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Elastic-electron-scattering cross sections for N2 from 0 to 1000 eU.
Energy-dependent exchange potentials
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Integrated and differential cross sections for vibrationally elastic e -N2 scattering from 0 to 1000 eV are
calculated by means of the continuum multiple-scattering method (CMSM) with the Hara free-electron-gas
and semiclassical exchange approximations. The present results represent a significant improvement over
earlier CMSM calculations employing the Slater Xa exchange approximation. The physical basis for this
improvement is discussed. Resonance structures appear at 2.4, 13, and 26 eV in the mg, 5g, and a.„channels,
respectively; however, the latter two are very weak and only the o.„resonance has been observed in elastic
scattering. Agreement between the present calculation and experiment is good over the entire energy range,
although at fixed (equilibrium) internuclear distance, the mg resonance is too narrow and high. The
agreement at the m resonance is significantly improved by taking into account the effects of nuclear motion
in the adiabatic nuclei approximation.

INTRODUCTION

Initial calculations of elastic e -N, scattering'
using the continuum multiple;scattering method"
(CMSM) were reasonably successful in reproducing
experimental integrated cross sections' over the
wide energy range from threshold to 1000 eV, and
differential cross sections' (DCSs) to 30 eV (DCS
calculations were not carried beyond 30 eV).
Further, they provided a simple physical inter-
pretation of the dominant spectral features in
terms of molecular shape resonances and the X-
composition of the continuum molecular wave
functions. These calculations also displayed in-
herent limitations which stemmed, as we show
here, not from the CMSM itself, but from the
model potential employed with it, ' which was based
on the Slater Xn exchange approximation. e

The simplicity of the Slater XQ. treatment of ex-
change for bound-state problems is due to two
particular features'. the treatment of the self-
interaction and the averaging of the energy depen-
dence. of exchange over all bound levels. These
combine to reduce an N-electron self-consistent-
field (SCF) calculation from an N-potential prob-
lem to a one-potential problem. The success of
this approach for bound-state problems in atoms'
and molecules' attests to the usefulness of the ap-
proximations involved. However, for electron
scattering this treatment of exchange is proble-
matic." In particular, the potential (a) is energy
independent, and hence cannot reflect the decrease
in exchange with increasing electron kinetic ener-
gy, and (b) cannot be based on an SCF target wave
function because the (e + neutral) system required

in this approach in order to cancel the self-in-
teraction term' is frequently not bound. Here we
investigate alternative exchange approximations
which (a) retain explicit dependence on the elec-
tron's kinetic energy and (b) are generated from
SCF neutral target wave functions. The most use-
ful of these are the Hara' and semiclassical' ex-
change approximations, which we document and
compare to the Slater Xo. exchange approximation
in Sec. II.

In Sec. III we evaluate cross sections for e—
5, scattering using the Hara and semiclassical
exchange approximations. The calculations are
carried out in the static-exchange-polarization
(SEP) framework" in which the full potential V is
given by

v(r) = v, (r) + v,(r) + v, (r),
where V~ represents the electrostatic, V~ the
exchange, and V~ the polarization components
of the potential. We are thus able to study the ef-
fects of each of these terms separately. Vote that
due to the introduction of a self-interaction term,
the Xa potential combines V~ and V~ so that ex-
change effects cannot be isolated for study, e.g. ,
at high energy where exchange becomes unim-
portant. Fixed-nuclei integrated cross sections
from threshold to 1000 eV.are presented and com-
pared to experiment in this section, as are vi-
brationally averaged v= 0- 0 cross sections
through 1 Ry. The vibrational averaging is espec-
ially effective in reducing the excessive height of
the ~, shape resonance to about the experimentally
observed value (see Ref. 12 for a more detailed
account of the effects of nuclear motion). Also pre-
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sented are differential cross sections in both low

(1.4-30 eV) and high (300, 400, and 500 eV) ener-
gy regions.

5, is frequently used as a prototype molecule in
electron-scattering calculations, and this rein-
vestigation was conducted in that spirit. Based on
the results presented here, CMSM calculations
have been extended to a variety of molecules.
Electron scattering by CO„OCS, and CS, (Hef.
13) has been ca,lculated using both the Hara and
semiclassical exchange approximations. Results
for these molecules support the results presented
here for N„which indicate that the Hara form
provides more consistent agreement with experi-
ment than does the semiclassical form. In ad-
dition, electron scattering calculations have been
performed on H„"SF„'"C,H, ,

'" and l,iF (Ref.
16) (including the long-range dipole moment).

II. THEORY

fact that an electron does not act on itself. How-

ever, Slater' showed that by admitting the term
with i =j, called the self-interaction, in both the
left- and right-hand sums in Eq (2. ), i.e. ,

[-V2+ V, (r) —e, ]u, (r.)

, 2u*,(r')u,.(r')=Q 5(222„m„.)u,. (r) dr'
j

(6)

considerable simplification is gained without dis-
turbing the equality. All. N orbitals u, may now be
calculated from the single electrostatic potential
V~ rather than the N potentials V~ required by Eq. .
(2). Furthermore, the similar structure of Eqs.
(3) and (6) means that the continuum and bound-
state exchange approximations may be derived in
parallel.

The first step in the determination of an exchange
potential is the rearrangement of the right-hand
side of Eqs. (3) and (6) to form

In the single-particle model, the X-electron
Schrodinger equation for a single-determinantal
wave function is reduced, using projection or
variational techniques, to N one-electron equa-
tions

[-V'+ V','(r) —e,. ]u,. (r)

22(,*, (r ') u,.(r ')
= Q 6(m. ,m„.)u,.(r) dr'

jMi jr —r'j (2)

for bound orbitals M„ i=1 toÃ, or, alternatively,
to the single equation"

[-V'+ V, (r) —0„']u,(r)

j j
2M*,. (r')uo(r')

s(m„ „)M, (r) f aF
j

(3)

for continuum orbital u, . Here, V~ and V~ are the
electrostatic potentials

N ~l 2

~*&-=F; J""' i-.'--"i F; l-, RT

, 2 lu, (r') I2 ~ 2Z,

Bydberg atomic units are used throughout. The
index k represents the nuclei so that 2', is the
atomic number of the nucleus at position B„.
is the eigenvalue of bound orbital u;, and 4' is the
kinetic energy of the continuum electron in orbital
u, at infinity. m„. is the spin quantum number for
orbital u, . In both Eqs. (2) and (3) the terms on
the right-hand side are exchange teems arising
from the specification of the original wave function
as a single Slater determinant.

We focus first on bound-state equation (2). The
restriction ia j in Vz, Eq. (4), reflects the physical

( ) g 6( )
u (r)u (r)

B; r

2N~~
(r ') M,.(r ')

jr —r'j

(~„Pr))=-Z )",(~)(l;(~)l
i )

F lu,.(r) I'),
j)

(6)

where the weight in large parentheses is the prob-
ability that an electron of spin up at position r
is in orbital i (For clo.sed shells, (V~&) and (V~&)
will be equal. ) As detailed below, the evaluation
of Eq. (6) using FEG orbitals yields the original
Slater exchange potential; multiplication by an
empirical scaling coefficient n yields the so-called

Because ui, the orbital sought, appears within the
large parentheses, this equation does notyield an
explicit expression for the exchange potential P~.
Continuum free-electron-gas (FEG) exchange ap-
proximations arise from evaluation of the expres-
sion in large parentheses using FEG orbitals, but
the Slater bound-state approximation requires an
additional step: The indexing of the bound-state
exchange term P~ by i reflects the variation of the
exchange interaction with the energy and form of
the orbitals ui. For an N-electron bound-state
SCF problem this means that N potentials V, Eq.
(1), differing only in their exchange component

P~, must be calculated at every iteration. To re-
duce this to a single potential, Slater gPPxoxi mated
the N exchange potentials by an averaged poten-
tial'(V~) (one for closed shells; tWo for open
shells representing, respectively, spin up 4 and
down 0). This is constructed as the weighted aver-
age
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Xe. potential.
The use of the Slater Xn exchange approximation

in electron-scattering calculations, in our original
work" on I, and by others, " ' assumes that
(Vs& may be substituted for Vs. As indicated earl-
ier. , this is problematic for two reasons: First,
(Vs& subtracts an averaged self-interaction from
the static potential V~; and second, the energy
dependence accurately represented in Eq. (7) is
needlessly replaced by the bound-state average.
These two factors, the basis for the difficulties
experienced in, e.g. , Ref. 1, are actually independ-
ent of the free-electron-gas approximation and
can be circumvented by evaluating VE directly
using free-electron-gas orbitals. '

A. Free-c1cctron-gas approximation

Evaluation of PE using FEG orbitals yields
(i = 0, continuum'; i=1 tott', bound" )

V' '"(r) = -(4/~) k (r)f [q (r)],

q,. (r) = k,. (r) /k„(r),

f(q ) = —,
' + [(1 q')/(4q)] ln I (1+'0)/(1 —n) I,

k (r) =[3m'p(r)]'t',

pAr=Q lu,. (farl',

(9)

(10)

(11)

(12)

V .(r) =~&V,"'Qr&. (15)

As Slater points out, ' the alternative derivation of
Gasper2' and Kohn and Sham and the calcul3tions
to Kmetko" and Schwarz, "make clear that values
of n closer to —', than to unity yield wave functions
closest to Hartree-Foek; values tabulated by
Schwarz are used for the bound-state calculations
in this work.

For continuum orbitals, k,' determines the ener-
gy dependence of the exchange potential through
Eq. (10). Hara' proposed that this quantity be the
sum of the local kinetic energy k~2 of the upper-
most bound electron, plus the energy difference
Ie,„l separating it from the conventional zero,

where the sum in Eq. (13) extends over all oc-
cupied bound orbitals u, ; k~2 is the Fermi energy
in the FEG and corresponds to the local kinetic
energy of the highest occupied level in the molecu-
lar case; and k,' is a local orbital kinetic energy
which is treated differently for the bound and con-
tinuum cases.

For bound levels, the FEG exchange interaction
is averaged over k,. (0 ~ k, ~ k~) to yield the Slater
exchange potential '"

&V'"(8& = -6[(3/8 )p( )l"'. (14)

Multiplication of (V~ o& times n yields the Slater
Xn exchange potential6

plus the energy k„' of the continuum electron above
this zero:

k,' „(r) = k'(r) + I & ..I
+ k' (16)

rather than the physical limit k„'. To correct this,
Riley and Truhlar" proposed the asymptotically
adjusted FEG exchange based on the alternative
def inition

k,' A~ (~) -=k~2 (r) + k2 .
This goes to the proper asymptotic limit, but
simultaneously distorts the definition of the con-,
tinuum electron's kinetic energy in the region of
finite electron density, e.g. , at threshold

lim k,' „(r)=k'(r), (19)
A2 ~0

rather than the physical limit k~2r + Ie,„l, with
the result that g is everywhere unity. Physically
this means that a zero-energy electron and the
uppermost bound electron are treated (for pur-
poses of exchange) as if they have the same energy
when, in fact, they differ in energy by Ie,„I. Be-
cause this issue is. most importantfor kz= le,„l,
where exchange plays a substantial role, whereas
the asymptotic adjustment is concerned primarily
with a region of space where exchange is negligible,
it seems reasonable to us that the Hara form rath-
er than the asymptotically adjusted form be adopt-
ed. For single-level systems (e.g. , H, or He),
however, where the replacement of the single term
in the sum of Eq. (3) by an integral is an extreme
approximation, the asymptotic adjustment' plays a
role in compensating for the underestimation of
the exchange potential. ' This underestimation oc-
curs because the FEG approximation assumes that
the electrons are spread out in a range of ener-
gies at and belong k~, whereas in reality they are
all concentrated at kz. This stimulated the usq of
the "tuned FEG exchange" by Morrison and Col-
lins" on electron-H, scattering. Because the
asymptotic adjustment is not an exact compensa-
tion for this discrepancy, they found that empiri-

Here e .„„is given by the Hartree-Fock one-elec-
tron eigenvalue (the Koopmans-theorem ionization
potential) of the uppermost bound electron. How-
ever, we approximate ~,„. by the corresponding
Xo. eigenvalue, which deviates slightly from the
Hartree-Fock value due to the form of the Xn
total energy expression. " Experience suggests
that the final result is relatively insensitive to
such minor changes in e,„Eq..uation (16}, together
with Eqs. (9)-(13), define the Hara FEG exchange
potential. A shortcoming of this exchange poten-
tial arises asymptotically where

llm ko s(r) I @max I + k~ y
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cal tuning of l e,„l between zero and the ioniza-
tion potential was necessary for best results.
Consistent with this reasoning, they also found
that no adjustment at all was necessary for the
multilevel systems N, (Ref. 11) and CO, (Ref. 26).

k p gcL," into this re lat ion y ie 1ds a quadratic equa-
tion for V~ with two roots. The root for which
@~=0for k„'= is

V s Pr =-'[O' —V (r)] ——,'([k„' —V (r)]'+P(r)}' ',

B. Semiclassical exchange
P(r) = 16~p(r),

(26)

(27)

2u*,.(r ')uo(r ')

Ir —&'I (20)

To do this, the integral in Eq. (20) is represented
as the product

A,. Qru, (r) -=dr' , 2u*,. (r')uo(r')

of an assumed slowly varying exchange amplitude

A,. and the continuum orbital up. The expression
of A, in terms of known quantities yields the semi-
classical exchange potential. To accomplish this,
one operates on both sides of Eq. (21) with V'; on
the left-hand side one uses the product rule and
on the right-hand side, recognizing the electro-
static potential due to the exchange charge density
u,N„one employs Poisson's equation. The result
is

[V'A, (r)]u, (r)+2[VA. , (r)] [Vu„(~)]+A,(r)v'u„Qr

= -4m[2u, *(~)u,r] . (22)

The continuum Schrodinger equation furnishes an
expression for V'up if one writes

[-V' —ko', cE(r)]uo(r ) = 0,
k', „,(r) = k„' —V, (r) —V, (~),

(23)

(24)

where V~ is the desired exchange potential. By
substituting -k,',«u, for V'u, in Eq. (21), Riley
and Truhlar expand the amplitude A,. in inverse
powers of k,',«as

A,. Qr = 8mu,*(r)/k,',«(r )

+ 2[Vuo(r)/u~(r)] [8wVu,*(r)]/k~0 sc„+.
(25)

This expansion is truncated at.the first term,
ch weal be valid e~ther xf kp, scE»1 or if A. is a

slowly varying function of r. Finally, the expres-
sion forA, is substituted into Eq. (21) and then
into Eq. (20). Substitution of the definition (24) of

The derivation of the semiclassical exchange po-
tential is given by Riely and Truhlar in Ref. 10;
we briefly review it here (for closed shells) by way
of contrast with the FEG approximations. We
wish to approximate the exchange term on the
right-hand side of Eq. (3) as a potential, i.e.,

P' Qru (r) = P 6(m„m„.)u, (r)

where p is defined by Eq. (13).

III. RESULTS

We employ self-consistent MS-Xn wave func-
tions for the ground state of N, to generate V~,
Eq. (5), and p, Eq. (13). These are generated
from the bound-state code provided to us by Keith
Johnson. ~ The N-N internuclear distance of
2.0744a, (Ref. 27) fixes the sphere radii at
2.0744ao (outer sphere) and 1.0372ao (nitrogen
spheres). The Schwarz value" n =0.75197 was
used in all regions, and the Latter tail" was ap-
plied beyond the outer sphere during the SCF pro-
cess. Partial waves up to I = 4 on all sites for
g„and L = 5 for 0 and w„, were included except
for the 1g, and 1g„which were treated as free
core levels. ' This represents a high degree of
convergence in l: The highest l component of each
state contained less than 0.2% of the charge for
that state except for the valence 30, for which the
highest l component contained 1.3/o. The conver-
gence criterion for self-consistency of the poten-
tial was 1.0& 10 . Two quantities function as
indicators of the ability of the multiple-scattering
model to approximate Hartree-Fock solutions.
The first is the total energy' (EXo), which may
be compared directly to the Hartree-Fock (HF)
total energy. The present Xn calculation yielded
a total energy of -215.73 Ry compared to Nes-
bet's HF energy2' of -217.94826 Ry, giving the
ratio (EXa)/(EHF) = 0.9898. The second indicator
is the virial ratio -(EXn)/T of total and kinetic
energies. " This ratio equals 1 if the Coulomb
forces are represented exactly. To the extent
that the constant potential in the interstitial re-
gion or the truncation of the potential expansion
in partial waves distorts this representation, the
virial ratio will deviate from unity. The value
obtained for the N, calculation is 0.9784. (The
long-range quadrupole moment, also used to judge
wave functions, was not evaluated in the mono-
pole-approximation calculations of this study. )

Continuum calculations were performed using
the CMSM in the monopole approximation, as de-
scribed by Dill and Dehmer. "Convergence of the
partial-wave expansion of the continuum wave func-
tions was determined from the eigenphase sum. '
Partial waves (l,„„„,„„„l„,X) required for conver-
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FIG. l. Integrated cross sections for elastic e -N2

scattering comparing various exchange approximations.
Theoretical results include Hara exchange, —;semi-
classical exchange, —'-; Slater Xn potentials,
———;and B, --—(the latter two are reproduced from
Ref. 1). Unless labeled otherwise, calculations were
performed in the SEP approximation. Comparison is
made to the following experimental data: Golden (Ref.
30), O; Bromberg (Hef. 31), X; Dubois and gudd (Ref.
32), 0; Srivastava et al. (Ref. 33), 6; and Hermann
etaE. (Ref. 34), +.

gence to 0.006 rad are (12, 8, 7) to 2 By, (14, 10, 9)
to 5 Ry, and (18, 12, 12) to 70 Hy. For the Hara ex-
change, e,„was taken as the highest Xn eigen-
value -0.75 898 of the 30, orbital. Calculations
using the largest of these bases took 8 sec/energy

, on an IBM 370/195.
Figure 1 contrasts the results of the three ex-

change potentials —Hara (—), semiclassical
(- - ), and Slater Xcl potentials' (--) and
B (---) of Ref. 1—over the energy range from
0.01 to 70 Ry (approximately 1 keV). The Hara
exchange results are shown in the S, SE, and
SEP approximations; we will discuss the SEP re-
sults here in comparison with semiclassical and

Slater Xot exchange, and discuss the effects of
V~ and V~ later on in this section. Polarization
is included in region III only. We use the form

V = (-n /r')[1 —exp[-(r/r, )']],
where no ——12ao is the monopole polarizability3'
and ro is a cutoff parameter which is determined
empirically. For both SEP continuum exchange
calculations shown in Fig. 1, the polarization cut-
off parameter ro has been adjusted to position the
7t, resonance at the experimentally observed ener-
gy of 2.39 eV. ' For Hara exchange this required

2 90ao for semiclassical exchange r, = 3 1Gap.
For comparison, the Hara exchange calculation
of Morrison and Collins" used 2.341ao, and a
study by Buckley and Burke' required 2.308ao.
Buckley and Burke used an exact exchange al-
gorithm but neglected exchange with the core 10,
and 1p„molecular orbitals. A recent study by
Collins et al." showed that, due to the substantial
amplitude of the resonant state in the core region,
inclusion of this exchange interaction pulls the
resonance in from 4.35 to 3.77 eV. Thus the Buck-
ley-Burke value of 2.308ao must be regarded as a
lower limit for r, using exact exchange. For Slat-
er Xe potentialA, no cutoff function was used as
explained in Ref. 1, and potential B was construct-
ed without polarization. Note that our use of a
single cutoff radius over the range from threshold
to 1000 eV is a very severe test of this one-pa-
rameter polarization potential as it is optimized
for only one channel at one energy. This is dis-
cussed further in connection with the net effect
of V~ later in this section.

Both the Hara and semiclassical exchange ap-
proximations yield semiquantitative results
throughout the entire energy range shown in Fig.
1, and constitute a clear improvement over the
Slater Xn two-potential treatment of Ref. 1. Semi-
classical exchange suppresses the g, partial cross
section at low kinetic energy [see Fig. 2(a)] and
so is more accurate than Hara exchange below

8. 8.

(b)

8.

(c)

Ol

b b
/

/

0 . 01 0 . 1 | 10 100
KE (Ry)

I r ~ rr ~ ~ ~ I I I ~ ~ ~ rrrl ~ r ~ r ~ ~ rrl r I ~ ~ ~ ~ r ~

0 . 01 0 . 1 1 , 10 100
KE (By)

~ ~ ~ ~ ~ rrrl r ~ ~ ~ rrrrl r ~ ~ r ~ rrrI r r r rrrrr

0 . 01 0 . 1 1 10 100
KE (Ry)

FIG. 2. Comparison of Hara (—) and semiclassical (- ' — ) exchange results in the SEI' approximation. Each frame
includes the total cross sections plus the indicated partial cross sections.
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FIG. 3. Effects of nuclear motion on e -N2 scattering
near the m resonance. The adiabatically R- averaged
cross section and the fixed-nuclei cross section are
represented by solid and dashed lines, respectively.
Experimental data are represented by symbols accord-
ing to the convention in Fig. l.

(b)

the m, resonance. At the w resonance [Fig. 2(b)],
the two approximations yield similar results.
Just above the ~, resonance the semiclassical re-
sult exceeds experiment due to contributions from
both the resonant 5, [Fig. 2(c)] and post-resonant
m, components. Finally, above 8 to 10 Ry, the two
exchange treatments yield identical results.

The cross section at the w, resonance exceeds
50 A' for all three exchange approximations shown
in Fig. 1. Similar results were obtained by Buck-
ley and Burke' and Morrison and Collins. " This
excess above the experimental value" of -30 A'
is due to the fixed-nuclei a,pproximation, and aver-
aging over nuclear motion brings the results into
good agreement with experiment. Figure 3
shows our R-averaged results for the v = 0 - 0
transition in the vicinity of the w, resonance (solid
line). Details of the calculation of vibrationally
averaged and vibrationally inelastic processes
will be given separately. " Note that the vibration-
al fine structure on the m, resonarice arises from
nonadiabatic coupling of electronic and nuclear
motion not accounted for by our averaging pro-
cedure.

The o„shape resonance [ Fig. 2(a)] originally
predicted by us in Ref. 1 ha, s recently been ob-
served by Kennerly" as a broad peak centered
at 21 eV in the elastic scattering spectrum, dis-
placed slightly from the current calculation's cen-
ter at 26 eV. CMSM calculations, to be reported
in detail separately, "predict this resonance to be
active in vibrational excitation as well, as seen
in the experimental results of Pavlovic et al."
The 5, resonance at 13 eV, however, is apparently

I I I 1IIli 1 I I I Ills l I I I I I III/ I I I I ~ III

0 . 01 0 . 1 1 10 100
KE (Ry)

FIG. 4. Hara exchange results in the SEP (—),
SE(——), and S(— —') approximations. Total cross
sections for all three approximations are shown in
each frame, together with the indicated partial cross
sections.

too weak to observe in elastic scattering. " This
is more consistent with the Hara results in Fig.
2(c) inwhichthe 5 resonance is significantly weaker
and barely detectable in the total cross section.
Moreover, the E5, resonanc'e is not a,ctive in vi-
brational excitation owing to its weakness and
orientation away from the molecular axis.

Because Slater Xa potential B (short dashes in
Fig. 1) corresponds to finite exchange at high

energy, when in fact exchange should vanish there,
its good agreement with experiment is fortuitous.
We will demonstrate shortly that no exchange is
necessary in this energy region in order to obtain
such good agreement. That potential B does so
well using cy = -', indicates that its repulsive nega-
tive-ion character substantially cancels this ex-
change component. Differential cross section
calculations'" using potential B at 25 and 30 eV
verify that its representation is not as good as sug-
gested by Fig. 1.

Figures 1 and 4 illustrate the effects of the Vp
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and V~ terms in the SEP potential. The solid
lines of Fig. 1 show the Hara exchange total cross
sections in the SEP, SE, and S approximations
and compare them to experiment, and Fig. 4 iso-
lates the g, and m, components. Comparing the
SEP and SE results (solid and dashed lines, re-
spectively) in Fig. 4, we see that the polarization
interaction has three effects: First, it significant-
ly reduces the o, cross section at low energy [Fig.
4(a)], bringing it into better agreement with ex-
periment. Second, it shifts the v, resonance [Fig.
4(b)] by 0.6 eV from 3.0 eV to the experimental
energy of 2.39 eV without'significantly changing
its shape. Third, the adiabatic form of the po-
larization potential used here overestimates the
response of the target to a fast electron, i.e. ,
above 8 to 10 Ry the SE results agree better with
experiment (Fig. 1). However, . high-energy DCS
results discussed below show V~ is required to

reproduce the large forward-scattering compo-
nent, although it has negligible effect at intermed-
iate and large angles. Clearly, optimization of the
single-parameter polarization potential for one
channel and one energy is not sufficient to obtain
the best results for all scattering channel. s and
over the broad energy range treated here; nor
would it be useful to perform multiple optimiza-
tions in a study with the present broad scope.
Nevertheless, we have shown that selecting a
single, reasonable value of r, is sufficient, in the
context of the CMSM, to produce realistic cross
sections for the entire scattering process over
four decades of the energy spectrum. Eventually
the ambiguities surrounding treatment of V~ must
be removed via the development of an energy- and
symmetry-dependent polar ization potential.

The electrostatic potential alone (dash-dotted
line in Fig. 4) is not attractive enough to bind the

1.4 eV 2.4 eV 5. 0 eV 10.0 eV

ba
O ~ I 0 I ~ I ~

0 45 90 135 180

8 (deg)

N M-

C)—

'e
b

O r I v I ~ I ~

0 45 90 135 180

8 (deg)

Ot~
Cl

b5
O. . ~ I ~ I ~ I ~ 1

0 45 90 135 180

8 (deg)

I ' I ' I ' I

0 45 90 135 180

8 (deg)

15. 0 eV 20. 0 eV 25. 0 eV
CQ— o 30 . 0 eV

Cl

~n-
b
a

CO-

Cl'a
b5

ip

CO

Cl

b0

&p

C)

0
b"a

O ~ I y I ~ I
~

0 45 90 135 180

8 (deg)
0 45, 90 . 135 180

8 (deg)

O
0 45

8
90 135, 180

(deg)

I ' T ' I

0 45 90 135 180

8 (deg)

N

b2og

V

RON-

N

ol
os',

20. 0 eV V -0

N

30. Q eV

b
Q 6?

I ' I ' I
' I

0 45 90 135 180

8 (deg)

O I
I

~ I
I I ~

0 45 90 135 180

8 (deg)

O

0
I

/
t I ~ I

~

45 90 135 180

8 (deg)

b

I ' I '
I

' I

0 45 90 135 180

8 (deg)
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xt'„bonding moiecula. r orbital, which appears here
as a large w„resonance centered at 0.08 By. The

g, component fFig. 4(a)] has a shoulder at 0.6 Hy,
%'f'lich ls possibly the ol lgln of the enhanced gg

threshold cross section in the SE.P and SE results.
Finally, the m, resonance [Fig. 4(b)l is moved

up by more tha, n G. '76 By compared to the SEP
position, occurring at 1.0 By, and its magnitude
is reduced from -40 to -7 A'. The effect of ex-
change is small above -10 By, as shown by the
proximity of the (dashed) static-exchange and
(dash-dotted) static total cross sections. This
confirms that the current model goes to the proper
limit of va.nishing exchange at high energy.

Having studied the effects of variations of V~
and p ~ in the context of the CMSM, we wish to
stress a most important conclusion. That is, using
ei.her the Hara or semiclassical forms of V~ and
either including or omitting V~, we observe an
identical pattern of low- and intermediate-energy
shape resonances. Although these various
choices shift the resonance positions somewhat
and alter the resonance strengths, only the com-
plete neglect of V~ led to a qualitatively incorrect
result.

Figure 5 shows the differential cross sections at
eight energies between 1.4 and 30.0 eV. The cal-
culation of the DCS was performed as in Bef. 2„
and Fig. 5 is identical in layout to Fig. 2 of Bef. 2,
except that the results of other theories have been
omitted for clarity, and the relative experimental
results have been renormalized to the Hara ex-
change results at the ener gies and angles indicated
in the caption. Hara exchange results are shown by

a solid line, semielassiealby a dash-dotted line, and

potential A by long dashes; experimental points are
represented by symbols. Figure 5 shows that both
Hara and semiclassical exchange provide a realistic
representation of the DCS throughout this energy
range, with the Hara noticeably better mainly at
1.4, 5.0, and 10 eV. At 1.4 eV, the semiclassical
result appears to overestimate forward scatter-
ing. At 5.0 eV only one set of data shows the turn-
over at small angles predicted by the Hara and
potential A calculations; however, the small-
angle (8& 24 ) results of Shyn et a1.4' (circles) are
extrapolated rather than measured, and are thus
unable to show this feature. Semiclassical ex-
change fails to reproduce the turnover and shows
distortions at intermediate and large angles as
well, possibly arising from the excessive 5, com-
ponent shown in Fig. 2(c). Below 10 eV, the Hara
and, to some extent, the semiclassical exchange
results show only slight improvement over poten-
tialA. It is in the 15-30 eV DGSs, where poten-
tial A was unable to reproduce the minimum at
90', that the continuum exchange shows substan-
tial improvement. Here both Hara and semiclas-
sical exchange yield clean minima at 90', easily
visible in the log plots in Fig. 5.

The DCSs at 300, 400, and 500 eV are shown in

Fig. 6, along with the absolute experimental data
of Bromberg. " These were calculated using the
Hara exchange approximation only; based on the
results shown in Fig. 5 it is unlikely that semi-
classical exchange would show any difference.
They were, however, done with (—) and without
(---) polarization. In the upper row of Fig. 6, the
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agreement with experiment is very close in slope
and magnitude at all three energies; however, the
calculated spectra show a bump around 90' whichis
not clearly seen in the experimental data. Even here
the deviation is only 0.03-0.05 A'/sr. Polariza-
tion has negligible effect except for small-angle
scattering; however in the forward direction po-
larization significantly increases the cross sec-
tion, as shown in the bottom. row of Fig. 6. The
calculations required up to j, = 8 in the DCS ex-
pansion [Eq. (1) of Ref. 2j for convergence to bet-
ter than 1% at 300 and 400 eV, and 1.5% at 500
eV. Extension to j, = 10 at 300 eV resulted in
changes barely noticeable in the final result. Be-
cause this more than doubled the computer time
compared to j, = 8 calculations, this extension
was not tried at 400 and 500 eV.

IV. CONCLUSIONS

The central message of this work is that con-
tinuum exchange approximations (and in particular
the Hara exchange approximation), rather than the
Slater Xn exchange approximation, are necessary
to construct potentials which yield realistic repre-
sentations of electron-molecule scattering over
large energy ranges. While our results pert'ain
specifically to the CMSM, other workers' ""
have shown the importance of continuum exchange-
approximations in the context of other molecular

models. Our experience here, in Ref. 1 with N„
and in exploratory calculations on CO„OCS, CS„
and SF„ indicates that excessive tuning of poten-
tials based on the Slater Xn exchange approxima-
tion is required to reproduce experiment; and even
then for some molecules agreement is not satis-
factory. Using the Hara exchange approximation,
on the other hand, we have obtained qualitatively
correct static-exchange results (see, e.g. , Fig.
1) in each case, without any adjustment of the
molecular potential (no parameter of the bound
state calculation, e.g. , o. , was adjusted to im-
prove the continuum calculation). Then, by in-
cluding the polarization potential with the single
adjustable parameter r„ these results become
semiquantitative. Thus, we feel that continuum
exchange approximations provide a reliable basis
with which to conduct predictive studies of elec-
tron-molecule scattering using the continuum
multiple-scattering method.
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