical integration of Eq. (2.15)
for a Doppler-broadened line shape of finite width cr.
The following parameters were assumed: 0= 507r psec ',
T =1 psec, and y= 0. Dashed curves: Bessel-function
sum Eq. (3.37) where o.-~.
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satisfies Maxwell's wave equation

BE~2
2-2&i t2NP, »{p»)98

(2.3)

V(t)) =»r(t P(t)) (2.4)

where the off-diagonal density-matrix element
tl» is to be averaged (denoted by a bracket) over
the inhomogeneous Doppler line shape. %e there-
fore seek solutions of the Bloch equations

for an optically thin sample. Here N is the atomic
number density, p. » is the transition matrix ele-
ment, and the tilde denotes the slowly varying part.
Hence the problem reduces to one of calculating
the polarization

v(T) =Xw(0)e & "(sinpT)/p,

u(T) = [b Xw(0)/p ](e & r cos pT —1) . (2.12)

v(t) =Xw(0)e &'[(t)./p')(cospT —e& ) sind, (t —T)

+(sinpT/p) cosh(t —T)]. (2.14)

In the next stage t& T, y =0, and the FID solutions
of (2.5) apply,

u(t) = [u(T) cosset(t —T) —v(T) sinb. (t —T)]e ~&' r'

v(t) = [u(T) sins(t —T) + v(T) cosi) (t —T)]e & &'

(2.13)

Inserting Eq. (2.12) into Eq. (2.13), we obtain
the desired result for t& T,

u +kv +u/T2 = 0 t

v —Lh,u —Xw + v/T2 = 0,
w+Xv+(w-w')/T, =0,

where

(2 5)

The dispersive term u(t) is not needed, as it
vanishes with Doppler integration owing to its
odd-order dependence in d, and assumption (2.10).

The FID signal (2.2) therefore involves the
Doppler integral I, where

t 12 P21 t v (P21 P12) s w P22 P11 ' (2' )

The tuning parameter 6, the Rabi frequency X,
and the eigenenergies F., are given by

6 =-0+@v,+(t)», X =p»EO/ft, ,E, =h(t), (i =1,2).

the inhomogeneous line-shape function

g(d. ) =(Ã/Vwo )e &

(2.15)

(2.16)

(2.7)

where kv, is the Doppler shift and c02y -=t(J02 coy.

To avoid unnecessary complications, we assume
that (i) the population and dipole dephasing rates
are equal, (ii) the Rabi frequency is much larger
than the dipole dephasing rate, and (iii) the laser
frequency is tuned to the transition line center;
l.e. ,

(2.8)

(2.9)

(2.10)

With the approximation (2.8) and the initial condi-
tions v(t =0) =u(0) =0 and w(0) w2, the solutions of
(2.5) are

Xw 0)e ~'
v(t) =

2 2 2 (-y cospt + p sinpt +ye" '),+6 +y

s(t) =. . . +sssttt —st'), (1 )1)b,X 0)e &' ysinpt
x'+t '+y' p

where

Equations (2.11) will be required when damping
is to be included, but for the present purpose& we
invoke (2.9) and obtain the relevant solutions for
pulse preparation at time t =T,

and the Doppler width is cr.

The major challenge of this paper is the evalua-
tion of the integral (2.15). Analytic results are
not anticipated because of the Gaussian term in
the integrand, and furthermore, the square root
p =(82+X')'" can introduce a troublesome branch
cut in the complex plane; In Sec. IIB, (2.15) is
&valuated by direct numerical integration and
allows a preliminary understanding of the nature
of oscillatory FID. The remaining sections un-
cover analytic results in the limit of an infinite
Doppler linewidth (v- ~), and give a more detailed
and complete description of the phenomena in-
volved. In Sec. IIIA, certain limiting cases are
derived by means of a Laplace-transform method.
In Sec. III 8, a general analytic expression of com-
pact form is found by transforming the integral
(2.15) to a differential equation.

B. Numerical results

Figures 2 and 3 are computer plots of the nor-
malized FID amplitude E»/X, as a function of time
(t —T) and for different pulse areas xT. The solid
curves result from direct numerical integration of
(2.15), while the overlayed dashed curves are
analytic results of Sec. IIIB and are discussed be-
low.

The following parameter values were assumed:
o =50m p, sec ', 7.'=1 p. sec, and y =0, and hence the
desired inequalities o&X & 1/T&y were maintained.
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- Consideration is given in Sec. IIIA to the ease
y 10. Obviously, other time scales apply to these
curves when an appropriate change is made in the
time-frequency units. We find that about 1000T
integration points are needed to attain the required
accuracy for the Doppler integration.

The first characteristic to notice in Figs. 2 and
3 is the initial fast rise beginning at t = T which
appears on all solid curves. This is the first-
order free-induction-decay effect which has been
observed' and analyzed theoretically" for the
case of steady-state preparation. For both pulse
and steady-state preparation, the rise time is
given by T,*=2/o Th.e Doppler line shape, being
of finite width, allows the FID signal to rise
smoothly from its initial value at t =T. In the
limit of infinite Doppler width, the signal is dis-
continuous at t=T, as found in such previous FID
derivations" ' as Eq. (1.3).

For times (t —T) & T,*, the decay is more slowly
varying and exhibits oscillations which are clearly
evident in Figs. 2 and 3 for pulse areas XT ~ 2n.
Note in particular the curve for XT =4m, as it
closely resembles Bloom's NMR free decay" (his
Fig. 4, where yT-=4m) in shape, the number of
oscillations, and its vanishing at t =2T. We be-
lieve this observation strongly supports our cal-
culation. However, the term "edge echo" coined
by Bloom is inappropriate as the effect is not an
echo phenomenon.

As the pulse area increases further, the num-
ber of oscillations increases, the number of
periods being given by -XT/2v. Thus, for yT =10m,
there are five periods, where the last wiggle,
being of small amplitude, is better seen on an ex-
panded scale. These curves and the analysis of
Sec. III show that in each case the last wiggle
always approaches the time axis as (2T —t)' and
from the positive direction as t- 2T.

Another feature is that the oscillation frequency,
while of order y, is not constant but increases
steadily with time. The envelope function of these
oscillations obeys approximately a linear time de-
pendence such that the amplitude vanishes pre-
cisely at time t=2T. This remarkable behavior is
an exact and general result which can be demon-
strated by very general theoretical arguments
and will be presented elsewhere. " An earlier
optical FID measurement, ' where XT =1.5m, cor-
roborates this point and otherwise resembles the

XT =1.5m curve of Fig. 2.
Physical interpretation. As a first approxima-

tion, we can say that during the preparative stage
the driving field creates Habi sidebands and thus
new frequency components which would be ob-
served in a spectrum of the sample. Following
the pulse, the polarization retains memory of its

preparation and produces a time-dependent sig-
nal which is the Fourier transform of this spec-
trum, and hence oscillations will appear at the
Habi frequency. Of course, this picture neglects
the mutual interference of packets distributed
throughout the inhomogeneous line shape.

We can summarize this section, perhaps in an
oversimplified manner, by pointing out that there
are three parameters (cr, y, and T) which char-
acterize the temporal response of the atomic
sample. The Doppler width 0 gives rise to the
initial rapid first-order FID, the Habi frequency

y determines the frequency of oscillation, and the
pulse width T establishes when the free-induction
signal vanishes.

III. ANALYTIC RESULTS

+ —,cos PT sink, (t —T)dt).

We identify the three integrals in the order given
by

I(t) =Xw(0)g(0)[E,(t) +F,(t) +E,(t)],
and perform the Laplace transform

(3.2)

)'(z) = f E(T)e ' "dT -=ZZ(T)
0

(3.3)

in the variables z and T with the quantity t- T
held fixed. This operation yields

F,(z) = [7(/(z'+ X')"]exp[-(z'+y. ')'"(I —T)], (3 4)

F,(z) =(w/z){e "" "' —exp[-(z'+X')'"'(()t —T)]},
(3.5)

(z) — (v/z)e x{& T)

Note that two of the terms cancel in the sum

(3 5)

I(z) =Xw(0)g(0)[E,(z) +F,(z) +F,(z)]
= -v~(O)g(0)g(z)/z, (3.7)

A. Laplace-transform method

Case y=0

We now evaluate the Doppler integral I(t) defined
in (2.15) using (2.14) for v(t) in the case y =0. We

apply the Laplace-transform technique" "because
it yields the characteristic behavior for certain
limiting eases very quickly. The case y 10 will. be
treated below as well. In the limit of infinite
Doppler width (o - ~), exp[ —(b, /o)'] - 1 while the
spectral density X/o is constant, and

4D

I(t) = yw(0)g(0) cosh (t —T)db,
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where

G(z) =[1 —z/(z'+Z')'"j exp[ (z'+„) (t T)l. (3.6)

Recognizing that the inverse Laplace transform of
(3.7) is given by
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(3.9)
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FIG. 4. Computer plot of FlD vs time for a pulse area
y T= 20m. Solid curve: direct numerical integra-
tion of Eq. (2.15) where 0=50m @sec, y=20n @sec
and T=1 @sec. Dashed curve: Bessel-function sum Eq.
(3.37) where the number of terms used in the series is
m= 90.

T & f T, (—3.10b)

where this transformation is tabulated. " Combin-
ing (3.7)-(3.10), we obtain for the integrals in
(3.1) the compact form

0, t&2T,
1(f) T ( f T) 1/2

~(0)g(0)y'
i J,()([s' —(f —T)']' ')ds, T& t & 2T .

, r(s+(f-T)

(3.11a)

(3.11b)

Note the interesting result (3.11a), which states
that, for times t& 2T, coherent emission is iden-
tically zero. Stated otherwise, when a two-level
quantum system is coherently prepared in the
interval 0& t& T, it radiates coherently only in the
interval. T& t& 2T. We have shown elsewhere"
that this result is true under very general condi-
tions, a theoretical result which apparently has
gone unnoticed in NMR and quantum optics.

Jirniting cases. In order to see how the solution
(3.11b) connects to the solutions for f & T and
t&27, we consider the following limiting cases:

t-T: In this limit, (3.11b) is given by

IV-T) =~(0)g(0)x[&.(yT) —11 (3.12)

Since J,(XT) is the transient nutation amplitude at
the end of the pulse, we recognize that the -1
term signifies a discontinuity at t =T which we
attribute to the first-order FID for the case of
infinite Doppler width. Additional attention is
given below to first-order FID when the Doppler
width is finite.

t-2T: In this regime, since the argument n of
the Bessel function" J,(a) remains small through-
out the range of integration, For a Lorentzian inhomogeneous line. shape

(3.14)

I

Because w(0) = -1, the FID signal approaches a '

zero value from the positive dire ction with a
quadratic dependence in the time difference 2T —t,
independent of ltT. . Thus I(t) and its first deriva-
tive are continuous at t =2T and exhibit no unusual
characteristics such as an edge echo. Note that
the numerical results of Sec. IIIB are therefore
verified. In this connection, one should compare
Bloom's' Fig. 4 for the ease of a single pulse
(which resembles our Fig. 3 for ltT =4m) and his
Fig. 5 for the case of a closely spaced multiple-
pulse train which produces a sharp interference
near t =2T. The multiple-pulse train is an entire-
ly different situation from the single-pulse calcu-
lations discussed in this paper.

I'irst-order FID. To investigate the f irst-order
FID, also note that the only term in (3.1) which
possesses a singularity at t =T is E,(t). For the
case of finite cr, we write

F,(t)= ttt(0) f tt)((tttt)tttt-ttt&(t-t)ttt . '

Z, (o, ) =-,'n, g(b ) =N(g/n)1/(b, '+g') (3.15)

f(f -2T) = --,' vgo)g(0)lt'(2T —f)'. (3.1 3)

instead of the Gaussian (2.16), we obtain an
analytic expression in terms of elementary func-
tions
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&',(t)=-&[)tw(0)v/(v'-X')](e "" "'- e "")
v)t tw(0) lg(0)e-)'(t-r)(I e a(-t »-) (3 16)

where the second line applies when 0»y. Thus
immediately following the end of the pulse the FID
signal rises rapidly but smoothly in a time 1/o
=T,*, reaches a maximum at (t T) —=1/vln(v/)t),
and then decays in a time 1/y prior to going into
oscillation. The initial fast rise in the first-
order FID" [which corresponds to the discon-

tinuity at t = T in (3.12) and (1.3) when v- ~] and
is readily seen in all of the numerical results of
Figs. 2 and 3, where a Gaussian line shape of
finite width v is utilized.

2. Case y40
To include damping in the above derivations, it

is necessary to begin with the more general solu-
tions (2.11) in place of (2.12). The calculation
then proceeds as before to yield

$)2T )

~(p)g(p)&2e-)(&-» Z,{)t[s'—(t —T} p") e )' ds, T& t& 2T ~

, „s+(t—T)

(3.17)

Apart from damping factors, (3.17) maintains
the same form as (3.11).

Limiting cases: infinite pulse width (T - ~).
As the pulse width T increases, the solutions
must approach the case of steady-state prepara-
tion.""This limit can be tested by using (3.17),
in contrast to (3.11), because damping is needed
to restore the population during continuous exci-
tation. The integral (3.17) can be written as

I

second-order differential equation

d'I, 2y'
dT p
--, —)t'I = sinpT cosh, (t —T) —h)t sinA(t —T)

(3.22)

where the brackets denote a Doppler average and
we have set w(0) =-1 throughout. The observation
time ] is treated as a constant.

gee now show that
aj2

4X~(y'- I}'")e '"A
& + Ii

(3.18) d'I
, -X I=0, t»T, (3.23a)

and becomes analytic" as T- ~, where y =—g —T
remains finite and y

=—s/v. The result is d
2-X'i=»g(0)X'&o()t[t(2T —t)]'"), T«&2T

(
I(t) -)tw(0}g(0)xl [( / }2 I]~~2

xexp( —y/1+ [()t/y)'+ I]' '](t —T)), (3.1S}

(3.23b)

Equation (3.23a) follows when a I.orentzian in-
homogeneous line shape (3.15)

which we see agrees with such earlier steady-
state derivations as Eq. (1.3).""

t-T: Equation (3.17) reduces in this instance
to

I(t-T) =vw(0}g(0))t[Z,()tT) —1]e (3.20)

where for simplicity we have assumed that y-0.
As expected, (3.20) agrees with (3.12).

t-2T: In this regime, (3.17) becomes

g(A) =g(0)v'/(A' +v') (3.24)

( sispS'sssis(i —S'))
2X

P

g~-a{t- 1')

=2))g(0))t', , „,sinh(v' X')'"T, t& -2T,(v'-X' '"

is substituted for the Gaussian (2.16), as then the
integrals" in (3.22) are analytic and vanish in the
limit cr-~. Thus we have

I(t-2T) = --,'vw(0)g(0})t'e ~ r(2T —t)', (3.21) -0 as o-~, (3.25)
and corresponds to the no-damping case (3.13).

B. Differential-equation method

and

(-b,)tsini)(t —T)) = wg(0))tv'-e ' ', t&T,

In this section, we again evaluate the Doppler
integral expression I(t) given in (3.1) assuming
o -~ and y =0. The derivation is more lengthy
than the Laplace-transform method, but it is also
more instructive and reduces to a compact analy-
tical form which is exact. For this purpose, the
integral form of I(t) is transformed by differentia-
tion with respect to the variable T and yields the

~0 as (7~
q

where the initial conditions are

I(T'=0) =0,

dI(T =0)
=(-)t cosset) = —vg(0))tve ",
-0 as o-~ for t&0.

(3.26)
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Equation (3.32) can be written as
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(3.32)
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Flo. 5. Computer plot of FID vs time for a pulse area
XT=10n'. Solid curve: direct numerical integra-
tion of Eq. (2.15) where 0=50~ psec ~, X=10m psec ~,

and T =1 psec. Dashed curve: asymptotic function Eq.
(3.39).

where

~ =xl:t(»- t)l'".

(3.33)

2m

I (T) =2 g(o)x. g — J, (8).
=i Xt

Equation (3.34) and its derivative

(3.34)

In the Appendix, we show that (3.33) reduces
simply to a sum of even-order Bessel functions

Thus (3.23a) is derived. On the other hand,
(3.23b) follows from (3.26) and

sintiT f os i (t —T))
2X

= 2'(0)XSJO(X[t(2T —t)]'"), T & t & 2T, (3.28)

dI (g)~=»g(o}x gj —
i

4 - (~),
m=X Pt)

yield the initial conditions

(0)
dI~(0)

dT

(3.35)

(3.36)

where g(0) has been factored outside the integral
to facilitate its evaluation.

From (3.23a) and the initial conditions (3.27),
we obtain the same result as (3.11a),

I(t) =0, t&2T. (3.29)

I(X, t, T) =Is(T)+Iq(T), T&t &2T, (3.30}

where the homogeneous solution is of the form

I„(T}=Aexr +Be-x r (3.31}

and a particular solution, obtained by using the
method of variation of parameters, " is

Therefore, the FID signal lasts as long as the
pulse width itself and vanishes for t&2T.

Notice that the integrals (3.25) and (3.26) decay
rapidly, as in first-order FID, because of the
e ' ' factor. In contrast to first-order FID
at the beginning of the pulse (Sec. 111A), its am-
plitude is extremely small and is not evident in
the numerical results of Figs. 2 and 3, where a
finite Doppler width is assumed. Clearly the use
of a Lorentzian line shape in place of a Gaussian
does not change these arguments as v- ~.

We now attempt to find the general solution of
(3.23b)

When (3.36) and (3.27) are combined, it follows
that I„(T)-=0 and the solution (3.30) is

I(x, t, T) =I, (T)

where

I~)2 iii

=»g(0)x Ql —
I &. (~xT)

~=i k~]
(3.37)

t-=t/T ('2&x& 1), cx=-[r(2 —r)]'" (0&oi& 1).
Returning to the FID computer plots of Figs. 2

and 3, we see that Eq. (3.37) (dashed curve) agrees
well with the direct numerical integration (solid
curve), Eq. (2.15), for times t —T&T,*. However,
there is a disparity in the two cases for short
times t —T™T,*, since the assumption of infinite
Doppler width o in (3.37) results in a discontinuity
at t=T due to the first-order FID. We show below
for the case of large pulse areas that a good ap-
proximation to (3.37) is the first term (n/r)'J, (nXT),
which gives the same zero crossings as the infin-
ite sum but differs in amplitude. The number of
terms m needed to achieve a reasonable fit with
direct numerical integration increases with pulse
area and in Figs. 2 and 3 follows the sequence
m =3, 3, 5, 8, 18, and 40 as XT increases. Fig-
ure 4 is a blowup for the case XT =20m and allows
the small-amplitude oscillations to be seen more
clearly as t-2T. The envelope of the Bessel-
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function sum (dashed curve) damps somewhat less
rapidly than the numerical. integration. %e also
notice slight differences in the zero crossings
near t =27. Such small differences, as shown in

Fig. 4, are due to the finite Doppler width in the
numerical integration. From an argument given
below, ten periods of osciBation are expected
here (ltT/2v =10}, but only nine are seen owing
to the relative magnitude and location (2T —f
= 10 ' T) of the tenth oscillation.

I,imiting cases: asymptotic form Fo.r large
arguments z, we may use the asymptotic expan-
sion"

Z, „(z)-(-1) (2/wz)'" cos(z ——,'z), (3.38)

and obtain a limiting result for the sum (3.37),

I(f) = -(»)'"g(0)(X"'/f'"T )(2T —f)'"

xcos[X[t(2T —t)p" —,'w), T & f & 2T .

(3.39)

&(f) = -2(2~)'"g(0)(X'"/f'")(2T —f)"'
(3.40)xcosg[t(2T —t)p~~ ——v), T & t& 2T .

Thus the asymptotic limit of the first term in the
Bessel-function sum is 'the dominant term, as it
approximates the asymptotic limit of the entire
sum to within the factor t/2T. Nevertheless, the

factor f/2T is important as it scales the amplitude

making (3.39) more precise than (3.40).
t- T. In this limit, a- 1, r- 1, and the sum

(3.37) reduces to

In Fig. 5, a computer plot of the asymptotic
expression (3.39) (dashed curve) is overlayed on
the numerical integration (2.15) (solid curve}.
The agreement is quite satisfactory except in the
vicinity t-T.

Note that (3.39) exhibits a number of important
characteristics of oscillatory FID. First, the
factor (2T —f)'" reveals that the oscillation
envelope decays approximately with a —,

' power law
and reaches a zero-amplitude value precisely at
t =2T. Second, the cosine argument contains an
oscillation frequency that increases at t- 27.
Third, since the phase )![t(2T—t)P" advances by

yT in the interval 7.'& ]& 27', the number of oscilla-
tions is given by -!tT/2w. Last, taking only the
first term (m =1) in the sum (3.37) and using the
asymptotic limit (3.38), we find

f(f-2T) =-,' ~g(0)„'(2T f}',
and reproduces (3.13) and (3.21).

(3.42)

IV. CONCLUSION

This paper predicts an unusual oscillatory FIB
effect which follows coherent preparation by a
resonant square-wave electromagnetic pulse.
Both numerical and analytic results are obtained
from solutions of the Bl.och equations. Oscillations
are expected when the atomic sample is inhomo-
geneously broadened (T,*«T,) and the pulse area
satisfies the condition gT ~2m. In NMR, the free-
induction-decay measurements of Bloom confirm
such oscillations (incorrectly called "edge echoes")
where XT.

' =4m while in the infrared, the observa-
tions of Brewer and Shoemaker support our pre-
diction for the case XT =1.57t. More recently,
Szabo and Kroll" have found interferences in
optical FID which they attribute to the edge echo.
However, for their conditions ()!T=4m, T, =2 p, sec,
T =7 gsec, and o =1.6v nsec '), the envelope
function decays far too rapidly (-30 nsec) to re
semble even qualitatively the XT =4m curve of
Fig. 3. Nevertheless, future optical or NMR ex-
periments might illustrate this phenomenon even
more decisively using larger pulse areas. Finally,
two-pulse echoes having large pulse areas should
display oscillations also. However, our numeri-
cal calculations show, in agreement with Mims, '4

that the echo shape function is a complicated pat-
tern and does not display the uniform oscillations
predicted here for pulsed free-induction decay.
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APPENDIX

f(t- T) = mg(0)!([1 —Z, (XT)j, (3.41}

which reproduces (3.12) and (3.20) since w(0) =-1
and g(0) =&/~wg for a Gaussian line shape.

f-2T In this case, n. -0, x-2, and (3.37) be-
comes

/ 2 &2'! 2 ~2 8m+1
sinh

2yt I „= {2yt ) (2m+1)l

1 (z2)2 ra+ 1 -J( z 2 )jC2 m+ 1

, (A2)
(2xt)' "(2m +I)!



OSCILLATORY FREE-INDUCTION DECAY 895

where the second step involves the binomial ex-
pansion of (z2 —z ')' +' and t.z~+' —= (J2 '1). Then (Al)
is given by

+(0) 1 ( I)&z2'!2 m+1-&!
f, (T) =2~

t -0 -0 (2Xt)2m+1(2m+1 —j)!j!

(AS)
0

Integration by parts and the relation

2 m+2

& (&) =»a(0)x +-
=0 Xt

(—1) "(—'g)' *' 'z„,(g))
(2m+1 —j)!(j—I)!

The limits on the double sum in brackets can be
rewritten as

(AS)

n
„—,lz"~.(z)) =z"~„,(z) (A4) the arguments remaining unaltered. The double

sum in brackets then takes the form

yield

l zi2J+ lg (z&)d
0

(A5)

I ( ) 2,Z(0)'t
2m+1

( I)i+121 (4m+2-1 )g ( )X g+1.=0 =0 l=0 (2xt)'"'(2~+1 -j)'(j -I)!

( 1 }l 2' z2f+1-lg ( )(j- I)!

The inclusion of (A5) and (A3) results in a trip! e
sum of Bessel functions

r'
(2Z) +(+1(Z) I .l)l .Il

1 2m+1 l -(
~ p p r j Qj 2

r'
'(~2z)' " '&„,(z)"

( I), ~,
(2m +1 —I)!

where

r' —= 2m+1 —l, j —=j—l,
r I

Q(-I)' ~l =~, ,0
—~2 .1.1.

0

(A9)

In this way the double sum (A9) becomes a single
term of Z2 „(z), and (A7) reduces to the remark-
ably compact form

which can be rearranged to give

(As)
)2m

II, (T) =2llg(0)X g~ —
~ J, (z),

= ixt)

which is the desired result (3.34).

(A 10)
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