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A novel, classical many-body model, previously introduced far nuclear collisions, has been extended to
atomic and molecular structure, with the goal of providing a framework for atomic collisions. In addition to
the usual kinetic and Coulomb potential terms, a momentum-dependent two-body potential acts between
electron pairs of identical spin in order to approximate the Pauli constraint r;,p;, )fi(p, where ( is a
dimensionless parameter here set equal to 2.767. A similar potential is introduced to simulate the
Heisenberg constraint, r,„p,~ = h, where N refers to each nucleus. Because of these constraints, the atomic
and molecular ground-state configurations are stable. The hydrogen ground state is given exactly.
Calculations in H, He, Li, Ne, and Ar reproduce total ground-state energies to better than 15%; this is
considerably better than the Thomas-Fermi model, in which the errors are approximately 28% for neon and
23% for argon. The resulting electrostatic potential is in general intermediate between Thomas-Fermi and
Hartree-Fock calculations. H2+ and H2 molecules are overbound; in contrast, the Thomas-Fermi model does
not bind neutral molecules.

I. INTRODUCTION

. Classical calculations for determining atomic
collision cross sections have received a great
deal of interest in the past 20 years because of
their relative simplicity. Two approaches have
been utilized; binary encounter theory and com-
puter simulation of classical trajectories.

The binary encounter theory, pioneered by
Thomas' and Williams' in 1928 and later repeated
by Bryzinski, ' Qchkur and Petrunkin, ' and Stab-
ler, ' treats the electrons of an atom as essentially
free particles during the time of the collision.
The colliding particle may then be considered to
undergo binary encounters with the individual
electrons of the atom, all other electrons being
ignored. The cross section for energy transfer
(from particle 1 to particle 2) for two colliding
charged particles was given by Williams as

d(r(e) we'Z,'Z,'M, 1 4E'
dE M2F-, ~' 3 E'

where g,e is the charge on the incident particle,
M, its mass, and E, its kinetic energy. Z.,e, M„
and E, are the charge, mass, and kinetic energy
of the second particle. This equation, or the more
recent version of Vriens, ' may then be integrated
from the ionization energy of the electron to infin-
ity and summed over all electrons in an atom to
give the total ionization cross sections.

Equation (1) requires knowledge of the kinetic-
energy distribution of the electrons. In normal
calculations, this is obtained using information
from experimental, Thomas-Fermi, or Hartree-
Fock results. Details on the method may be found
in the review articles of Bates and Kingston' or
Burgess and Percival. '

Trajectory calculations by numerical integration
have been used to solve three types of problems.
Early calculations by Bunker, "Blais and Bunker, "
Karplus and Raff, " and Herschbach" concentrated
on molecular collisions. Individual atoms were
treated as classical particles with semiempirical
interparticle-force laws, and the equations of
motion integrated to obtain molecular-reaction
inf ormation.

Recently, attention has been given to the colli-
sions of various charged particles, including elec-
trons, protons, and ions of the form g", with
hydrogen atoms. Abrines and Percival'4 used
three-body trajectories in analyzing the H'+H
collision by treating the protons and electron as
classical particles with Coulombic interactions.
Integration of the equations of motion gives ion-
ization and charge-transfer cross sections. Other
three-body trajectories by Banks et al. ,

"Olson
et al. ,

" "and Phaneuf et al. ,"have extended the
calculations to stripped ions and ions of the form

Four-body trajectories for He'+H have been
carried out by Becker and Mackellar. "

A third physical situation —the collision of a
charged particle with an atom having a single
highly excited electron —has been considered by
Percival and Richards. " In this model, three-
body-trajectory calculations (similar to those of
a hydrogen atom) were made possible by treating
the highly excited atom as an inert ion core with
the single electron in a high-~ classical Bohr
orbit. Again, cross sections for ionization and
charge transfer were determined by integration
of the equations of motion.

In all of the above cases, the equations of motion
are standard, and the integration is done numeri-
cally on a digital computer using one of several
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differential equation solving programs. Monte-
Carlo initial conditions are used.

In the classical calculations given above, rela-
tively simple approaches are taken either using
approximations which ignore all but the simplest
features of atomic structure or considering only
one-electron atoms and ions where atomic struc-
ture is classically allowed. This is perhaps be-
cause the only atomic models which have been
able to give good agreement with experimental
ground-state atomic structure are the quantum-
mechanical Hartree-Fock model and the semi-
classical Thomas-Fermi model, neither of which
is suitable for classical collisional calculations.
Furthermore, a truly classical atom with uncon-
strained electrons is unstable and collapses,
emitting electrons.

What is needed then is a simplified theory of
atomic structure which, while retaining essential
ground-state features, -remains useful for collision
calculations. Such a model is introduced in this
paper by simulating the Heisenberg uncertainty
principle and Pauli exclusion principle with con-
straints of the form r,P, ~ )»8 for all electrons
and r,&P,~

& )~h for identical electron pairs. The
constraints are approximated by potentials of the
form

The Pauli principle requires that two identical
fermions have orthogonal wave functions. Classi-
cally this means that any two electrons having the
same spins cannot occupy the same volume of
phase space. We effect this by requiring that
r„p,~ ~)~, where r, &

is the relative position and

p, ~
is the relative momentum of the ith and jth

identical electrons, and $~ is another dimension-
less constant which must be determined. No con-
straint is placed on the relative positions and
momenta of electrons with opposite spins.

Once the constants $» and g~ have been deter-
mined, these constraints, together with the classi-
cal Hamiltonian

give a complete description of the model and may
be used to determine the ground-state configura-
tions of atoms.

The constant $» is obtained by applying the
model to the hydrogen atom. It is clear that in
the ground, or lowest-energy, configuration the
condition rP = $» rather than rp& $» must hold.
The Hamiltonian is

H=P /2 —1/r.

&.(P, r) =r 'f(rP).

The particular form chosen is

V,=, exp a I-~—(gn)' (rP '
4ur'm 1, h

(2)
Using the constraint we have

H = ('»/2r' —1/r,
or for the stationary state

BH -$» 1» + 0
The equations of motion are determined from the
Hamiltonian and solved analyticically, in simple
cases, or numerically, in more complex cases,
to yield the ground-state configurations of atoms.
We believe this classical model will be of use in
a wide variety of collisional calculations.

II. HEISENBERG AND PAULI CONSTRAINTS

In an earlier paper Wilets, Henley, Kraft, and
Mackellar" proposed a classical model for nuclear
collisions where the Pauli exclusion principle is
simulated by a momentum-dependent two-body
potential. The model proposed below is xtended
to include the Heisenberg uncertainty principle as
well. This is accomplished by requiring that the
magnitudes and position of each electron relative'
to the nucleus obey the relation r,P, ~ $», where
r, is the position of the ith electron, p, is the mo-
mentum of the ith electron, and $» is a dimension-
less constant which must be determined. (Here,
-as in the remainder of the paper, we utilize atomic
units I=m, =e =1.) It is the Heisenberg principle
which prevents atomic collapse.

and hence r =$'», P = I/g», and E = —I/2$». From
this condition we find $» =1.

Obtaining the value for $~ is somewhat more dif-
ficult, and as yet no final answer has been found.
Two approximations are employed to calculate
the energy of an infinite system of noninteracting
fermions; the parameter $~ is then adjusted to
reproduce the Fermi gas energy. In both cases,
the electrons are assumed to be in a close-packed,
face-centered-cubic array. One cell is shown in
Fig. 1. The determination of the p, that produce
the lowest energy is an interesting problem in
lattice theory.

The first method, used in Ref. 22, assumes that
(p,. ~ p&) =0 in the array, and that all P& are the
same. In this paper, we retain the assumption
that all P, are the same; however, we assume
that particles separated by a distance greater
than the nearest-neighbor distance do not ap-
preciably affect each other. We then need only
consider the four particles which are mutual
nearest neighbors, each separated from the others
by a distance a (see Fig. 1). The constraint equa-
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III. APPLICATION TO SIMPLE ATOMS AND MOLECULES

A. Two-electron atoms and ions

It is possible to make analytic calculations,
using the constraint conditions, for one-, two-,
and three-electron systems. For the two-electron
case the electrons lie in a plane with the nucleus.
By symmetry, we expect they will lie in a straight
line. Since the electrons are not identical, no
Pauli constraint is required. The Hamiltonian is

FIG. 1. One cell of a face-centered-cubic array show-
ing four mutual nearest neighbors. e =p', /2+p,'/2 —Z/r, —Z/r, +1/r„, (14)

tion reduces to a P, J
= P~, where i and j run over

the four particles.
Since the momenta of the four particles differ

only in angle, the angles between the momenta
must be equa]. , and hence the momenta must point
to the four corners of a regular tetrahedron. The
equation of constraint becomes

with constraints

p& -$
and where

r» =
I r, —r, I

= (r', +r,'—2r,r, cos0)'I'.

Minimization with respect to P, and P, is obtained
when the Heisenberg constraint is taken to be an
equality. Minimization with respect to r, and ~,
yields

ap;) =-' [a(2p'+p' —2p'cos&)'"1
—-'ap(')"' -(')"'ap = $ (8)

r, =r, = 4]'„/(4Z —1),

P, =P, = (4Z —1)/4$„, E = —(4Z —1)'/18$'„. (15)

where the tetrahedral angle given by cos0 =-—', has
been substituted. The energy is

For the helium atom with Z=2 and $„.=1 (as
calculated earlier), we find

1p2 3 ]P/P (9)
E = ~ = -3.0625 (18)

with volume per particle

v=-,'( 2va)'=n '.
The Fermi energy is well known to be

(10)

This is to be compared with the experimental
value" for E of -2.862.

Since Thomas-Fermi theory does not bind nega-
tive ions, it is of some interest to consider the
H ion, a two-electron ion with g=1. The solu-
tion is

Equating this to the classical result we have

(12)

r =7 p=g E ——~--0.5625, (17)

which indicates that the ion is bound by —~ rela-
tive to H. The experimental value'~ is -0.0277.
The fact that it binds at all is encouraging, even
though it does overbind.

or

(13)

The value calculated by the previous method is
2.14.

It should be emphasized that both of the values
are based on the assumptions that (i) the particles
form a crystalline face-centered-cubic structure,
and (ii) the magnitudes of the momenta of all par-
ticles are the same. An alternate approach would
be to fit the parameter $~ to finite systems (e.g. ,
atoms). We are currently engaged in further re-
search to determine a more suitable value.

B. Three-electron atoms and ions

The three-electron case has general constraints

r,P, -$„and ri413 4
and the Hamiltonian is

(18)

The three electrons and the nucleus are again ex-
pected to be coplanar since any configuration of
the electrons removing the nucleus from the same
plane will cause an increase in energy. The posi-
tions may be described as in Fig. 2. To obtain an
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C. Molccules

Utilizing the method for molecu1. es is only slight-
ly more difficult in principle than for atoms. We
add the necessary terms to the Hamiltonian and
insure that r,„P, ~ $» for all nuclei N. r,„is the
distance between the ith electron and the pfth nucle-
us. The equations become

FIG. 2. Geometry of the three-electron case.

approximate solution for the ground-state configu-
uration, we assume the third electron is some-
what further from the nucleus than the other two
electrons. The equations may then be simplified
by treating the third electron as a perturbation on
the two-electron system and ignoring terms of
order r, /r, and 68. The simplifieations give

r, =r, =r, P, =—p, =—p, I9„=—&,

r» = (r', +r', —2r,r, cos 8»)'" = 2r,

r» = (rq +r2 —2rp2eos8»)'

r„=(r,'+r', —2r,r, eos8„)'"=r, ,

P13 (Pj P3) P l

2
(r' + 4d —4ar cos 8)'I'

with constraint rp = 1. Requiring sH/88 =0, we

find cos8= —,'r/a, which gives

(24)

subject to the constraints r«p, ~ $» and r,&p&&

The ground state of the simplest neutral mole-
cule, H„may be determined by appealing to sym-
metry to reduce the complexity of the Hamiltonian.
The molecular configuration should be as shown
in Fig. 3. It is sufficiently general to restrict con-
sideration to r cos 8 ~ a. We may divide the prob-
lem into two regions, r cos8& a and r cos8 = g.

In the region r cos8& a the Hamiltonain is

-1 2 1
2a r 2(r' + 8 —2r a cos 8)'"

and the Hamiltonian reduces to
2 2r~ 2

sr r' (42 —2r')'" r' (25)

e =p'+P', /2 —(Z- —,')/r —(Z-2)/r,
with constraints

rp=)», rap, =$», r2P/2 =$2.

(20) for the stationary state.
On the axis where r cos8=a, the Hamiltonian

reduces to

This is particularly simple to solve for the ground
configuration giving

1 4 1
g)X12 +P (26)

2(5»+$»/84)
2z- —,'+(z —2)~„/2g„'

&»+ &»/8C
~o ~» 2Z —'+(g 2)$ /$

2

2(&' + &»/8&', )

(, /4 )
2Z ——,'+(g —2)$»/2)2p2» 2 ~2 +g4/8~2

E [2z--,'+(z-2)g„/2~, P
5' +5»/ 5',

(21)

We may apply this result to the lithium ion with

Z =3 to obtain

r =0.368, r3 =2.036,

p =2.717, p3 =0.491, E = -7.938. (22)

Again, this may be compared with the experiment-
al binding energy" of -7.369.

again with constraint rP =1. The stationary con-
dition is

4/r' -r/2(r' —8)2~' —2/r' =0. (27)

I

I

I

I

I

I

o ', a
I

I

I

I

I

I

I

FIG. 3. Geometry of H&.

The equations may be solved numerically as a
function of a to give the minimum energy. In Fig.
4, we plot the absolute minimum energy,
min(E, , ~ „E„,»«) (solid line), together with

the semiempirieal energy (dashed line), as a fune-
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V,(P, r) = (&'/4'')exp[a[1 —(rP/$)'] }, (28)

where r, p, and $ may be either r„p&, and $z or
r, &, p, ~, and $~. The hardness parameter n is
adjustable, a large value giving nearly the con-
straints rp ~ $, and a small value giving weak con-
straints. In this paper we use n =5. This form
identifies V, with the kinetic-energy term as will
be seen below by the virial theorem.

Using this potential the classical Hamiltonian
may be written as

FIG. 4. Potential as a function of atom separation
for Hg ~

+ —'+[1/r(~+5 ),~ Vq(pq), r, ))].
.i &g

(29)

tion of a. The minimum energy is -1.672 at a
=0.55 and r =0.776 with the electrons on the axis.
The binding energy is considerably deeper than
the experimental value" of -2.174, which lies at
g =0.742.

It is also of interest to consider the H,
' ion. This

is done with exactly the same approach as that
used for H, . In Fig. 5 we plot the minimum con-
figuration energy as a function of internucleus
separation. The lowest energy is ——', with a= ~
and the electron centered between the two nuclei.
Again this result is substantially overbound com-
pared with the experimental value" of -0.597 at
g = 1.00.

Here 5, , is 1 if the spins of the ith and jth elec-
8]S~

trons are the same and 0 if they are different.
Note that it is possible to violate the constraint
if the soft potential is used.

Some interesting results may be obtained
analytically without actually solving the Hamil-
tonian. First, the Heisenberg and Pauli poten-
tials combine with the kinetic energy to satisfy a
modified virial theorem. We introduce a scale
parameter by replacing p with p/X and r with Xr.
The Hamiltonian becomes

IV. NUMERICAL MODEL

Using the above model to calculate the ground
states of atoms becomes increasingly more diffi-
cult for higher atomic numbers. To obtain solu-
tions for these atoms, numerical-integration
methods are employed by replacing the constraints
r,P, ~ $z and r,&P,&

~
$~ with potentials. One family

of such potentials has been given in Ref. 22 as
V,(P, r) =r 'f(Pr), and the particular form used is

(30)

If P,. and r, are the solutions which minimize the
original Hamiltonian, then H(X) is minimized at
X =1. This gives

—E~ = 2 (Eq + Vp + Vp), (31)

which is our modified virial theorem.
Since we have not determined definite values for

g~ and $„, it is interesting to consider the effect
scaling them has on the Hamiltonian. We let (- Xg, r-X'r, and p-p/X, which satisfies the re-
quirement rP/$ - rP/$. Then

-0.5

-0.6-
-07-

Q8

O
Q9

LLI

—I.O-

CHANICAL

(32)

I.2 (, I s

4 6 8
a (o.u. )

IO

F/G. 5., Potential as a function of atom separation for
Hp'.

The Hamiltonian scales by 1/X'.
The substitution of the soft potentials for the

hard constraints leads to a change in the energy,
position, and momentum of the ground configura-
tion. This may be seen by considering the case of
the hydrogen atom. The Hamiltonian is
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I,O TABLE I. Some moments for neon.

0.8-

0.7-

0,6—

o 05—

0.4-

(1/r)

( 2)1/2

&p)
(p')

Classical

3.352
1.177
1.614
3.495
5.167

HF (aef. 22)

3.111
0.789
0.968

5.070

0.2-

O.I—

P'
H= ———+ " exp n 1 ——

I2 r 4nr (H&
(33)

In the ground or stationary configuration, BH/ap =0
by construction, and we require BH/sr =0. This
gives

r = Q(1+ I/2n),

P = I/g„(I+I/2n),
E = (I/2 $'„)I/(I + I/2n) .

By making the renormalization $ - $ (/I + ,' )'na/s-
above, we may obtain the correct r and E for the
hydrogen atom.

Although it is not obviously the best approach,

I.O

0.9

.0.8

0.6

0 I

0 0.4 0.8 l.2 I .6 2.0 2.4 2.8 3.2 M 4.0
r (a.u.)

FIG. 6. Dimensionless potential function 4 as a func-
tion of radial distance from the nucleus for neon.

we have made such a correction in our numerical
model. If solutions to the constraint problem are
desired, it is perhaps better to allow e to become
large enough that the correction is negligible.

V. NUMERICAL CALCULATIONS OF THE GROUND
CONFIGURATIONS

%e have obtained a numerical value for the
ground configuration in one of two ways. Origin-
ally, we used a numerical integration method
similar to that given in Ref. 22. More recently„
we utilized an International Mathematical and
Statistical I ibraries subroutine for minimizing
multivar iable functions" which gives substantial
savings over the previous method. This method
is also easier to use, requiring only a subroutine
to evaluate the energy and a set of initial condi-
tions.

For initial conditions, we set the electrons on
a regular grid in the first quadrant (the nucleus
being at the origin) and arbitrarily set the momen-
tum p equal to the position r. The routine was
able to converge to the ground state although it did
prove advantageous to move electrons which
strayed far from the center back in. These init-
ial conditions are very poor, and any improve-
ment would undoubtedly give significant saving
in the time required for convergence.

%'e have applied the model to helium, lithium,
neon, and argon, obtaining ground-state energies
of -3.062, -8.015, -145.5, and -566.0. The value
for helium is a test of the numerical model (the
analytic value is 3.060). The value for lithium
tests both the numerical method and the perturba-

. 05

0.4

0.3

ocK

TABLE II. Some moments for argon.

0.2 Classical HF (Bef. 22)

O. l

00 0.4 0,8 I.2 1.6 2.0 2.4 2.8 3.2 3.6
r (a. U.)

FIG. 7. Dimensionless potential function 4 as a func-
tion of radial distance from the nucleus for argon.

0./~)

( 2)i/2

&p)
(p2) i/2

4.032
1.007
1.369
5.014
7.602

3.873
0.893
1.203

7.258
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TABLE III. Contributions to the total energy for neon. NEON
~0

-291.1 133.5

VH

8.9 3.1

Total

-145.5
I I I I I I I I
I I I I I I I I

0.025 0.050 0,IOO 0.250 0500 I.OOO 2.500 5000 LOG(&)

ARGON

1 Z
V = (35)

where

r, =max(r, r, ). (36)

The comparison is enhanced by considering the
dimensionless potential function

c =-(r/z)v, . (37)

Finally, we compare some of the moments of
the electron-density functions. Such comparisons
are made here for neon and argon.

The dimensionless potential function 4 is given
as a function of r for the classical model (solid
line), Thomas-Fermi model (dashed line},28 and
Hartree-Fock model (long and short dash}""
in Fig. 6 for neon and Fig. 7 for argon. The mo-
ments (1/r), (r), and (r')"' are compared with
Hartree-Pock values in Tables I and II, and, as
a matter of interest, the moments (P) and (P') are
also given. Note that both atoms have the same

tion method (-7.938). The values for neon and

argon may be compared with the Hartree-Fock"
values -128.5 and -526.8, and the Thomas-Fermi'
values -165.6 and -652.7.

Since the purpose of the model is to approxi-
mate atomic structure for use in classical colli-
sions, some comparison of the structure with the
quantum-mechanical Hartree-Fock and Thomas-
Fermi models is advisable. A quick comparison
is given by the total-energy figures above. This,
however, being strongly dominated by the inner
electrons, is inadequate for any serious consid-
eration, and a more careful comparison of elec-
tron positions must be made. The straightforward
approach of comparing electron densities has been
discarded because of the ambiguities in assigning
densities to point electrons. Instead, the Hartree-
Fock and Thomas-Fermi potentials are compared
with the monopole component of the electrostatic
potential, which is given in the model by

~ ~ 0

FIG. 8. Radial positions of the electrons for neon and
argon plotted on a logarithmic scale.

general features: The dimensionless electrostatic
potential at first lies below both TF and HF curves;
in the middle it is above the TF curve, and finally
it falls to zero between the two curves. In both
cases, the values of (r) and (r')'" are too large,
indicating that the outer electrons extend too far
out (this is not too surprising since both Ne and Ar
are closed-shell atoms and especially compact).
The value of (1/r) is also too large, indicating that
the inner electrons are too close. One could at-
tempt to improve these values by varying n, $z,
and $,. Tables DI and IV give the potential energy,
kinetic energy, Heisenberg and Pauli energies,
and the total energy. Figure 8 gives the logarithm
of the radial positions of the electrons. Table V
summarizes the energies for the atoms we have
completed.

VI. CONCLUSIONS

We have presented here a classical atomic
model which incorporates features of the Heisen-
berg and Pauli principles. The main purpose of
the model is to provide a framework for many-
body atomic-collision calculations.

The ground-configuration energies of helium,
lithium, neon, and argon given in the model are
within 15% of the experimental or Hartree-Fock
values. The negative ion, H, is bound with an
energy relative to H of -0.0625. The H, ' and H,
molecules, in contrast to the Thomas-Fermi re-
sult, which does not bind neutral molecules, are

TABLE V. Summary of the (-) energies of completed
systems.

System Classical HF Experimental

VH Total

-1132 520.2 28.4 -566.0

TABLE IV. Contributions to the total energy for argon. H

He
Li
Ne
Ar

0.5625
3.0625
7.938

145.5
566.0

3.8740 2.8359
9.978 7.432

165.6 128.5
652.7 526.8

0.5277
2.8900
7 44
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overbound. %e do not expect the model to give
molecular structur'e well-since molecular binding
is a very sensitive function of outer-sheH. struc-
ture.

Extensions of the model would include: (a) The
determination of an optimal set of parameters o. ,
gs, and $~; (b) The search for another form for
the Heisenberg and Pauli potentials; and (c) The
identification of a better approach to the Heisen-
berg uncertainty principle, in the case of multi-
center problems (e.g. , molecules).

Applications of the mode include: (i) Electron-
atom scattering, (ii) atom-atom and ion-ion
scattering, (iii) muon scattering and capture, and

(iv) molecular scattering. Collision calculations
are capable of yielding full "microscopic" infor-
mation, such as energy loss, differential scatter-
ing cross sections, ionization, electron transfer,
and, in the case of muons, the characteristics
of the capture orbits. Calculations are in pro-
gress on several of these problems, and results
will be presented in a forthcoming paper.

*Now at Dept. of Physics, Univ. of California, Berke-
ley, Calif. 94720.
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