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Resonant ionization in slow-atom —Rydberg-atom collisions
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The process of ionization in slow-atom-Rydberg-atom collisions is investigated. A resonant energy

exchange mechanism is considered responsible for the electron transition into the continuum. Both

symmetrical and asymmetrical systems are considered. The ionization probabilities and cross sections for a

number of Rydberg states in the colliding systems H~ (n) + H, Li* (n) + Li, H* (n) + Li are calculated.

I. INTRODUCTION

The process of ionization of highly excited
(Bydberg) atoms in slow collisions with ground-
state atoms and molecules is of considerable
interest in many fields of research, involving
nonthermal and nonstationary laboratory and astro-
physical plasmas. " Experimental investigations
of this process have recently been performed'4
or are under way in several laboratories. ' The
theoretical studies of atom-Rydberg-atom ionizing
collisions have been performed so far either within
the classical and semiclassical' approximations
or by using the Fermi pseudopotential model. ' In
the present paper we consider the atom-Rydberg-
atom ionization process within the framework of a
resonant energy exchange mechanism recently
developed for the inelastic transitions in the dis-
crete spectrum of an atom-Rydberg-atom collid-
ing system. ' A limiting case of our problem has
previously been treated by Zhdanov and Chibisov. "

In Sec. II we formulate the ionization problem
in the slow-atom-Hydberg-atom collision in terms
of the resonant energy exchange mechanism. In
Sec. III we calculate the autoionization widths of the
Bydberg states in both symmetrical and asymmet-
rical systems. In Sec. IV we present the results
of our calculations on the ionization probabilities
and cross sections of some Rydberg states in H*-
H, Li*-Li, and H*-Li systems. In Sec. 7 we give
some concluding remarks. Atomic units (e=m,
=@2=1)are used throughout this work, unless
otherwise indicated.

II. RESONANT ENERGY EXCHANGE MECHANISM FOR
ATOM-RYDBERG-ATOM IONIZATION PROBLEM

Let us consider a slow collision of a Rydberg
atom A+(n) (n being the principal quantum number
of the highly excited electron) with a ground-state
atom B (or A) leading to the reaction

A+(n)+B-A+B'+ e.
We assume that the excitation energy E,„„of

the atom A*(n) is higher than the ionization poten-
tial Ia of atom B, and that n» 1. The reaction (1)
differs from the usual Penning ionization process
in two aspects. First, the state of the excited
atom is not supposed to be a metastable one, and
second, the decay of the autoionizing state leading
to reaction (1) is dominated by the motion of the
perturbing atom deeply inside the orbit of the
excited (Rydberg) electron. If the transition A*(n)
-A(0) (where 0 refers to the ground state) is optic-
ally allowed, then at large internuclear distances R
» x„,x, [r„,x, being the characteristic dimensions
of atoms A*(n) and B (or A), respectively] the
"direct" channel of reaction (1) is operative.
However, owing to the small oscillator strength
for such a transition (for n»1), the efficiency of
this channel is extremely small.

At low collision velocities (v «n ) and for im-
pact parameters p «x„, the perturbing atom B
spends a good deal of time in the region inside the
orbit of the Rydberg electron, so that inelastic
electronic processes within the inner quasimolec-
ular subsystem AJ3' are possible. The electronic
transitions between the states of the subsystem
AB-+ induce transitions of the outer Rydberg elec-
tron without any change in the electronic energy
of the total system (i.e., in a resonant manner).
If this resonant energy exchange between the inner
subsystem and the outer electron is sufficient to
bring the Rydberg electron into the continuum,
then the ionization reaction occurs. In particu-
lar, the electronic transition in the inner quasi-
molecular ion AI3' may lead to formation of a
state which asymptotically correlates to the con-
figuration A+B'. In this case the Rydberg elec-
tron becomes unstable against autoionization. In
the present paper we consider in more detail just
this case [i.e., the "exchange" channel of reaction
(1)].

It has been shown in R.ef. 9 that the main contr i.—

bution to the inelastic collision effects in atom-
Rydberg-atom collisions at e «n ' gives the
region r„»R»ro. If r„r, and r», r» are the
position vectors of the Rydberg and the inner
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active electrons with respect to the atomic cores
A' and B', then in the region r, »A» r, the
Hamiltonian of our two-electron system can be
written in the form

H =H, +H2+ V( t,

Using the Coulomb approximation for the func-
tions Q„, (r,), we may transform the quantity M~

to the form"

M', =~4 P lg„,„lr,~l@„,„,)l',

H, = —k&', + V„(r2}+V~(r, g,
V„,= —1/r, ~+ 1/&„,

(2a)

(2b)

where co„ is the transition frequency. Further
using the fact that M', can be expressed" in terms
of the photoionization cross section o+, we can
put the decay probability W(R) into the form

and the ionization rate is given by

w = 2v
l

&+
l
V . l +~&

l
g( ),

where g(e) is the statistical weight of the continu-
um state of the Hydberg electron. In Eq (4) the.

equality of the initial- and final-state energies is
presumed and in the wave functions g,. and +& we
have neglected the possibility of exchange of the
Hydberg electron with the inner one. The main
contribution to the matrix element (4) gives the
region x, = n, x2 «rP, so that for r,2 in V„„one
can use the expansion

(4)

1 1 rr2+ + e ~ ~
8

12 ~1 1
(6)

Using the expansion (5) in Eq. (4) and the orthogo-
nality of the initial- and final-state wave functions,
one obtains

W= 2'', D'(R)g(e), . (6)

(6a)

where V„(r) and Vs(x) are the potentials of the
cores A' and B', having Coulomb behavior for
large x.

Let us denote by Q„z,(r, ) and y&(r„H) the eigen-
functions of the Hamiltonians II, and H„respec-
tively (e refers to the continuum states of H, ).
The wave functions y& describe the adiabatic states
of the system A,B', with the corresponding ener-
gies U&(R}. Let X,(r„R) and y, (r„ ll) be the wave
functions of the two low-lying states of the molec-
ular ion AB' such that e(R) = U, (R) —U, (R) is
positive for each R. [For R —~ this assumption
is consistent with the condition I(A) &I(B) im-
posed on reaction (1).j For simplicity, we assume
that the states described by X, and X, are Z-molec-
ular states. The initial- and final-state wave
functions for' reaction (1}are now (l denotes the
orbital angular momentum quantum number)

+~ = 4.i(~i)X.(r2; R), +~ = A. , (r,)X,(r.; ll), (3)

W = (ur„', c/2v)g~D'(R), (6)

where c is the velocity of light.
For n»1 and ~„,s —,', the photoionization cross

section can be represented by the quasiclassical
expression of Kramers, " and for the decay prob-
ability, averaged over the initial-state quantum
numbers, one obtains

W(R) =(4/3v 3n')D'(R) .
This expression for W(R} is valid in the region of
R in which the condition &u(R) = U, (R) —U, (R)
~

l c„l holds, where e„ is the binding energy of the
Rydberg electron.

The problem of the calculation of the transition
probability W(R) is thus reduced to the calculation
of the dipole moment D(R) of the quasimolecular
ion AB'.

III. CALCULATION OF DIPOLE MATRIX ELEMENT

A. Quasiresonant case: I& -Ia &&I&, I&

Let p, (r, ;R) and y, (r2; R) be the molecular
wave functions of the inner electron when it is
dominantly localized around the cores A' and I3',
respectively. For R —~ these functions go over
into the corresponding atomic wave functions
Q„(r,) and Qs(r»). The adiabatic molecular wave
functions y, and X, of the ion AB+ are expressed in
terms of y, and y, in the usual way":

In calculating the matrix element D(R), we
distinguish two cases: (a) I„Is«I„,ls-(I„)I~)
and (b) I„Is=I„,ls -(I„&Is), where I„and Is are
the ground-state ionization potentials of the atoms
A. and B, respectively. We refer to case (a) as the
"quasiresonant case" and to ease (b) as the
"strongly nonresonant case."

Since the region r„»R»x, is of primary inter-
est to us, in the calculation of D(R) we may use the
asymptotic methods of the low-energy atomic col-
lision theory. "

(6b)D'(R) =
I &x,(r. R}l"~lx.(r. Il&&l'

and A. is a unit vector along the internuclear axis.

Xl ~1@1 2%2 P X2 ~2+1 1+2 &

a& 2 ——(1/W2)[1 km/(~'+ &')'"p"
(10}

(11a)
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g= ~H„—H„(, 4= (H» —SH„(, (11b) —,'R, R «R„
W(R) = (4/3v 3 n') x

R-R, .

(17a)

(17b)

(11c)

(i2)
(K2 + g2)1/2 &

z„(R)=(9&,
~

r, ~ ».
~
y, ) .

For z—= 0 one obtains D(R) from Eq. (12) for the
pure resonant case (B=A):

(i3)

and terms of order of O(S') in (lla) are neglected.
The quantity h(R), defined by (11b), is known as
an "exchange interaction" and can be calculated
asymptotically exactly. " Inserting the wave
functions (10) and (11) into Eq. (6b), we obtain
asymptotically

Since for values of K not too large the critical
distance R, has a large value, one can neglect
the contribution to W(R) from the region R & R,
as being exponentially small [z»-R'h(R)].
Therefore the transition probability for this case
is dominantly determined by Eq. (17a). In writ-
ing expressions (17) for W(R) we assume that
in the region of interest the exchange interaction
terms at adiabatic energies prevail over the
multipole ones. In the case where ~(~)( ~e„~ and

z(R} increases with decreasing R, the ionization
process is energetically inaccessible until the
distance R„, at which ar(R„) = ~e„~, is reached.
In this case the transition probability is again
given by expression (17a), where the critical
distance should be taken as min(R„R„).

D„, (R) =—,'R, R»1. (i4)
B. Strongly nonresonant case: I& -I& —I&, I&

. 2R, R «R
D(R) =

z»(R), R ~ R, .

(16a)

(16b)

The corresponding transition probability for g(~)
=I„-I~) ~q„~ has the form

The functions X, and y, in this case describe the
symmetrical (g) and antisymmetrical (u) low-
lying states of the ion A;, whereas h(R) = b „,(R)

E„(R)—E,-(R) is the energy splitting of these
states. The resonant ionization process in this
case occurs only for R «R„, where R„ is defined
by the equation 6, (R„)= ~p„~, p„being the binding

. energy of the Rydberg electron. For R»R„reso-
nant transitions occur only in the discrete spec-
trum. ' Explicit expressions for b.(R) are pub-
lished elsewhere. '~ Using the above expression
for D„,(R) in Eq. (9), one has

W„,(R) =R'/3v 3 rP, R ~R„.
If x is not identically equal to zero (BWA), both
terms in Eq. (12) should be retained. However,
for small values of z (near- or quasiresonance)
and owing to the strong exponential dependence"
of h(R), there exists a narrow region (R, +SR,
R, —5R), with 6R «R such that when R )R, + 5R,
K» ~, an. d when R &R, —5R, »& K. In the
small region M around R, the character of the
electronic wave functions changes drastically;
i.e., a Demkov's nonadiabatic coupling of the
states takes place. The critical internuclear
distance R, is determined by the equation &(R,)

Bearing this in mind, we can represent D(R}
in the form

W"'(R) = (4/3v 3 n')(z "')' (19)

Since z,', & exponentially decreases with increasing
R, the decay rate (18) acquires considerable
values only for relatively small R, i.e., when
the perturbing atom is deeply inside the orbit of
the Rydberg electron. Note that the result D(R}
= z,'2 can be formally obtained from the expres-
sion (12) for D(R), assuming that g» h(R) in the
whole region of R and replacing 9&, by Q„.

Let us consider now case (b), i.e., when there
exists in the atom A an excited' state (or a group
of energetically close excited states) which has a
binding energy &, close to I~, or more precisely,

In the case of asymmetrical systems with a
large resonance defect z(~), two limiting situa-
tions can be distinguished: (a) the first excitation
level E&,'&„of atom A lies well above the ground-
state level of atom B (so that I„—E,"„&„«Is)and

(b} there exists a low-lying excitation level (or a
group of energetically close levels) E„„in atom
A such that its binding energy is close to the ioni-
zation potential of atom B (I„—E,„„=Is). The
first case has been considered by Zhdanov and
Chibisov. " The characteristic feature of this
case is that the hybridization of the states de-
scribing the localized electronic motion is ener-
getically inappropriate. In this way one has Xy
= p, and X, = y„where p, is close to Q„. The
dipole matrix element D(R) in this case becomes

D(R)=(y„~ r, &&. ~y,) -=zI,O&, (18)

where z~&,
'~ is calculated in Ref. 10. The transi-

tion probability W~&(R) for this case consequently
is given by
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tc, (~) = ~e, -I»
~

«z(~). We denote this state by 2
and assume that it is just the first excited state
of atom A. We introduce a function cp„analogous
to the functions y, and y» which describes the
electronic motion when the electron is dominantly
localized in A. For R — the wave function (p1
tends to the atomic excited-state wave function Q„.
(In the case of a group of energetically close ex-
cited states, P„represents a linear combination
of the wave functions of these states. } Owing to
the condition &7,(~) «v(~} for the molecular wave
function X„as in case (a),

Xx —Pi —4~ ~ (20)

This wave function correlates asymptotically to
the configuration A+B'. By y, and y2 we denote
the adiabatic molecular wave functions which
correlate asymptotically to the configurations
A+B' and A'+B, respectively. As in the quasi-
resonance case, y, and X, are expressed in terms
of y, and y2 by the linear combinations

~l 1+1 2+2 & X2 2+1 1~2 & (21)

where the coefficients b, , are given by the same
t

expressions (lla), in which, however, z(R) and
b, (R) should be replaced by &I, (R) and h, (R) defined
by (lib) and (llc) with the functions P, and y, .
In constructing the functions (21) we have taken
into account the orthogonality of y™,and X, with
respect to X„which in the present case reduces
to (9&,

~
Q„) = 0 and excludes the hybridization of

y, and P„.
Hereafter it is convenient to distinguish between

three cases: (a) e, & Is, (b) q, &.Ia, rc, (R) &~a„~, .

and (c) q, &II&, Pr, (R)& ~e„~. In case (a) the direct
transitions X,—y, lead not to ionization of the
Rydberg electron, but rather to its deexcitation.
Therefore, from the point of view of the resonant
ionization, only the X, -X, transitions should be
considered. The corresponding dipole matrix
element is given by

(22)D,(R) = b,z„(R)+ b,z-,",&(R),

where z„=(p„r2 &&.
~
y,) and z~&,

'& is defined by
Eq. (18). For large values of R, 2„ is close to
the value of the matrix element z„y for the atomic
A-4 transition. We see from Eq. (22) that, con-
trary to the strongly nonresonant case (b}, where
D(R) is determined only by the "direct" transition
term z,+~, in the present case a new, "exchange-
induced" transition term appears, as the result
of the electron-density-delocalization effects in the
quasiresonant condition. As we shall see below,
the "exchange-induced" decay channel is the dom-
inant one when Fc,(~) is sufficiently small.

In case (b) [e, & Is and &I,(R) &
~z„~ ] the transition

X,-X, is possible and is much more favored than

D,(R)=b,z„(R)+b,z~&,'&, R ~R, , (24)

where R, is the characteristic distance for the X2

-X, transition and z„, z,", have already been
defined. If we designate by P, the probability for
the y2-y, transition, then. during the collision
the system will stay on the state y2 with a prob-
ability 1-P, until it eventually reaches the dis-
tance R„, (&R,), at which K,(R„,) =

~
e„~ . In the

region R &R„„Pc,(R) becomes larger than ~e„~,
so that the transition X2 X1 again leads directly
to ionization, and the corresponding dipole matrix
element is given by Eq. (23).

The characteristic distance R, is defined by the
equation b, (R,)= &7,(R,). When R &R„b,(R)» &7„

and when R &R„&7,»h, (R). Bearing this in mind
and using the explicit expressions for the coeffi-
cients b, and b„we see that the transition prob-
abilities W (R) for the three cases discussed
above have the form

W (R) =(4/3&tSn')D2(R)P, t&, =a, b, c,

where

2'~[I-&2z&'2&/z~)+ (zx".&/4)'], R ~R„

(26b)

D5(R) =
R&R

Z2„, R~R„

(27a)

(27b}

the X2 g1 transition. The dipole matrix element
for the X2

-X, transition is analogous to that of
the already investigated quasiresonant case [see
Eq. (12)], namely,

D&,(R}=2, , -„,&, +z»(R), , », &, ~ (23)
2 (K1 + 41) (K1+ Q1)

where z» ——(P, ~r, '&&. ~q,) . The excited state
created, X„which asymptotically goes over into
the atomic excited state P„, can decay radiatively
(if the corresponding transition is allowed); i.e.,
this resonant ionization channel of the Hydberg
electron can be identified by monitoring the radia-
tion from the decay A-A+II, v.

In ease (c) [&7,(R}& ~e„~, F., &Is] the transition»,
—X, leads only to resonant excitation of the Ryd-
berg electron into a state X„which correlates
asymptotically with the configuration A. +B [B
represents an excited state of the atom B with a
binding energy of e» ——e„—&I,(~)]. However, the
doubly excited state created in this way relaxes
via the resonant transition (y„B)—(y„B'+e).
The dipole matrix element for the X, -y, transi-
tion in this case is given by



RESONANT IONIZATION IN S LO%-ATOM- R YDBERG-ATOM. . . 823

and

+ (e,&0&/Z„)'], R ~R„
g0, R )R„

(28a)

(28b)
(28c)

should be replaced by those of the excited-state
wave function Q„. The expressions for h(R) and
6,(R) are given elsewhere. "

IV. IONIZATION PROBABILITY AND CROSS SECTION
CALCULATIONS

z&a&(R) C&o&R2/rs- e-re&& (28)

C' &=N»(2l/&+1) (2y&&/e) "s(1+y3)
x [(1—ys)/(1 + ya)]& /"&& 1 (1 —1/y&&), (30)

where —,'y~ =I~, l~ is the angular momentum quan-
tum number of the electron in atom B, and N~ is
a "normalization" constant in the asymptotic form
of the atomic wave function Qs. The matrix ele-
ment z» can be calculated easily, since the ex-
pressions for the functions y, and y, are known. "
The result is

(R) C(1R)1/&~+&/x&&'&e-&&'g &&&&&&/2» 2

C =N/&N/&[(2l/& + 1)(2' + 1)]' '(4/e)&' "&" "&&& '
f'(1 —1/r~ + 1/rs)f'(2+ 1/r~ —1/r»)

(yg +r, )

(31)

where the quantities y» l» and X„have the same
meaning as y~, l~, and N~, but refer to the atomic
state P„. The expression for Z»(R) is of the
same form as (31) and (32), the only difference
being that the parameters of the wave function Q„

Pg PQ

1-P, , R ~R,„(&R,),
P~, R ~R~.

The probability P, defines the nonadiabatic X2
transition due to the raidal Demkov-type coupling,
and its expression is given elsewhere. " Since
for small K, the critical distance R, is large and
since the matrix elements z» and z,",& are expo-
nentially small for large R, the main contribution
to W(R) in all three cases comes from the region
R &R,. In this region either a symmetric-reso-
nance-type (D= ~&R) or an electron exchange-
induced atomiclike (D= z„) transition dominates
the resonant ionization probability. Both of the
above-mentioned transitions are strong and pro-
vide a very efficient resonant ejection of the Ryd-
berg electron into the continuum.

In order to complete our analysis of the electron
transition probability in the ionization reaction (1),

- we give now the explicit expressions for the ma-
trix elements z,&20& and e» (and z»). Since in this
paper we are considering only Z states of the
inner subsystem AB', the corresponding expres-
sions for a,",& and z» have somewhat simpler
forms.

The matrix element z,'2» has the form"

Within the classical trajectory description of
nuclear motion the ionization probability P„(p, v)
for a given impact parameter p and Rydberg
state n is given by"

P„(p, v) =1-exp[-Z„(p, v)], (33)

2 "
qW(R) dR

(P ")--, [1 P IR U(R)/E]" (")
where U, (R) is the upper-molecular-state energy,
E =

2 p v 2 is the kinetic energy of collision, R is
the distance of closest approach, and q =—,

' and 1
for the symmetrical (resonance) and the asym-
metrical systems, respectively. When calculat-
ing the integral J„(p, v), one should take the limits
in accordance with the validity region of the par-
ticular expression for the W(R) under considera-
tion. In addition, the col)ision energy E must be
such that R satisfies the condition R & R„where
R, is the upper limit of the integral Z„(p, v)(i.e.,
satisfies the threshold condition for ionization).

In the case of symmetrical systems the energy
U, (R) of the decaying molecular state y, for large
R can be taken in the form

U, (R) =—'
~
4„,(R)

~

—&&&/2R (38)

where &x is the polarizability of the ground-state
atom. In the case of asymmetrical systems,
U, (R) must be obtained by molecular-structure
calculations.

Having determined P„(p, v), we see that the
ionization cross section is given by

0'q = 2%' Pq p~ v p 6/p . (36)

'We now calculate P„and 0„for some specific
ionization processes.

A. 8*(pg)+8-+8+8++e and Li*(n) + Li ~Li+ Li++e reactions

By using E&ls. (33)-(35) and (15), we have cal-
culated the ionization probability P„(p,v) for
the H*(n)+H and Li*(n)+Li colliding systems
at E=0.3 eV and for n=10, 15, 20, and 25.
The resul. ts of the calculations are given in
Fig. 1. We can see from Fig. 1 that up to some
impact parameter p„* the ionization probability is
almost constant and afterward it rapidly decreases
to zero The imp. act parameter p„at which P„(p„)
=0 corresponds to the critical internuclear dis-
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=2.0 eV lies above the ground-state lithium level,
whereas the ground states of these two atoms are
energetically separated by v(~) = 8.17 eV. The
transition probability in this case is thus given by
Eq. (25) and by one of the expressions (26)-(28).
For n & 10 the corresponding dipole matrix ele-
ment is D„as given by Eq. (26).

Vfe have calculated the ionization probability for
this reaction for n=10, 15, 20, and 25 at E=0.3
eV, and the results are presented in Fig. 3. In
these calculations the potential-energy curve U, (R)
was first calculated in the linear-combination-of-
atomic-orbitals approximation by substituting for
Q„and Qe linear combinations of the wave func-
tions of the 2s and 2P states of H (n= 2) and Li
atoms. The wave function of the Li 2P state has
been included in Pe in order to describe correctly
the long-range polarization part of the U, (R) po-
tential. The matrix elements z„and z,", have,
however, been calculated only with the 2s wave
function of Li. Expression (29) has been used for
z,,'~. The matrix element Z„has been approxi-
mated by $z» „(H), where the factor $ is the sta-
tistical weight of the 2P hydrogen state.

The shape of the ionization probability P„(p,v) as
a function of p is dominantly determined by the po-
larization part of the U, (R) potential. Up to p=p~,
where p~ is the radius of thepolarization capture
[P~=(2ne/E)' ), the ionization probability may be
considered constant. Its value is given approxi-
mately by P„=P„(0,v). In the low-energy region,
where the inequality U, (R)»E is satisfied, P„ is
given by

where p, is the reduced mass of the colliding par-
ticles and n~ is the polarizability of the lithium
atom. In this energy region the cross section 0„
can be represented in the form

(r„—vpg„= 8vz~~-„R,'/9W3n'v . (40)

In Fig. 4 the cross sections a„(n=10, 15, 20,
and 25) for the reaction H¹(n)+Li-H+ Li'+e,
calculated for the energy range from 0.01 to =2
eV, are presented. They all have an approxi-
mate E ' ~ behavior in the energy range under
consideration, which indicates the validity of the
polarization capture approximation in this energy
range.

V. CONCLUDING REMARKS

In the present paper we have considered the
process of ionization in the slow collisions of
Rydberg atoms with ground-state atoms. A reso-
nant energy exchange within the electronic part
of the system is assumed to be responsible for the
ionization process. This assumption is justified
for v«n . The basic approximation made in our
collision model is the neglect of the higher-order
transitions. For example, the resonant ioniza-
tion in the symmetrical systems can, in principle,
occur in two steps, starting from the ground Z
state of the AB' subsystem: a Z —Z„ transition
at large distances may lead to a resonant deexci-

P„= (4hz„'yR', /9v 3 n')(p/o. e)'~, (39)
E
O

H~(n)+ Li -H+Li +e

)p-2
.3ey

)p i6

(p i7

e4-

2xIO I I I

S 10 12 14 16
P(ao)

FIG. 3. ProbabQity for H*(n) + Li H+ Li'+ e reaction
(n=l0, 15, 20, and 25) at 8=0.3 eV.

2xtO i~

0
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02 OA 0.6 0.8 1.0 l2 1.4 1.6~E1/'2 (ey 1/2)

FIG. 4. Cross sections for H (n)+La H+Lx +e
reaction (n=10, 15, 20, and 25).
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tation of the Rydberg electron; however, a second
reverse Z„Z transition in the later stage of the
collision may lead to ejection of the Rydberg elec-
tron into the continuum. Such second-order (or
higher) processes have been neglected in our
treatment. In other words, the resonant ioniza-
tion model investigated in the present paper intro-
duces from the beginning the "decay approxima-
tion. " Another approximation, introduced in
Sec. II to help derive explicit expressions for the
transition probability W(R), is the Kramers ap-
proximation for the photoionization cross section.
This approximation, however, can always be
removed if necessary (e.g. , for values of n not
too large).

In the real A*(n)+B collisions, besides the
reaction (I) there may occur also the ion-pair
formation A*+I3 A'+8 and the associative
ionization A*+8—AB'+ e reactions. The ion-
pair formation process is possible (if B can

exist at all) if the potential-energy curve of the
covalent configuration 4+(n)+B has a crossing
(pseudocrossing) with the Coulomb potential of
the ionic configuration at a not too large inter-
nuclear distance, at which the corresponding non-
adiabatic coupling can still effectively cause
transitions. For Rydberg states with n~ n, +4,
where n, is the principal quantum number of the
ground-state parent atom, this possibility is ex-
cluded. The associative ionization channel is,
however, very probable. Its description requires
an accurate quantum-mechanical treatment of
nuclear motion. The simplest way to do this is
to multiply the transition probability W(R) by
the corresponding Franck-london factor. Since
high vibrational states are expected to be dom-
inantly populated in the resonant associative
ionization, one can use the quasiclassical
approximation in treating the nuclear motion.
This will be done in a future paper. '
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